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Invariant points under strict contractive
conditions.

Ravindra K. Bisht and Aditya Harbola.

Abstract. This paper is intended to consider a new approach for
obtaining common fixed points under strict contractive conditions
in metric spaces without assuming continuity or completeness ( or
closedness) of the range of any one of the involved maps. The results
proved by us can be extended to the nonexpansive or Lipschitz
type mapping pairs. Our results substantially improve the results
of Pant [ Discontinuity and fixed points, J. Math. Anal. Appl. 240,
(1999), 284-289], Imdad et al. [ Coincidence fixed points in symmetric
spaces under strict contractions, J. Math. Anal. Appl. 320, (2006),
352-360], Jin-xuan and Yang [ Common fixed point theorems under
strict contractive conditions in Menger spaces, Nonlinear Analysis
70, (2009), 184-193] and Pant and Pant | Common fixed points
under strict contractive conditions, J. Math. Anal. Appl. 248,(2000),
327-332].

Resumen. Este articulo tiene la intencién de considerar un nuevo
enfoque para la obtencién de puntos fijos comunes bajo estrictas
condiciones contractivas en espacios métricos sin asumir la continui-
dad o integridad (o cercania) de la gama de cualquiera de los mapas
implicados. Los resultados obtenidos por nosotros se puede extender
a los mapas de tipo no expansivos o Lipschitz. Nuestros resultados
mejoran sustancialmente los resultados de Pant [Discontinuity and
fixed points, J. Math. Anal. Appl. 240, (1999), 284-289], Iindad et al.
[ Coincidence fixed points in symmetric spaces under strict contrac-
tions, J. Math. Anal. Appl. 320, (2006), 352-360], Jin-xuan and Yang
[ Common fixed point theorems under strict contractive conditions
in Menger spaces, Nonlinear Analysis 70, (2009), 184-193] y Pant y
Pant [ Common fixed points under strict contractive conditions, J.
Math. Anal. Appl. 248,(2000), 327-332].
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1. Introduction:

In metric fixed point theory, strict contractive conditions constitute a very
important class of mappings and include contraction mappings as their subclass.
It may be observed that strict contractive conditions do not ensure the existence
of common fixed points unless some strong condition is assumed either on the
space or on the mappings. In such cases either the space is taken to be compact
or some sequence of iterates is assumed to be Cauchy sequence. The study of
common fixed points of strict contractive conditions using noncompatibility was
initated by Pant [9]. Motivated by Pant [9] researchers of this domain obtained
common fixed point results for strict contractive conditions under generalized
metric spaces [1,3,7,10, 11, 16]. The significance of this paper lies in the fact
that we can obtain fixed point theorems for conditionally reciprocally continuous
mappings under generalized strict contractive conditions without assuming any
strong conditions on the space or on the mappings.

The question of continuity of contractive maps in general and of continuity at
fixed points in particular, emerged with the publication of two research papers
by R. Kannan [5,6] in 1968 and 1969 respectively. These papers generated
unprecedented interest in the fixed point theory of contractive maps which, in
turn, resulted in vigorous research on the existence of fixed points of contractive
maps and the question of continuity of contractive maps at their fixed points
turned into an open question.

This problem was settled in the affirmative by Pant [8] in 1998 when he
introduced the notion of reciprocal continuity and as an application of this
concept obtained the first result that established a situation in which a collection
of mappings has a fixed point which is a point of discontinuity for all the
mappings.

Definition 1.1. [8]. Two selfmappings f and g of a metric space (X,d) are
called reciprocally continuous iff lim,, fgz, = ft and lim,, gfx, = gt, whenever
{zn} is a sequence such that lim,, fz,, = lim,, gx,, = t for some ¢ in X.

In the setting of common fixed point theorems for compatible maps satisfying
contractive conditions, continuity of one of the mappings f and g implies their
reciprocal continuity but not conversely [8].

More recently, Pant and Bisht [10] further generalized reciprocal continuity
by introducing the new concept of conditional reciprocal continuity, which turns
out to be the necessary condition for the existence of common fixed points. This
notion is applicable to compatible as well as noncompatible mappings.
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Definition 1.2. [10]. Two selfmappings f and g of a metric space (X, d)
are called conditionally reciprocally continuous (CRC) iff whenever the set of
sequences {z,} satisfying lim,, fz,, = lim, gz, is nonempty, there exists a se-
quence {y,} satisfying lim,, fy, = lim,, gy, = t(say) for some ¢ in X such that
lim,, fgy, = ft and lim,, g fy, = gt.

