
Karnak? an automated theorem prover
for PPC?

Tarek Mohamed Elnadi Albert Hoogewijs

Abstract

In this paper we introduce KARNAK?, an automated theorem prover for
the partial predicate calculus PPC?. PPC? has been introduced in [8] as an
equivalent logic for LPF, the Logic of Partial Functions which is the logical
basis of the software specification language VDM [10]. KARNAK? is used to
show that a complete subsystem of LPF is derivable from PPC?, and hence
it follows that PPC? is also complete. In addition, theorem preserving trans-
formations between PPC and PPC? are introduced.

1 Introduction

We tried to make the paper as self-contained as possible. It is organized as follows.
In section 2, the partial predicate calculi PPC, LPF and PPC? are discussed and the
deduction rules of PPC and LPF are presented in Appendix A and Appendix B

respectively. The automated theorem prover KARNAK? is explained in section 3,
and used in section 4 to prove the completeness of PPC?. Some of the completeness
proofs are introduced in Appendix C. Theorem preserving transformations between

PPC and PPC? are introduced in section 5, while section 6 contains some concluding
remarks.

2 The Partial Predicate Calculi PPC, LPF and
PPC?

In [7] the partial predicate calculus PPC was introduced in order to formalize the
undefinedness notion both in mathematics and in computer science. The basic

Received by the editors November 1994 - Revised February 1995
Communicated by Y. Félix

Bull. Belg. Math. Soc. 2 (1995), 541–571

542 T. M. Elnadi – A. Hoogewijs

propositional connectives are ¬ and ∧. These connectives together with the classical
definitions of ∨,→,↔ satisfy the Kleene K3 truth tables [13]. In addition, the ∆

connective is used and corresponds to Hallden’s “meaningful”-functor, where ∆α
means that α is defined. The ∀ quantifier and the derived ∃ quantifier correspond to
their definitions in the finite Lukasiewicz and Post logics where for any valuation V
in a domain D, V(∀xα(x)) ≡ min{V(α(a)) : a ∈ D} (V(∃xα(x)) ≡ max{V(α(a)) :

a ∈ D}). The validity notion used to define Γ |= α is different from the classical
approach, in the sense that Γ |= α means: for all models if all the formulas of Γ
are evaluated to “true”, then the formula α is NOT evaluated to “false”. It follows

that the classical propositional part of PPC corresponds to the following “Kleene
matrix”:

K ′3 = ({F, U, T},¬,→,∨,∧,↔ {U, T})
where {U, T} refers to the set of designated values [13]. It has been shown that this
matrix is homomorphic to the classical two-valued matrix, in the sense that the set
of tautologies coincides with that of the classical logic [2].

According to the terminology of Ryan and Sadler in [14], PPC was formalized

as a “natural deduction calculus in sequent style” (see Appendix A). This means
that instead of manipulating formulas as in natural deduction, one manipulates
whole sequents. However, the set on the right of the turnstile can contain only
one formula1. While pure sequent calculi only contain introduction rules and hence

satisfy the “subformula property”, this natural sequent calculus contains both in-
troduction and elimination rules expressing the basic properties of the connectives
and quantifiers. In [6, 9] KARNAK was introduced as an ATP for PPC and it was

explained how to overcome the problems that arise from this feature of PPC.
In [1, 4] LPF was introduced as a logic covering undefinedness in program proofs,

and the deduction rules of LPF are presented in Appendix B. The basic language
of LPF consists of the connectives ¬ and ∨ which satisfy the K3 tables, the ∆

connective and the ∃ quantifier, but also the propositional symbol “uu” which is
always undefined and which was introduced by S lupecki in 1936 in order to make
the three-valued calculus of Lukasiewicz (L3) functionally complete [2]. With respect
to the model theory, Γ |=LPF α has the classical meaning in the sense that for all

models if all the formulas of Γ are evaluated to “true” then the formula α is evaluated
to “true”. In this case, the classical fragment of the propositional logic has a void
set of tautologies since it corresponds to the classical K3 matrix

K3 = ({F, U, T},¬,→,∨,∧,↔ {T})
(see [2]). In [4] the notation α ⊃ β is used as an abbreviation for ¬α ∨ ¬∆α ∨ β in
order to obtain a Hilbert-style axiomatization of the propositional part of LPF.

In [8] PPC? was introduced as a modified version of PPC having the validity
notion of LPF. The PPC? rules were obtained from the PPC rules by removing the
rules (E), (D1) and (D2) and adding the following new rules:

(E′) ¬(t = t) `? α
Γ `? α

(∆)
Γ `? ∆α

1This is not a real restriction since one can present a list of formulas as its disjunction.

Karnak? an automated theorem prover for PPC? 543

Γ1,¬α1 `? β

Γ2,¬α2 `? β
(Cn0)

Γ1,Γ2,¬(α1 ∧ α2) `? β

Γ,¬α `? β
(Gnx) if x is not free in Γ, β

Γ,¬∀xα `? β

The rule (∆) was added to realize the validity notion of LPF. The rules (D1) and

(D2) were removed because either of them with (∆) imply that all formulas are de-
fined. In [8] it was shown that in PPC (E) is equivalent to (E′). Since (E) with (∆)
imply that all terms are defined, (E) was replaced by (E′). Since the contraposition

rule (CaPo1)

(
Γ, α ` β
Γ,¬β ` ¬α

)
and (Ad1) imply (D2), (CaPo1) is not sound and the

existing PPC proofs of (Cn0) and (Gnx) which rely on (CaPo1) are no longer valid.
Hence, (Cn0) and (Gnx) were added seeking for the completeness.

Since PPC? was obtained from PPC by removing some rules and adding other

ones, the system has some redundancies:

• The rule (X′) can be replaced by its classical equivalent (X), and the second

assumption of the rule (Cni) is not needed anymore.

• The cut rule is provable in PPC?, and hence a rule like (C0) becomes equivalent

to its abbreviated form α, β `? α ∧ β.

• Some rules are obviously dependent, especially due to the addition of the rule
(∆). For example, (Ad1) can be derived from (A) and (∆), and (Cdi) can be
derived from (Ci) and (∆).

