
Locally Ckn graphs
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Abstract

We completely classify the graphs all of whose neighbourhoods of vertices
are isomorphic to Ckn ( 2 ≤ k < n), where Ckn is the k-th power of the cycle
Cn of length n.

1 Introduction

All graphs considered in this paper are undirected, without loops or multiple edges.
Kn denotes the complete graph on n vertices, Pn the path of length n − 1, Cn the
cycle of length n and ∼ the adjacency relation. If v is a vertex of a graph Γ, we
denote by Γ(v) the neighbourhood of v, that is the subgraph induced by Γ on the set

of vertices adjacent to v in Γ. Given a positive integer k and a graph Γ, the k-th
power Γk of Γ is the graph whose vertices are those of Γ, two vertices being adjacent
in Γk iff their distance in Γ is at most k. Obviously Γ1 ' Γ.

Given a graph Γ′, a connected graph Γ is said to be locally Γ′ if, for every vertex

v of Γ, the subgraph Γ(v) is isomorphic to Γ′. There is an extensive literature
on the classification of all graphs which are locally a given graph (see for example
the bibliography at the end). The purpose of this paper is to classify the graphs

which are locally Ck
n for 2 ≤ k < n. When k = 1, it is already known (Brown

and Connelly [5] [6], Hell [13] and Vince [17]) that for any given n ≥ 6, there are
infinitely many non isomorphic graphs which are locally Cn and that the only locally
C3, C4 and C5 graphs are respectively the 1-skeletons of the tetrahedron, octahedron

and icosahedron.
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Our main result is the following :

Theorem Let k and n be integers such that 2 ≤ k < n and let Γ be a locally
Ck
n graph.

(i) If k + 1 ≤ n ≤ 2k + 1, then Γ ' Kn+1.

(ii) If n = 2k + 2, then Γ is isomorphic to the complete (k + 2) - partite graph
K2,...,2.

(iii) If n ≥ 2k + 3, there is no locally Ck
n graph.

Topp and Volkmann [15] have already considered the particular case where k = 2,
and so we may assume k ≥ 3 in our proof.

If a0, . . . , an−1 are the vertices and if [ai, ai+1] are the edges of Cn (i = 0, . . . , n−1;
the indices being computed modulo n), we shall say that a0 ∼ a1 ∼ . . . ∼ an−1 ∼ a0

is a basic cycle of Ck
n.

2 Lemmas

The following properties will be used to establish the theorem. The proofs of the
first three lemmas are straightforward and will be omitted.

Lemma 1. If n ≥ 2k + 1, Ck
n is a regular graph of degree 2k.

Lemma 2. If n ≥ 3k + 1 and k ≥ 2, the neighbourhood of any vertex of Ck
n is

isomorphic to P k−1
2k .

Lemma 3. If k ≥ 2, P k−1
2k has exactly two vertices of degree k + j − 1 for every

j ∈ {0, . . . , k − 1}.

If v and w are two adjacent vertices of a graph Γ, we shall denote by Nv
w the

set of all common neighbours of v and w in Γ, by Av
w the set of all vertices of Γ

(distinct from w) adjacent to v but not to w, and by Mv
w the set of all vertices of

Nv
w adjacent to every vertex of Av

w. Obviously Nv
w = Nw

v and Av
w ∩Aw

v is empty.

Lemma 4. If 2k + 2 ≤ n ≤ 3k + 1 and if v and w are two adjacent vertices of a

graph Γ which is locally Ck
n, then

(i) |Av
w| = n − 2k − 1 and the subgraph induced by Γ on Av

w is isomorphic to

Kn−2k−1.

(ii) |Mv
w| = 2(3k + 2− n) and Mv

w = Mw
v .

Proof. By Lemma 1, |Nv
w| = 2k. Since |Γ(v)| = n, it follows that |Av

w| =

n − 2k − 1, and so 1 ≤ |Av
w| ≤ k because 2k + 2 ≤ n ≤ 3k + 1. Therefore

Γ(v) ' Ck
n induces on Av

w a subgraph isomorphic to Kn−2k−1; moreover |Mv
w| =

2(k + 1− |Av
w|) = 2(3k + 2− n). By applying similar arguments to Γ(w) ' Ck

n, we
get |Mw

v | = 2(3k + 2 − n). Thus Mv
w and Mw

v have the same cardinality and, in

order to prove that Mv
w = Mw

v , it suffices to show that Mv
w ⊂Mw

v .