If f and g are reciprocally continuous then they are obviously conditionally
reciprocally continuous but, as shown in Example 2,1 below, the converse is not
true.

In 1986, Jungck [4] generalized the notion of weakly commuting maps [15]
by introducing the concept of compatible maps.

Definition 1.3. [4]. Two selfmaps f and g of a metric space (X,d) are ca-
lled compatible iff lim,, d(fgx,,gfz,) = 0, whenever {z,} is a sequence in X
such that lim,, fx,, = lim,, gz, = ¢ for some ¢ in X.

The definition of compatibility implies that the mappings f and g will be
noncompatible if there exists a sequence {z,} in X such that for some ¢ in X
but lim,, d(fgx,, gfx,) is either non zero or nonexistent.

In a recent work, Aamri and Moutawakil [1] introduced the idea of (E.A.)
property, which is more general than noncompatible mappings.

Definition 1.4. [1]. A pair (f, g) of selfmappings of a metric space (X,d) is
said to satisfy the property (E.A.) if there exists a sequence {x,} in X such that
lim fz, = lim gz, =t, for some t € X.

n—oo n—oo
In 1997, Pathak et al. [13] further generalized the notion of weakly com-

muting maps [15] by introducing two new independent concepts of R— weakly
commuting of type (Ay) and (A,).

Definition 1.5. [13] Two selfmappings f and g of a metric space (X,d)
are called R-weakly commuting of type (Ay) if there exists some positive real
number R such that d(fgz, ggz) < Rd(fz, gzx) for all z in X.

Definition 1.6. [13] Two selfmappings f and g of a metric space (X, d)
are called R-weakly commuting of type (A,) if there exists some positive real
number R such that d(ffz, gfz) < Rd(fx,gx) for all z in X.

On the other hand in the same year 1997, Pathak and Khan [12] further
introduced some interesting generalized noncommuting conditions analogous
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to the notion of compatibility by defining the notions of f—compatibility and
g—compatibility.

Definition 1.7. [12]. Two selfmaps f and g of a metric space (X,d) are
called f—compatible iff lim,, d(fgx,, ggx,) = 0, whenever {z,} is a sequence in
X such that lim,, fx,, = lim,, gx,, =t for some t in X.

Definition 1.8. [12]. Two selfmaps f and g of a metric space (X, d) are
called g—compatible iff lim,, d(f fz,, gfx,) = 0, whenever {z,,} is a sequence in
X such that lim,, fz, = lim,, gz,, = t for some t in X.

It may be observed that f—compatibility or g—compaibility implies R— weak
commutativity of type (Ay) or (Ay) respectively, but the converse is not true in
general. It may also be noted that both compatible and noncompatible mappings
can be R-weakly commuting of type (A,) or (Ay) [9].

The question whether there exists a contractive definition which is strong
enough to generate a fixed point but which does not force the map to be
continuous at the fixed point was reiterated by Rhoades in [14] as an existing
open problem. Pant [8,9], Pant and Pant [11], Pant and Bisht [10], Imdad et
al.[3] and Singh et al.[16] have provided some solutions to this problem. It is
of worth to note that in all the results proved by us, none of the mappings
under consideration has been assumed continuous. In fact, the mappings become
discontinuous at the fixed point. We, thus, also provide one more answer to the
open problem of Rhoades [14].

2. Main Results:

Theorem 2.1.

Let f and g be conditionally reciprocally continuous noncompatible selfmap-
pings of a metric space (X, d) satisfying

(). fX CgX
(11).

d(fz, fy) < maz {d(g9z, gy), [d(fz, gx) + d(fy, gy)]/2, [d(fz, gy) + d(fy, gx)]/2}

whenever the right hand side is positive. If f and g are either g—compatible or
f—compatible then f and g have a unique common fixed point.
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Proof:

Since f and g are noncompatible maps, there exists a sequence {x, } in X such
that fxz, — ¢ and gx,, — t for some ¢ in X but either l{m,, d(fgx,, gfx,) # 0 or
the limit does not exist. Since f and g are conditionally reciprocally continuous
and fxz, — t,gzr, — t there exists a sequence {y,} satisfying lim,, fy, =
lim,, gy, = u such that lim,, fgy,, = fu and lim,, gfy, = gu. Since fX C gX,
for each ¥, there exists z, in X such that fy, = gz,. Thus fy, — u, gy, — u
and gz, — u as n — oo. By virtue of this and using (ii) we obtain fz, — w.
Therefore, we have

fyn:gzn_)uagyn_)uafzn%u~ (1)

Now, suppose that f and g are g—compatible. Then lim,, d(f fyn,9fyn) = 0,
ie., ffyn — gu. We assert that fu = gu. If not, using (ii) we get d(f fyn, fu) <
max {d(gfyn, gu), [d(f [Yn, 9fyn) + d(fu, gu)]/2, [d(f fyn, gu) + d(fu, gfyn)/2]}
On letting n — oo this yields d(gu, fu) < %d(fu,gu), a contradiction unless
fu = gu. Since g—compatibility implies commutativity at coincidence points,
i.e., fgu = gfu and, hence ffu = fgu = gfu = ggu. If fu # ffu then by using
(i), we get d(f fu, fu) < maz {d(gfu, gu), [d(f fu. g fu) +d(fu, gu)]/2,

[d(f fu,gu) + d(fu,gfu)]/2} = d(f fu, fu), a contradiction. Hence fu = ffu =
gfu and fu is a common fixed point of f and g.

Finally, suppose that f and g are f—compatible. Then lim,, d(fgz,, g9z») = 0.
Using ggzn = gfyn — gu, this yields fgz, — gu. If fu # gu, the inequality
d(fgzn, fu) < maz {d(ggzn, gu), [d(f92zn, 992n) + d(fu, gu)]/2,

[d(fgzn. gu) + d(fu, ggz,)]/2}, on letting n — oo we get d(gu, fu) < 2d(fu, gu),
a contradiction. This implies fu = gu. Again, f—compatibility of f and g implies
that fgu = gfu and, hence, ffu = fgu = gfu = ggu. If fu # ffu then by
using (ii), we get d(f fu, fu) <maz{d(gfu, gu), [d(ffu,gfu) +d(fu, gu)]/2,
[d(f fu,gu) + d(fu,gfu)]/2} = d(f fu, fu)}, a contradiction. Hence fu = ffu =
gfu and fu is a common fixed point of f and g. This completes the proof of the
theorem.

Theorem 2.1 can be generalized further if we use the property (E.A.) instead
of the notion of noncompatiblity. We do so in our next theorem.

Theorem 2.2.

Let f and g be conditionally reciprocally continuous selfmappings of a metric
space (X, d) satisfying the property (E.A.) and

(1). fX CgX

().
d(fx, fy) < mazx {d(gz, gy), [d(fx,gz) + d(fy, 9y)]/2, [d(fx, gy) + d(fy, g7)]/2},
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whenever the right hand side is positive. If f and g are either g—compatible or
f—compatible then f and g have a unique common fixed point.

Proof:

Since f and g satisfy the property (E.A.), there exists a sequence {z,}
in X such that fz, — t and gz, — t for some ¢ in X. Since f and g are
conditionally reciprocally continuous and fxz, — t,gx, — t there exists a
sequence {y,} satisfying lim,, fy, = lim, gy, = u such that lim,, fgy, = fu
and lim,, gfy, = gu. Rest of the proof follows on the same lines as in the
corresponding part of the Theorem 2.1.

The next example illustrates the above theorem.

Example 2.1.

Let X = [2,20] and d be the usual metric on X. Define f,g: X — X as
follows

fr=2ifx=20rx>5, fr=6if2 <z <5,

92=2,gr=12,if2<x <5, gr =" ifx > 5.