The soundness of PPC? can easily be derived by showing that each of its rules is
sound. For example, to prove the soundness of the substitution rule (S′tx) we show
the following:

Γ1 |=? α
Γ2 |=? ∆(t = t)

(S′tx) if substxtΓ1Γ3 and substxtαβ
Γ2,Γ3 |=? β

Assume substxtΓ1Γ3, substxtαβ, Γ1 |=? α and Γ2 |=? ∆(t = t). Assume also that

M ≡ (D, I) is a PPC? model satisfying Γ2,Γ3 in the sense that all the formulas of
Γ2 and Γ3 are true in M. Then, one has to prove that β is also true in M. Since
Γ2 |=? ∆(t = t) and M satisfies Γ2, V∆(t = t) ≡ T which means that the term t is
defined in M and hence there is an interpretation It ∈ D. Now consider the model

(D, IItx) where IItx is exactly like I but x is interpreted as It. Since M ≡ (D, I)
satisfies Γ3 and substxtΓ1Γ3, (D, IItx) satisfies Γ1. Then, (D, IItx) also satisfies α
because Γ1 |=? α. Hence,M≡ (D, I) satisfies β because substxtαβ. 2

544 T. M. Elnadi – A. Hoogewijs

The soundness of the other rules can be proven similarly.

As will be proven in section 4, PPC? is complete. In addition, it is equivalent

to LPF′ which is a logic obtained from LPF by excluding the symbol “uu” and its
rules.

3 KARNAK?

KARNAK? is a modified version of KARNAK. The proof development method
(PDM) and the proof strategy of KARNAK? are similar to those of KARNAK
which are described in detail in [6, 9].

It was already noted that PPC and PPC? are natural sequent calculi and not

pure sequent calculi for which the backwards PDM can be implemented efficiently
[3, 12, 15] due to the subformula property. The forwards application of introduction
rules and the backwards application of elimination rules are explosive. This means
that neither the forwards nor the backwards PDM can easily be used with natural

calculi. The PDM of KARNAK and KARNAK? is mainly forwards. The program
takes a set of assumptions and a conjecture and tries to prove the conjecture by
successive applications of the deduction rules on the given assumptions. In addition,
a backwards technique is used to look ahead for the conjecture.

The proof strategies used with natural systems are generally intended to capture
some aspect of human reasoning and they should not necessarily be complete [5].
If generality is defined as the degree of completeness of some proof strategy, the
designer of some ATP should look for an intelligent strategy satisfying the balance

between generality and efficiency. The proof strategy of KARNAK and KARNAK?

is based on the following:

1. Using filters to avoid to add steps which seem to be useless:

When the program succeeds to apply some rule on previous steps, it performs
certain checks on the deduced step before adding it to the proof. The predi-
cates which perform these checks are called filters. Then, the role of the filters

comes after the application of rules, and they are proposed to make a distinc-
tion between the steps which seem to be useful and the ones which seem to
be useless. The first filter ensures that the deduced step does not exist in the
proof. The other filters are designed to avoid the steps which can be deduced

directly from one of the rules (A), (Ad1), (Ad2), (D0), (Cd1), (Cd2), (Gd1)
and (Gd3), but were deduced using one of the other rules. It seems useless for
example to derive the sequent α ` α using a rule different from (A). These
filters do not reduce much the generality of the program but may increase its

efficiency.

2. Using a technique to avoid to repeat the previous computations:

Suppose that the program is trying to prove some theorem and has generated

one hundred steps. If the program fails to apply some rule like (R′) on the
hundred steps to add a new step to the proof, this fact is registered in a certain
database so that the program avoids in the following proving procedure to

Karnak? an automated theorem prover for PPC? 545

choose the three sequents, on which the rule (R′) is to be applied, from the
first hundred steps. This helps to save much time especially in long proofs,

and hence increases the efficiency of the program.

3. Restricting the application of some rules:

Some of the PPC deduction rules have the property that the conclusion of
the rule is not determined completely by its assumptions. These rules are (A),
(Ad1), (Ad2), (Cd1), (Cd2), (Cn1), (Cn2), (D0), (X′), (Gd1), (Gd3), (E), (Ed1),

(Ed2) and also (De1) in some sense. In order to apply these rules, one should
specify the unknown parts in the conclusion. For example, to apply some rule
like (A) α ` α, one should specify which α must be used. Since one can choose
any formula α, the uncontrolled application of such rule is explosive and may

generate an enormous number of sequents. Hence, it is unavoidable to restrict
its application. In addition, a rule like (C0) can be applied on any two previous
sequents producing the same problem although the conclusion of this rule is
completely determined by its assumptions. Then, the other rules may also be

explosive and one should put restrictions on their application. The problem is
how to restrict the application of the explosive rules without reducing much
the generality of the program. Due to these restrictions, the program will not

be able to discover the proofs beyond them. For example, the program does
not use any conjunction which does not exist in the theorem. Hence, it may
not be able to discover a proof for the following theorem:

(AnEx)
Γ ` α

Γ, β ` α

which is proven in [7] as follows:

1: Γ ` α assumption

2: β ` β (A)
3: Γ, β ` α ∧ β (C0) on 1,2
4: Γ, β ` α (C1) on 3 2

These rule and proof are valid in PPC and PPC?.

In the following, we introduce the principles which are used in KARNAK? to
restrict and control the application of the deduction rules. These principles
are similar to those of KARNAK with slight modifications.

Principle 1:

The program does not use any conjunction which does not exist in the theorem.
This principle is used to control the rules (C0), (Cd0), (Cd1), (Cd2), (Cn1),
(Cn2) and (Cn0).

Principle 2:
The rules (Gx), (Gd1), (Gd3) and (Gnx) are controlled by using only the
quantifications which are in the theorem. One can notice that if x does not

546 T. M. Elnadi – A. Hoogewijs

occur free in Γ in a sequent Γ `? α , then (Gx) can be applied on this sequent to
give Γ `? ∀xα. Since x does not occur free in Γ, (Gx) can be applied again on

Γ `? ∀xα to give Γ `? ∀x∀xα. This may cause infinite useless computations.
“Principle 2” controls the application of (Gx) where any quantification will
not be used if it is not in the theorem. One can also notice that the rule (Gd2)
can not be explosive.

Principle 3:
When some rule can be applied only in a small finite number of ways, the

program uses all these ways without restrictions. This principle is used to
control (De1).

Principle 4:

The program does not use any variable or constant which does not exist in the
theorem. This principle is used to control (Ed1), (Ed2) and (S′tx).