Let x be any vertex of Mv
w. In the subgraph Γ(v), x is adjacent to w and to the

n − 2k − 1 vertices of Av
w. Therefore, by Lemma 1, x must be adjacent to exactly

2k − 1− |Av
w| vertices of Nv

w.

On the other hand, since Nv
w = Nw

v , x is also a vertex of Nw
v . Suppose that

x /∈ Mw
v . Then x is not adjacent to all the vertices of Aw

v . Therefore, by Lemma 1,
the number of neighbours of x in Nw

v is less than 2k − 1− |Aw
v |. Since |Aw

v | = |Av
w|
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and Nw
v = Nv

w, this contradicts the conclusion of the preceding paragraph. It follows
that x ∈Mw

v , and so Mv
w ⊂ Mw

v .

3 Proof of the theorem

Let v be any vertex of a graph Γ which is locally Ck
n. Since the case k = 2 has

already been examined in [15], we may assume 3 ≤ k < n. It is no restriction of

generality to denote by v0, . . . , vn−1 the vertices of Γ(v), the edges of Γ(v) being
those of a graph Ck

n constructed over the basic cycle v0 ∼ v1 ∼ . . . ∼ vn−1 ∼ v0.
1) If k + 1 ≤ n ≤ 2k + 1, then Ck

n ' Kn, and so obviously Γ ' Kn+1.
2) If n = 2k + 2, then Ck

n is isomorphic to the complete (k + 1)-partite graph

K2,...,2 and it is very easy to conclude that Γ is necessarily the complete (k+2)-partite
graph K2,...,2,2 (see for example Brouwer, Cohen and Neumaier [4], Proposition 1.1.5
).

3) If n ≥ 2k+3 , Γ(v0) contains v, v1, . . . , vk, vn−k, . . . , vn−1 and no other vertex of
Γ(v), and so vo must be adjacent to n−2k−1 ≥ 2 new vertices vn, vn+1, . . . , v2n−2k−2

which form the set Av0
v . It is no restriction of generality to assume that the path

vn ∼ vn+1 ∼ . . . ∼ v2n−2k−2 is a subgraph of a basic cycle B(v0) of Γ(v0) ' Ck
n,

and that vn+j and v2n−2k−2−j are at distance k + 1 + j from v in B(v0) (0 ≤ j <
1
2
(n− 2k − 1)).

Let n = 2k + 1 + i, where i ≥ 2.
Case I : i ≤ k − 1.
Note first that 2k + 3 ≤ n ≤ 3k, so that Lemma 4 can be applied.
Each of the sets Av0

vn
and Av0

vn+1
is of cardinality n − 2k − 1 = i. Since vn and

vn+1 are adjacent on the basic cycle B(v0), the set Av0
vn ∪ Av0

vn+1
consists of i + 1

consecutive vertices of B(v0). But i + 1 ≤ k, and so there is at least one vertex
w ∈ Nv0

vn ∩ Nv0
vn+1

which is adjacent to the i + 1 vertices of Av0
vn ∪ Av0

vn+1
. In other

words, w ∈Mv0
vn
∩Mv0

vn+1
. By Lemma 4 (ii), it follows that w ∈Mvn

v0
∩Mvn+1

v0
, which

means that w is adjacent to the i vertices of Avn
v0

and to the i vertices of Avn+1
v0

. On
the other hand, the only vertices of Γ adjacent to w are v0, the 2k vertices of Nw

v0

and the i vertices of Aw
v0

(by definition of Nw
v0

and Aw
v0

). Since the vertices of Avn
v0

and
Avn+1
v0

are all non adjacent to v0 and since |Aw
v0
| = |Avn

v0
| = |Avn+1

v0
| = i, we deduce

that Aw
v0

= Avn
v0

= Avn+1
v0

.
The vertices of Nvn

vn+1
are either adjacent to v0 (there are exactly 2k − 2 such

vertices in Γ(v0)) or non adjacent to v0 (there are exactly i such vertices because

Avn
v0
∩ Avn+1

v0
= Aw

v0
has cardinality i). Therefore |Nvn

vn+1
| = 2k − 2 + i. If i > 2, this

contradicts Lemma 1.
If i = 2, then n = 2k + 3, Av

v0
= {vk+1, vk+2}, Av0

v = {vn, vn+1} and Mv
v0

=
{v2, . . . , vk, vk+3, . . . , v2k+1}. Note that w ∼ v since w is adjacent to v0, vn and vn+1.