Then f and g satisfy all the conditions of Theorem 2,2 and have a common
fixed point at x = 2. It can be verified in this example that f and g satisfy
the condition (ii). Furthermore, f and g are g— compatible. It can also be
noted that f and g are conditionally reciprocally continuous. To see this, let
{z,} be the constant sequence given by z, = 2. Then fz,, — 2, gz,, — 2. Also
fgxy, — 2= f2and gfx, — 2 = g2. Hence f and g are conditionally reciprocally
continuous. It is also obvious that f and g are not reciprocally continuous but
satisfy (E. A.) property. To see this, let {y,} be a sequence in X given by
Yn = 5+ €, where ¢, — 0 as n — oo. Then fy, — 2, gyn = (2+ %) — 2,
lim, fgyn, = f(2+ %) =6 # f2 and lim,, gfy, = g2 = 2. Thus lim,, gfy, = g2
but lim,, fgy, # f2. Hence f and g are not reciprocally continuous mappings
but satisfy (E. A.) property.

As a direct consequence of the above theorem we get the following corollary.

Corollary 2.1.

Let f and g be reciprocally continuous selfmappings of a metric space (X, d)
satisfying

(). fX CgX
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(11).
d(fz, fy) < maz {d(g9z, gy), [d(fz, gx) + d(fy, gy)]/2, [d(fz, gy) + d(fy, 9x)]/2},

whenever the right hand side is positive. Suppose f and g satisfy the property
(E.A.). If f and g are either g—compatible or f—compatible then f and g have
a unique common fixed point.

The corollary follows from the main theorem since reciprocally continuous
maps are conditionally reciprocally continuous.

The next theorem demonstrates the applicability of conditional reciprocal
continuity and noncompatibility in diverse settings by establishing the existence
of fixed point under the Lipschitz type analogue of a strict contractive condition.

Theorem 2.3.

Let f and g be conditionally reciprocally continuous noncompatible selfmap-
pings of a metric space (X, d) satisfying

(1. fX CgX

(11).
d(fz, fy) < max{d(gx, gy), k[d(fz, gz) + d(fy, gy)|/2, [d(fx, gy) + d(fy, g2)]/2},
1<k<2,

whenever the right hand side is positive. If f and g are either g—compatible or
f—compatible then f and g have a unique common fixed point.

Proof:

Since f and g are noncompatible maps, there exists a sequence {z,} in X
such that fz,, — t and gx,, — t for some ¢ in X but either lim,, d(fgz,, gfz,) #
0 or the limit does not exist. Since f and g are conditionally reciprocally
continuous and fx,, = gx,, — t there exists a sequence {y,, } satisfying lim,, fy, =
lim,, gy, = u such that lim,, fgy, = fu and lim,, gfy, = gu. Since fX C gX,
for each y, there exists 2z, in X such that fy, = gz,. Thus fy, — u, gy, — u
and gz, — u as n — oo. By virtue of this and using (ii) we obtain fz, — u.
Therefore, we have

fYn = g2n — U, GYn —> U, f2n — . (2)

Now, suppose that f and g are g—compatible. Then lim,, d(f fyn,g9fyn) = 0,
ie., ffyn — gu. We assert that fu = gu. If not, using (ii) we get d(f fyn, fu) <

maz {d(g fyn, gu), K[A(f fyn: 9fyn) + d(fu, gu)]/2, [d(f fym, gu) + d(fu. gfyn)/2]}.
On letting n — oo this yields d(gu, fu) < gd(fu,gu), a contradiction unless
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fu = gu. Since g—compatibility implies commutativity at coincidence points,
i.e., fgu = gfu and, hence ffu = fgu = gfu = ggu. If fu # ffu then by using
(i), we get d(f fu, fu) < maz {d(gfu, gu). kld(f fu, gfu) + d(fu, gu))/2,

[d(f fu,gu) + d(fu,gfu)]/2} = d(f fu, fu), a contradiction. Hence fu = ffu =
gfu and fu is a common fixed point of f and g.

Finally, suppose that f and g are f—compatible. Then lim,, d(fgz,, g9z,) = 0.
Using ggzn = gfyn — gu, this yields fgz, — gu. If fu # gu, the inequality
d(fgzn, fu) < maz {d(ggzn, gu), kld(fgzn, 992n) + d(fu, gu)]/2,

[d(fgzn, gu) + d(fu, ggz,)]/2}, on letting n — oo we get d(gu, fu) < Ed(fu, gu),
a contradiction. This implies fu = gu. Again, f—compatibility of f and ¢ implies
that fgu = gfu and, hence, ffu = fgu = gfu = ggu. If fu # ffu then by
using (ii), we get d(ffu, fu) < maz {d(gfu, gu), k[d(f fu, g fu) + d(fu, gu))/2.