Principle 5:

If F is the set of the formulas of the theorem and their subformulas, the
program applies the rules (Ad1), (Ad2) and (D0) for α ∈ F . The rule (X′)
is implemented as its classical equivalent (X), and the program applies it for
β ∈ F . In addition, the program applies the rule (A) for α ∈ F∪¬(F)∪¬∆(F)

where ¬(F) = {¬α : α ∈ F} and ¬∆(F) = {¬∆α : α ∈ F}. This restriction
reflects the principle of the “excluded fourth”. We notice that many proofs are
“normal” according to these restrictions. In other words, this principle may
not reduce much the generality of the program.

Principle 6:
The program applies the rule (Dn1) on a sequent Γ `? ∆α only when α ∈ F .

Without such restriction, (Dn1) can be applied an infinite number of times,
where it can be applied on Γ `? ∆α to give Γ `? ∆¬α, then it can be applied
on Γ `? ∆¬α to give Γ `? ∆¬¬α, and so on. For a similar reason, the rule
(∆) is applied only for α ∈ F .

Principle 7:
The rule (E′) is implemented in another equivalent and more deterministic
form ¬(t = t) `? t = t. This rule becomes explosive when the theorem

contains a function symbol because in this case the universe of discourse is
infinite. If T is the set of the terms of the theorem and their subterms, the
program applies the rule (E′) for t ∈ T . However, the user can overcome this
restriction by introducing terms outside T as shown in [6, 9].

Principle 8:
The program applies the rule (Et

x) for (x = t) ∈ F .

By experiment, it was noticed that there is some kind of inverse proportion between
the efficiency and the generality of the program. In other words, when one decreases
the restrictions on the application of the rules to make the program more general,

it is likely to be less efficient. It is really difficult to find a proof strategy which
works efficiently for a wide range of problems. However, the current implementaion
succeeded to prove many theorems in short times, and this can be considered a

Karnak? an automated theorem prover for PPC? 547

hopeful start. If one can add new rules to the program (regardless if it succeeded to
prove them or not), it may be able to discover the proofs of much more theorems.

Nevertheless, in order to add new rules to the program, the user should control the
application of these rules, and this requires a good understanding of the program and
the used programming language. The addition of new rules can hardly be automated
but may be described systematically in a user’s manual. By adding new rules, one

may build theories of partial predicates and functions. Although the cut rule is
provable in PPC?, it is not implemented in KARNAK? as a derived rule because it
seems to decrease the efficiency of the program by generating many useless steps.

However, the program is able to prove this rule in a short time and the proof is
introduced in Appendix D.

When the program succeeds to prove some theorem, it can write a report file
containing some statistics of the proof. The report contains the following informa-

tion:

• The Proving Time PT in seconds, which is the time taken to prove the theo-
rem.

• The Writing Time WT in seconds, which is the time taken to write the proof

in LaTEX. Before writing the proof, the program removes all the unused steps
from the proof with renumbering the reference numbers in the subsequent
steps2. Hence, the proofs written by the program are completely connected.
This may also help to reduce the assumptions because the unnecessary ones

may not appear in the written proof. The time taken to remove the unused
steps is included in WT.

• The Derivation Length DL, which is the number of steps generated for proving

the theorem, including the unused ones.

• The Proof Length PL, which is the number of steps in the written proof.

• The COnnectivity CO, which is defined by the equation CO = 100×PL/DL.
It measures the connectivity of the generated proof.

• The DEpendency DE, which is defined by the equation

DE =
1 +

∑PL
i=1 |Li|
PL

where Li is the reference list of the ith step in the written proof. If the step

is an assumption or deduced by one of the rules (A), (Ad1), (Ad2), (D0), (E′),
(Ed1), (Ed2), (Cd1), (Cd2), (Gd1) and (Gd3), then its reference list is taken
to be the empty list. One can notice that |L1| = 0 for any proof. However,
“i = 1” is included in the sum to cover the case in which PL = 1, for example

when the theorem is α `? α. Since
∑PL
i=1 |Li| =

∑PL
i=1 ni where ni is the number

2Some step is unused iff it is not the last step and its number does not appear in any reference
list in the subsequent steps.

548 T. M. Elnadi – A. Hoogewijs

of times the ith step is used, DE can be taken as a measure of the dependency
of the proof steps, because it is the average number of times for using each step

of the proof. The idea behind adding “1” in the numerator of the equation, is
that one can imagine an additional step from the conjecture to the sign 2 with
the reference list {PL}. Since the written proofs are completely connected,
DE ≥ 1 for any proof.

• The Deduction Speed DS, which is defined by the equation DS = PL/PT .

• The Step Time ST, which is defined by the equation ST = 1/DS.

PT, WT, DS and ST are machine-dependent, while the other parameters are ma-
chine-independent. When CO and DS increase, and PT and DL decrease, this
denotes that the proof strategy is more efficient towards the considered theorem.
The reports provide some kind of self-evaluation of the program and help much to

evaluate any modification in it. This is especially useful in the development stage.
In addition, a statistical study on the relationship between the different parameters
of the reports, may provide a good insight for the characteristics of the used proof

strategy. The usefulness of an ATP like KARNAK? is a relative matter and can be
measured by comparison between the abilities of a human and the ATP to prove
theorems, and such comparison can be made using the reports.

KARNAK and KARNAK? are implemented in “PDC prolog 3.3” and have been

developed and tested on an IBM 486DX personal computer with 8 MB RAM and
frequency 66 MHz. To prove some theorem using the program, the user first writes
the theorem in KTS (KARNAK Theorem Syntax) which is a prefix language
compatible with PDC prolog. Then, the user runs the program to prove the theorem.

For more details about how to use the program, we refer to [9]. In the appendices
of this paper, some of the proofs generated by the program are introduced. In each
example, the arrow → marks the KTS input,⇐ marks the LaTEX proof which
is automatically written by the program, and← marks the report. We emphasize

that the LaTEX proofs introduced after the arrow⇐ are written by the program
without any human modification.