Thus the 2k + 3 vertices of Γ(w) are the 2k vertices of Nv
w together with v, vn and

vn+1. On the other hand, as we have seen before, w is adjacent to the two vertices
of Avn

v0
and to the two vertices of Avn+1

v0
. Therefore Avn

v0
∪ Avn+1

v0
⊂ Nv

w − Γ(v0), and
so necessarily Avn

v0
= Avn+1

v0
= Av

v0
= {vk+1, vk+2}. It follows that Γ(vn) contains the

vertices v0, vn+1, vk+1, vk+2, the vertices v2, . . . , vk, vk+3, . . . , v2k+1 of Mv0
v = Mv

v0
and

one vertex of {v1, v2k+2}, which means that Mvn
v0

must contain the 2k − 2 vertices
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of Mv0
v and vn+1, i.e. at least 2k − 1 vertices, contradicting Lemma 4 (ii) since

2k − i > 2k − 2.

Case II: i ≥ k
Since n ≥ 3k + 1, Lemma 2 shows that the subgraph induced by Γ on the set

Nv0
v = {v1, . . . , vk, vn−k, . . . , vn−1} is isomorphic to P k−1

2k . Thus, using Lemma 3,

it is no restriction of generality to assume that v ∼ v1 ∼ . . . ∼ vk ∼ vn ∼ . . . ∼
v2n−2k−2 ∼ vn−k ∼ . . . ∼ vn−1 ∼ v is a basic cycle of Γ(v0) ' Ck

n. Therefore Nvk
vk−1

contains the vertex v, 2k−2 vertices of Γ(v) ' Ck
n and k−1 vertices of Av0

v (namely

vn, . . . , vn+k−2). It follows that |Nvk
vk−1
| ≥ 3k − 2 > 2k (because k ≥ 3), which

contradicts Lemma 1 and finishes the proof of our theorem.

References

[1] A. Blass, F. Harary and Z. Miller, Which trees are link graphs? J. Combin.

Theory Ser. B. 29 (1980) 277 - 292.

[2] A. Blokhuis and A. E. Brouwer, Locally 4-by-4 grid graphs, J. Graph Theory
13 (1989) 229 - 244.

[3] A. Blokhuis, A. E. Brouwer, D. Buset and A. M. Cohen,The locally icosahe-

dral graphs, in C. A. Baker and L. M. Batten, eds., Finite Geometries, Proc.
Winnipeg 1984, Lecture Notes in Pure and Applied Math. 103, Marcel Dekker,
New York, 1985, 19 - 22.

[4] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs,

Springer-Verlag, Berlin (1989).

[5] M. Brown and R. Connelly, On graphs with a constant link I, in New Directions
in the Theory of Graphs (F. Harary, ed.), Academic Press, New York (1973)
19-51.

[6] M. Brown and R. Connelly, On graphs with a constant link II. Discrete Math.
11 (1975) 199-232.

[7] F. Buekenhout and X. Hubaut, Locally polar spaces and related rank 3 groups,
J. Algebra 45 (1977) 391 - 434.

[8] D. Buset, Graphs which are locally a cube, Discrete Math. 46 (1983) 221 - 226.

[9] D. Buset, Locally P k
n graphs, to appear in Ars Combinatoria.

[10] J. I. Hall, Locally Petersen graphs, J. Graph Theory 4 (1980) 173 - 187.

[11] J. I. Hall, Graphs with constant link and small degree or order, J. Graph Theory

9 (1985) 419 - 444.

[12] J. I. Hall, A local characterization of the Johnson scheme, Combinatorica 7
(1987) 77 - 85.



Locally Ck
n graphs 485

[13] P. Hell, Graphs with given neighbourhoods I. Problèmes Combinatoires et
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Faculté des Sciences Appliquées
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