[d(f fu,gu) + d(fu,gfu)]/2} = d(f fu, fu), a contradiction. Hence fu = ffu =
gfu and fu is a common fixed point of f and g. This completes the proof of the
theorem.

Theorem 2.3 can be generalized further if we use the property (E.A.) instead
of the notion of noncompatiblity as patterned in Theorem 2.2.

Remark 2.1.

If f and g fail to be reciprocally continuous then there exists a sequence {x,, }
in X such that fz,, — ¢ and gx,, — ¢ for some ¢ in X but either lim,, fgx, # ft
or lim,, gfx, # gt or one of fgx,,gfx, is not convergent. It is also pertinent to
mention here that if f and g are not reciprocally continuous then they necessarily
satisfy the (E. A.) property, however the mappings satisfying (E. A.) property
may be reciprocally continuous (see Example 11 [10]).

Theorem 2.4.

Let f and g be conditionally reciprocally continuous selfmappings of a metric
space (X, d) satisfying

(. [X CgX

(11).
d(fz, fy) < maz {d(gz, gy), [d(fz, gx) + d(fy, gy)]/2, [d(fz, gy) + d(fy, 9x)]/2},

whenever the right hand side is positive. Suppose f and g are not reciprocally
continuous. If f and g are either g—compatible or f—compatible then f and g
have a unique common fixed point.
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Proof:

Since f and g are not reciprocally continuous, there exists a sequence {x,}
in X such that fz,, — t and gx,, — ¢ for some ¢t in X but either lim,, fgx, # ft
or lim,, gfx, # gt or one of fgx,,gfx, is not convergent. Rest of the proof can
be completed on the similar lines as has been done in Theorem 2.1.

Example 2.1. also illustrates Theorem 2.4.

Theorem 2.5.

The conclusions of all the above Theorems 2.1, 2.2, 2,3 and 2.4 respectively
remain true if the noncommuting condition, i.e., f—compatible or g—compatible
is replaced by the strong noncommuting notion of R— weakly commuting of
type (Af) or (Ay) respectively.

Proof:

Theorem 2.5 follows from the fact that f—compatible or g—compatible are
R— weakly commuting of type (Af) or (Ag4) respectively.

Remark 2.2.

In all the above results we have not asummed any of the strong condition,
i.e., continuity or completeness (or closedness) of the range of any one of the
involved mappings. Our results substantially improve the results of Pant [9],
Imdad et. al. [3], Kubiaczyk and Sharma [7] and many others.

Remark 2.3.

In this paper we have proved all the results using strict contractive condi-
tions. It may be observed that strict contractive conditions do not ensure the
existence of common fixed points unless the space is assumed compact or the
strict contractive condition is replaced by some strong conditions, e.g., a Banach
type contractive condition or a ¢— contractive condition or a Meir-Keeler type
contractive condition.
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Remark 2.4.

In all the results established in this paper, we have not assumed any mapping
to be continuous. We now show that f and g are discontinuous at the common
fixed point u = fu = gu. If possible, suppose f is continuous. Then taking the
sequence {yn} of (1) (Theorem 2.1) we get ffy, — fu =u and fgy, — fu=u.
g-compatibility now implies that lim,, d(f fyn,9fyn) =0, i.e., ¢fyn = fu=1u
This, in turn, yields lim, d(fgyn,9fy,) = 0. This contradicts the fact that
lim,, d(fgyn, gfyn) is either nonzero or nonexistent. Hence f is discontinuous
at the fixed point. Next, suppose that g is continuous. Then, for the sequence
{yn}, we get gfy, — gu = u and ggy, — gu = u. In view of these limits, the
inequality d(fgyn, fu) < maz {d(99yn, gu), [d(f9Yn, 99yn) + d(fu, gu)]/2,
[d(fgyn, gu) + d(fu, ggyn)]/2}, yields a contradiction unless fgy, — fu = u.
But fgy, — v and gfy, — u contradicts the fact that lim,, d(fgyn,gfyn) is
either nonzero or nonexistent. Thus we provide more answers to the problem
posed by Rhoades [14] regarding existence a contractive definition which is
strong enough to generate a fixed point, but which does not force the map to be
continuous at the fixed point.
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