4 Using KARNAK? to Prove the Completeness
of PPC?

LPF was proven to be complete in [4] where it was first formalized as a complete
sequent calculus S-LPF. Then, a natural deduction style N-LPF was introduced
and proven to be complete using the completeness of S-LPF. The deduction rules of

both N-LPF and S-LPF are presented in Appendix B. Assume that N-LPF′ is the
calculus obtained from N-LPF by excluding the symbol “uu” and its rules “uu-E”
and “ ¬uu-E”, and S-LPF′ is the calculus obtained from S-LPF by excluding the
symbol “uu” and its rules (3) and (4). The completeness of PPC? will be proven

as follows: first, the completeness of S-LPF′ is derived from the completeness of
S-LPF. Second, the completeness of N-LPF′ is derived from that of S-LPF′. Third,
KARNAK? is used to derive all the N-LPF′ rules in PPC?.

Karnak? an automated theorem prover for PPC? 549

Theorem 4.1 S-LPF ′ is complete.

proof.

Assume |=S-LPF′ Γ −→ Σ. Then, |=S-LPF Γ −→ Σ which leads to `S-LPF Γ −→ Σ
by the completeness of S-LPF. One can notice that each of the S-LPF rules presented

in Appendix B has the property that if “uu” does not exist in the conclusion, then
“uu” can not exist in the assumptions. For example, in the rule (8) if ∆α is uu-free
(in the sense that it does not contain “uu”) then both α and ¬α are uu-free. Since
Γ and Σ are S-LPF′ lists of formulas, they are uu-free. Then, the sequent Γ −→ Σ

is also uu-free. Then, the S-proof tree of `S-LPF Γ −→ Σ is uu-free. Hence, one has
`S-LPF′ Γ −→ Σ. 2

Lemma 4.2 If `S-LPF′ Γ −→ Σ, then Γ `N-LPF′ Σ

where Σ is the disjunction of the formulas of Σ if Σ is non-empty, or the formula

¬(c = c) if Σ is empty. c is any constant symbol.

proof.

The proof goes by induction on the number of sub-S-proofs3 of `S-LPF′ Γ −→ Σ.

If there is no sub-S-proofs, then there is only one sequent in the S-proof tree, and this
sequent must match one of the rules (1), (2), (5), (6), (7), (24), (25), (26), (27), (28)
and (29), and in each case, one can derive Γ `N-LPF′ Σ directly from “α `N-LPF′ α”,
(contr), (def-c), (def-v), (¬ E-E), (=-subst2), (=-subst1), (=-reflx), (¬ =-reflx-L),

(¬ =-reflx-R) and (=-2-val) respectively.

To prove the induction step, assume that the S-proof has at least one sub-S-

proof. Then, the last inference of the S-proof can be either of the following two
forms:

Γ1 −→ Σ1 Γ2 −→ Σ2

Γ −→ Σ

Γ1 −→ Σ1

Γ −→ Σ

Then, it is sufficient to show that for each of the S-LPF′ rules (8)-(23), one can
prove Γ `N-LPF′ Σ from Γ1 `N-LPF′ Σ1 [and Γ2 `N-LPF′ Σ2] (the square brackets mean
that the enclosed text is optional). Here, we prove that for (9).

Assume

Γ
¬α,Γ `N-LPF′ Σ
α,Γ `N-LPF′ Σ

Then, one has to prove Σ,¬∆α. From the assumptions, one gets ¬α `N-LPF′ Σ and
α `N-LPF′ Σ. If Σ is empty, then the formulas Σ and Σ,¬∆α are ¬(c = c) and ¬∆α
respectively, and the proof comes by

3Given a S-proof P , if P contains only one sequent, then P has no sub-S-proofs. If P contains
more than one sequent, then its sub-S-proofs are the S-proof(s) P1 (and P2) obtained by removing
the end sequent from P , plus the sub-S-proofs of P1 (and P2).

550 T. M. Elnadi – A. Hoogewijs

¬α `N-LPF′ ¬(c = c); α `N-LPF′ ¬(c = c)

¬∆α

which is proven as follows:
1: ¬α ` ¬(c = c) assumption

2: α ` ¬(c = c) assumption

3: ∆α ` ∆α
4: ∆α ` ¬∆α

4.1: ∆α premise
4.2: ¬(c = c) (∆-E) on 4.1, 2, 1

4.3: ¬∆α (¬ E-E) on 4.2

5: ¬∆α (¬∆-I) on 3, 4 2

In the previous proof, the temporary assumptions are called “premises” while

the permanent assumptions are called “assumptions”.
If Σ is non-empty, then the formula Σ,¬∆α is Σ∨¬∆α, and the proof comes by

¬α `N-LPF′ Σ; α `N-LPF′ Σ

Σ ∨ ¬∆α

which is proven as follows:
1: ¬∆∆α ` ∆∆α

1.1: ¬∆∆α premise
1.2: ¬∆α ` ¬∆∆α

1.2.1: ¬∆∆α 1.1

1.3: ¬∆α ` ∆∆α

1.3.1: ¬∆α premise

1.3.2: ∆∆α (∆-I-2) on 1.3.1

1.4: ∆α (¬∆-E) on 1.3, 1.2

1.5: ∆∆α (∆-I-1) on 1.4

2: ¬∆∆α ` ¬∆∆α
3: ∆∆α (¬∆-E) on 1, 2

4: α ` Σ assumption
5: ¬α ` Σ assumption
6: ∆α ` Σ ∨ ¬∆α

6.1: ∆α premise

6.2: Σ (∆-E) on 6.1, 4, 5
6.3: Σ ∨ ¬∆α (∨-I-L) on 6.2

7: ¬∆α ` Σ ∨ ¬∆α

Karnak? an automated theorem prover for PPC? 551

7.1: ¬∆α premise
7.2: Σ ∨ ¬∆α (∨-I-R) on 7.1

8: Σ ∨ ¬∆α (∆-E) on 3, 6, 7 2

The other cases are similar. 2

Theorem 4.3 N-LPF′ is complete.

proof.

Assume Γ |=N-LPF′ α. Then, one has |=S-LPF′ Γ −→ α which leads to `S-LPF′

Γ −→ α by theorem 4.1. Then, one has Γ `N-LPF′ α by lemma 4.2. 2

Theorem 4.4 Γ `N-LPF′ α⇒ Γ `? α

proof.

KARNAK? has been used to derive all the N-LPF′ rules, and some of these
proofs are introduced in Appendix C. 2

Corollary 4.5 PPC? is complete.

proof.

Assume Γ |=? α. Since PPC? and N-LPF′ have the same model theory, Γ |=N-LPF′

α which leads to Γ `N-LPF′ α by theorem 4.3. Then, one has Γ `? α by theorem 4.4.
2

Corollary 4.6 Γ `N-LPF′ α ⇔ Γ `? α

proof.
The right arrow follows from theorem 4.4, while the left arrow follows from the

soundness of PPC? and theorem 4.3. 2 This corollary means that PPC? is equivalent
to N-LPF′ and hence to N-LPF if the symbol “uu” and its rules are excluded.

The PPC? rules (Gd1) and (Gd2) were not used in any of the KARNAK? proofs
for the N-LPF′ deduction rules. This means that these rules can be removed from
PPC? without affecting its completeness. Hence, they must be dependent on the
other ones. The rule (Gd1) can easily be derived from (G) and (∆). When the rule

(Gd2) was removed from KARNAK?, the program has succeeded to prove it and the
proof is introduced in Appendix D. However, it may be useful to keep these rules
in KARNAK? because they may help to discover more proofs. This is also the case

with respect to the other dependent rules such as (Ad1) and (Cdi).

5 Theorem Preserving Transformations between
PPC and PPC?

Theorem 5.1 If Γ is a list of PPC formulas and α is a PPC formula, then

Γ ` α iff Γ `? ¬(¬α ∧∆α)
and

Γ `? α iff Γ ` α ∧∆α

552 T. M. Elnadi – A. Hoogewijs

proof.

The proof follows directly from the adequacy of PPC and PPC? and from the
equivalences

Γ |= α iff Γ |=? ¬(¬α ∧∆α)
and

Γ |=? α iff Γ |= α ∧∆α 2

Theorem 5.2 If α → β is an abbreviation for ¬(α ∧ ¬β), the following transfor-
mations Φ1,Φ2 and Φ3 from PPC into PPC?, and Ψ1,Ψ2 and Ψ3 from PPC? into
PPC, are theorem preserving.

Φ1(Γ ` α) := (Γ `? ∆α→ α)

Φ1

Γ1 ` α1

...
Γn ` αn
Γ ` β

 :=

Γ1 `? α1

...
Γn `? αn
Γ `? ∆β → β

 , ∀n ∈ N0 = {1, 2, 3, . . .}

Φ2(Γ ` α) := (Γ `? ∆α→ α)

Φ2

Γ1 ` α1

...
Γn ` αn
Γ ` β

 :=

Γ1 `? ∆α1 → α1

...
Γn `? ∆αn → αn
Γ `? ∆β → β

 , ∀n ∈ N0

Φ3(Γ ` α ∧∆α) := (Γ `? α)

Φ3

Γ1 ` α1 ∧∆α1

...

Γn ` αn ∧∆αn
Γ ` β ∧∆β

 :=

Γ1 `? α1

...

Γn `? αn
Γ `? β

 , ∀n ∈ N0

Ψ1(Γ `? α) := (Γ ` α ∧∆α)

Ψ1

Γ1 `? α1

...
Γn `? αn
Γ `? β

 :=

Γ1 ` α1 ∧∆α1

...
Γn ` αn ∧∆αn
Γ ` β ∧∆β

 , ∀n ∈ N0

Ψ2(Γ `? α) := (Γ ` α)

Karnak? an automated theorem prover for PPC? 553

Ψ2

Γ1 `? ∆α1 → α1

...
Γn `? ∆αn → αn
Γ `? β

 :=

Γ1 ` α1

...
Γn ` αn
Γ ` β

 , ∀n ∈ N0

Ψ3(Γ `? ∆α→ α) := (Γ ` α)

Ψ3

Γ1 `? ∆α1 → α1

...
Γn `? ∆αn → αn
Γ `? ∆β → β

 :=

Γ1 ` α1

...
Γn ` αn
Γ ` β

 , ∀n ∈ N0

proof.
Since both PPC and PPC? are adequate, one has for every α and Γ the following:

(Γ `? α) =⇒ (Γ |=? α) =⇒ (Γ |= α) =⇒ (Γ ` α) (1)

(Γ ` α)⇐⇒ (Γ |= α)⇐⇒ (Γ |=? ∆α→ α)⇐⇒ (Γ `? ∆α→ α) (2)

(Γ `? α)⇐⇒ (Γ |=? α)⇐⇒ (Γ |= α ∧∆α)⇐⇒ (Γ ` α ∧∆α) (3)

It follows directly from (2) that the first defining equation of Φ1 is theorem
preserving. Now consider the second defining equation of Φ1 and assume that

Γ1 ` α1

...
Γn ` αn
Γ ` β

is a theorem in PPC. Assume also Γ1 `? α1, . . . ,Γn `? αn. Then by (1) one has
Γ1 ` α1, . . . ,Γn ` αn. Hence from the assumed theorem, one gets Γ ` β which leads
to Γ `? ∆β → β by (2). Hence

Γ1 `? α1

...
Γn `? αn
Γ `? ∆β → β

is a theorem in PPC?. One can similarly prove that the other transformations are
theorem preserving. 2

The transformations Φ1,Φ2 and Ψ1 are totally defined in the sense that they
can be applied on any theorem of PPC and PPC? respectively, while Φ3,Ψ2 and Ψ3

are partially defined in the sense that they can be applied only on theorems of the
considered shape. In addition, Φ3 is the inverse of Ψ1 and Φ2 is the inverse of Ψ3.

The previous transformations can be used to deduce theorems in PPC? from
known theorems in PPC and vice versa. In addition, they can be used to prove

554 T. M. Elnadi – A. Hoogewijs

some theorem in PPC? by proving another theorem in PPC, maybe with the help
of KARNAK, and conversely maybe with the help of KARNAK?.

Example: As an application of these transformations, KARNAK succeeded in
[6, 9] to prove the PPC theorem (SeAt):

THEOREM NAME:

Self-assertion Rule (SeAt)

SYMBOLS:

α denotes a formula

Γ denotes a list

ASSUMPTIONS:

Γ, ¬α ` α

THEOREM:

Γ ` α

PROOF:

1. Γ, ¬α ` α assumption

2. α ` α (A)

3. ¬∆α ` ¬∆α (A)

4. ¬∆α ` α (D1) on 3

5. Γ ` α (R′) on 1,2,4 2

But since the rule (D1) was used in step 4, this proof is not valid in PPC?. The rule

(SeAt) does not hold in PPC?, but the following modified version holds:

Γ1,¬α `? α
Γ2 `? ∆α

(SeAt′)

Γ1,Γ2 `? α

If one applies Φ1 on (SeAt), one gets

Γ,¬α `? α
(Φ1(SeAt))

Γ `? ∆α→ α

Since the “Modus Ponens” rule holds in PPC?, one gets (SeAt′) from Φ1(SeAt)
directly, and there is no need to use KARNAK? to prove (SeAt′) as we did in
Appendix D of this paper.

Karnak? an automated theorem prover for PPC? 555

6 Concluding Remarks

• In [1, 4] it was shown that LPF (and hence PPC?) is a logic suitable for covering
partial functions in formal specifications of programs. Proofs play a vital part

in the application of formal methods in software development. In VDM [10] for
example, proofs establish properties of specification and realization. If proofs
themselves are as error-prone as programs, the formal method will only add to
an already difficult task a similarly difficult one and can not provide a solution

for the so-called “software crisis”. Automation of logic is a prerequisite of any
system that may contribute to the solution of this problem.

• KARNAK? may be the core of a “formal software development support sys-
tem” like Mural [11] to perform the routine proofs needed for verification.
PPC? is equivalent to LPF (provided that the symbol “uu” and its rules are
excluded) which is the logical basis of VDM and Mural. The Theorem Proving

Assistant TPA of Mural is interactive and has a sophisticated user interface.
It is mainly based on pattern matching and provides at each step a list of all
the applicable rules and the user has to choose between them. Then, it pro-

vides a sophisticated interaction and a little automation. On the other hand,
KARNAK? is fully automatic, but can also be used in interactive ways as
shown in [6, 9] and in some of the proofs introduced in Appendix C. Then,
it provides more automation and less interaction than the TPA of Mural.

With respect to the implementation, KARNAK? is implemented in PDC pro-
log while Mural is implemented in SmallTalk. Prolog itself is a programmable
theorem prover for Horn clauses based on resolution, and it is an excellent envi-
ronment to develop an ATP system like KARNAK?. The choice of SmallTalk

in the Mural project was mainly due to its advantages with respect to the
design of user interfaces. KARNAK? is not generic like the TPA of Mural, but
since KARNAK can reason about logical syntax at a fairly low level, it may
be modified for other calculi (as has been done in this paper for PPC?).

• KARNAK? has been used in proving the completeness of PPC? which is a

significant property of the calculus itself. In addition, it has been used in an
indirect way to discover the dependency of two PPC? rules. This shows that
the program is practically useful and may be assistant for mathematicians and
logicians to study properties of partially defined functions and predicates.

• The transformations which are introduced in section 5 connect PPC and KAR-
NAK on one hand and PPC? and KARNAK? on the other hand.

556 T. M. Elnadi – A. Hoogewijs

Appendix A

The Deduction Rules of PPC

Classical Rules

(A)
α ` α

; (C0)

Γ1 ` α
Γ2 ` β

Γ1,Γ2 ` α ∧ β ; (Ci)
Γ ` α1 ∧ α2

Γ ` αi
;

i = 1, 2

(G)
Γ ` ∀xα
Γ ` α

; (Gx)
Γ ` α

Γ ` ∀xα if x is not free in Γ ;

(E) ` t = t
; (Etx)

Γ ` α

Γ, x = t ` β
if substxtαβ(*) ;

Modified Classical Rule
Removal rule

(R′)

Γ1, α ` β
Γ2,¬α ` β

Γ3,¬∆α ` β

Γ1,Γ2,Γ3 ` β
;

Contradiction rule

(X′)

Γ1 ` α
Γ2 ` ¬α
Γ3 ` ∆α
Γ1,Γ2,Γ3 ` β

;

Substitution rule

(S′tx)

Γ1 ` α

Γ2 ` ∆(t = t)
Γ2,Γ3 ` β

if substxtΓ1Γ3 and substxtαβ ;

Rules concerning ∆

(Ad1)
α ` ∆α

; (Ad2) ¬α ` ∆α
; (D0) ` ∆∆α

;

(D1)
Γ ` ¬∆α
Γ ` α

; (D2)
Γ ` ¬∆α
Γ ` ¬α ; (Dn1)

Γ ` ∆α
Γ ` ∆¬α ;

(Cd0)

Γ1 ` ∆α1

Γ2 ` ∆α2

Γ1,Γ2 ` ∆(α1 ∧ α2)
; (Cni)

Γ1 ` ¬αi
Γ2 ` ∆αi
Γ1,Γ2 ` ∆(α1 ∧ α2)
i = 1, 2

;

(Cdi) α1 ∧ α2 ` ∆αi
;

i = 1, 2

(Gd1) ∀xα ` ∆α
;

(Gd2)
Γ ` ∀x∆α
Γ ` ∆∀xα ; (Gd3) ¬α ` ∆∀xα ;

(Ed1) ` ∆(x = x)
; (Ed2) ` ∆(c = c)

;

(De1)
Γ ` ∆(t1 = t2)
Γ ` ∆(ti = ti)
i = 1, 2

; (De2)

Γ1, ¬∆(t1 = t1) ` α
Γ2, ¬∆(t2 = t2) ` α

Γ1,Γ2,¬∆(t1 = t2) ` α

Karnak? an automated theorem prover for PPC? 557

(*) substxtαβ denotes that β is the result of substituting the term t for the variable
x in α. The substitution calculus in PPC is like in the classical predicate logic with the
new rule: substxt∆α∆β if substxtαβ.

Appendix B

The Deduction Rules of LPF

In this appendix, the deduction rules of both N-LPF and S-LPF are presented as in [4].

The Deduction Rules of N-LPF:

(def-c) (def-v)
c = c y = y

α ¬¬α
(¬ ¬-I) (¬ ¬-E)

¬¬α α

α ¬α
(∆-I-1) (∆-I-2)

∆α ∆α

∆α;α ` β;¬α ` β
(∆-E)

β

∆α ` β; ∆α ` ¬β ¬∆α ` β;¬∆α ` ¬β
(¬∆-I) (¬∆-E)

¬∆α ∆α

α β
(∨-I-L) (∨-I-R)

α ∨ β α ∨ β

α1 ∨ α2;α1 ` β;α2 ` β
(∨-E)

β

¬α;¬β ¬(α ∨ β)
(¬ ∨-I) (¬ ∨-E-L)

¬(α ∨ β) ¬α

¬(α ∨ β)
(¬ ∨-E-R)

¬β

α(x/t); t = t α ` β; ∃xα
(∃-I) (∃-E) (*)

∃xα β

¬α ¬∃xα; t = t
(¬ ∃-I) (**) (¬ ∃-E)

¬∃xα ¬α(x/t)

558 T. M. Elnadi – A. Hoogewijs

uu ¬uu
(uu-E) (¬uu-E)

α α

α;¬α ¬(t = t)
(contr) (¬ E-E)

β α
t1 = t2

(=-reflx)
t1 = t1

¬(t1 = t2) ¬(t1 = t2)
(¬ =-reflx-L) (¬ =-reflx-R)

t1 = t1 t2 = t2

t1 = t2;α(y/t1) t1 = t1; t2 = t2
(=-subs1) (=-2-val)

α(y/t2) (t1 = t2) ∨ ¬(t1 = t2)

t1 = t2; t(y/t1) = t(y/t1)
(=-subs2)

t(y/t1) = t(y/t2)

(*) x is not free in β and is not free in any assumption except α on which β depends.
(**) x is not free in any assumption on which ¬α depends.

In the previous rules, the notation α ` β corresponds to the standard notation

[α]
...
β

The semicolon “;” is used to separate between assumptions in each rule, while the comma “,” is
used to separate between formulas in the antecedent of each sequent. Hence, in (∆-E) for example
the assumptions are “∆α”, “α ` β”, “¬α ` β”, and not “∆α, α ` β”, “¬α ` β”.

The variable y in the rules (=-subs1) and (=-subs2) is arbitrary and plays the role of a place
holder. Besides, α(y/t) denotes the result of replacing the variable y by the term t in α.

The Deduction Rules of S-LPF:

(1) α −→ α (2) α,¬α −→ (3) uu −→

(4) ¬uu −→ (5) −→ c = c (6) −→ y = y

¬α,Γ −→ Σ ¬α,Γ −→ Σ
α,Γ −→ Σ α,Γ −→ Σ

(7) ¬(t = t) −→ (8) (9)
∆α,Γ −→ Σ Γ −→ Σ,¬∆α

Γ −→ Σ, α Γ −→ Σ,¬α
(10.a) (10.b)

Γ −→ Σ,∆α Γ −→ Σ,∆α

Γ −→ Σ, α Γ −→ Σ,¬α
(11.a) (11.b)

¬∆α,Γ −→ Σ ¬∆α,Γ −→ Σ

Karnak? an automated theorem prover for PPC? 559

α,Γ −→ Σ
α,Γ −→ Σ Γ −→ Σ, α β,Γ −→ Σ

(12) (13) (14)
¬¬α,Γ −→ Σ Γ −→ Σ,¬¬α α ∨ β,Γ −→ Σ

Γ −→ Σ, α Γ −→ Σ, β
(15.a) (15.b)

Γ −→ Σ, α ∨ β Γ −→ Σ, α ∨ β

¬α,Γ −→ Σ ¬β,Γ −→ Σ
(16.a) (16.b)

¬(α ∨ β),Γ −→ Σ ¬(α ∨ β),Γ −→ Σ

Γ −→ Σ,¬α Γ −→ Σ, t = t
Γ −→ Σ,¬β α,Γ −→ Σ Γ −→ Σ, α(x/t)

(17) (18) (***) (19)
Γ −→ Σ,¬(α ∨ β) ∃xα,Γ −→ Σ Γ −→ Σ, ∃xα

Γ −→ Σ, t = t
¬α(x/t),Γ −→ Σ Γ −→ Σ,¬α

(20) (21) (***)
¬∃xα,Γ −→ Σ Γ −→ Σ,¬∃xα

Γ −→ Σ
(22)

α,Γ −→ Σ
Γ −→ Σ

(23)
Γ −→ Σ, α

(24) t1 = t2, t(y/t1) = t(y/t1) −→ t(y/t1) = t(y/t2)

(25) t1 = t2, α(y/t1) −→ α(y/t2)

(26) t1 = t2 −→ t1 = t1

(27) ¬(t1 = t2) −→ t1 = t1

(28) ¬(t1 = t2) −→ t2 = t2

(29) t1 = t1, t2 = t2 −→ t1 = t2,¬(t1 = t2)

(***) x is not free in Γ ∪ Σ.
The cut rule was first introduced with the S-LPF deduction rules and then was proven

to be dependent. Therefore, it is not written with the previous rules (see chapter 5 in [4]).

560 T. M. Elnadi – A. Hoogewijs

Appendix C

Some of the KARNAK? Proofs for the N-LPF′ Deduction Rules

In the following, some of the KARNAK? proofs for the N-LPF′ deduction rules are
introduced. The existential quantifier ∃x and the disjunction α∨β in N-LPF′ are replaced
in PPC? by ¬∀x¬ and ¬(¬α ∧ ¬β) respectively.

• →

include"karnak#.pro"
clauses
deduce(sequent([n(st(alpha)),n(st(beta))],

n(n(a(n(st(alpha)),n(st(beta))))))).

⇐
THEOREM NAME:

¬ ∨-I

SYMBOLS:

α,β denote formulas

THEOREM:

¬α, ¬β `? ¬¬(¬α∧¬β)

PROOF:

1. ¬α∧¬β `? ∆¬α (Cd1)

2. ¬α∧¬β `? ∆¬β (Cd2)

3. ¬α∧¬β `? ∆β (Dn2) on 2

4. ¬α∧¬β `? ∆α (Dn2) on 1

5. ¬α∧¬β `? ¬α∧¬β (A)

6. ¬α∧¬β `? ¬α (C1) on 5

7. ¬α∧¬β `? ¬β (C2) on 5

8. ¬α `? ¬α (A)

9. ¬β `? ¬β (A)

10. ¬α, ¬β `? ¬α∧¬β (C0) on 8,9

11. ¬α, ¬β `? ∆(¬α∧¬β) (∆) on 10

12. ¬α, ¬β `? ∆¬(¬α∧¬β) (Dn1) on 11

13. ¬∆α `? ¬∆α (A)

14. ¬∆α, ¬α∧¬β `? ¬¬(¬α∧¬β) (X) on 4,13

15. α `? α (A)

16. ¬α∧¬β, α `? ¬¬(¬α∧¬β) (X) on 6,15

17. ¬∆β `? ¬∆β (A)

Karnak? an automated theorem prover for PPC? 561

18. ¬∆β, ¬α∧¬β `? ¬¬(¬α∧¬β) (X) on 3,17

19. β `? β (A)

20. ¬α∧¬β, β `? ¬¬(¬α∧¬β) (X) on 7,19

21. ¬∆¬(¬α∧¬β) `? ¬∆¬(¬α∧¬β) (A)

22. ¬∆¬(¬α∧¬β), ¬α, ¬β `? ¬¬(¬α∧¬β) (X) on 12,21

23. ¬∆(¬α∧¬β) `? ¬∆(¬α∧¬β) (A)

24. ¬∆(¬α∧¬β), ¬α, ¬β `? ¬¬(¬α∧¬β) (X) on 11,23

25. ¬(¬α∧¬β) `? ¬(¬α∧¬β) (A)

26. ¬(¬α∧¬β), ¬α, ¬β `? ¬¬(¬α∧¬β) (X) on 10,25

27. ¬α∧¬β, ¬(¬α∧¬β), ¬α `? ¬¬(¬α∧¬β) (R′) on 18,20,26

28. ¬α∧¬β, ¬(¬α∧¬β) `? ¬¬(¬α∧¬β) (R′) on 14,16,27

29. ¬¬(¬α∧¬β) `? ¬¬(¬α∧¬β) (A)

30. ¬α, ¬β, ¬α∧¬β `? ¬¬(¬α∧¬β) (R′) on 22,28,29

31. ¬α, ¬β `? ¬¬(¬α∧¬β) (R′) on 24,26,30 2

←

PT = 247.05 sec; WT = 5.60 sec;
DL = 91 steps; PL = 31 steps;
CO = 34.07 %; DE = 1.13;
DS = 0.13 steps/sec; ST = 7.97 sec.

Although the previous proof was carried out on the propositional level (does not
contain quantifiers or substitutions), it looks difficult and tedious. However, the
proving time is approximately 4 minutes. If one tries to discover and write this
proof manually, it is really difficult to achieve that in this time. This illustrates
the efficiency of the program. Moreover, in some cases the proving time is only a
fraction of a second.

• →

include"karnak#.pro"
clauses
formula(e(v(y),t(t_2))).
assume(notin(v(y),t(t_2))).
assume(subst(v(y),t(t_1),st(alpha),st(alpha1))).
assume(subst(v(y),t(t_2),st(alpha),st(alpha2))).
assume(sequent([st(alpha)],st(alpha))).
deduce(sequent([e(t(t_1),t(t_2)),st(alpha1)],st(alpha2))).

⇐
THEOREM NAME:

=-subs1

562 T. M. Elnadi – A. Hoogewijs

SYMBOLS:

y denotes a variable

t2,t1 denote terms

α,α1,α2 denote formulas

ASSUMPTIONS:

y is not in t2
subst y t1 α α1

subst y t2 α α2

α `? α

THEOREM:

t1=t2, α1 `? α2

PROOF:

1. y is not in t2 assumption

2. subst y t1 α α1 assumption

3. subst y t2 α α2 assumption

4. α `? α assumption

5. y is not free in α2 by 1,3

6. α, y=t2 `? α2 (Et2y) on 3,4

7. t1=t2 `? ∆(t1=t2) (Ad1)

8. t1=t2 `? ∆(t1=t1) (De1) on 7

9. t1=t2, α1 `? α2 (S′t1y) on 1,2,5,6,8 2

←
PT = 1.53 sec; WT = 0.27 sec;
DL = 28 steps; PL = 9 steps;
CO = 32.14 %; DE = 1.22;
DS = 5.88 steps/sec; ST = 0.17 sec.

One may notice that the assumption α `? α is redundant. However, it has been
added because we already imagine the sketch of the proof, where α2 can be obtained
in the succedent by applying (Et2y) and then α1 can be obtained in the antecedent
by applying (S′t1y). Therefore, the assumption “y is not in t2” was also added. If the
assumption α `? α was not assumed, the program may take some time to generate
this step by applying (A). Besides, the addition of

formula(e(v(y),t(t_2))).

in the KTS theorem shows how “principle 8” helps to control the application of
(Etx) by introducing certain pairs of x and t [6, 9]. One may also notice that this
database clause appears implicitly in step 6 of the written proof.

This example shows how the user designs a sketch of the proof by himself and then
uses the program to perform the actual proof and fill in the details.

Karnak? an automated theorem prover for PPC? 563

• →

include"karnak#.pro"
clauses
assume(sequent([l("Gamma1")],e(t(t_1),t(t_1)))).
assume(sequent([l("Gamma2")],e(t(t_2),t(t_2)))).
deduce(sequent([l("Gamma1"),l("Gamma2")],

d(a(n(e(t(t_1),t(t_2))),n(n(e(t(t_1),t(t_2)))))))).

⇐
THEOREM NAME:

Lemma for =-2-val

SYMBOLS:

t1,t2 denote terms

Γ1,Γ2 denote lists

ASSUMPTIONS:

Γ1 `? t1=t1
Γ2 `? t2=t2

THEOREM:

Γ1, Γ2 `? ∆(¬(t1=t2)∧¬¬(t1=t2))

PROOF:

1. Γ1 `? t1=t1 assumption

2. Γ2 `? t2=t2 assumption

3. Γ2 `? ∆(t2=t2) (∆) on 2

4. Γ1 `? ∆(t1=t1) (∆) on 1

5. ¬∆(t1=t1) `? ¬∆(t1=t1) (A)

6. ¬∆(t1=t1), Γ1 `? ¬¬(t1=t2) (X) on 4,5

7. ¬∆(t1=t1), Γ1 `? ∆¬¬(t1=t2) (∆) on 6

8. ¬∆(t1=t1), Γ1 `? ∆¬(t1=t2) (Dn2) on 7

9. ¬∆(t1=t1), Γ1 `? ∆(t1=t2) (Dn2) on 8

10. ¬∆(t2=t2) `? ¬∆(t2=t2) (A)

11. ¬∆(t2=t2), Γ2 `? ¬¬(t1=t2) (X) on 3,10

12. ¬∆(t2=t2), Γ2 `? ∆¬¬(t1=t2) (∆) on 11

13. ¬∆(t2=t2), Γ2 `? ∆¬(t1=t2) (Dn2) on 12

14. ¬∆(t2=t2), Γ2 `? ∆(t1=t2) (Dn2) on 13

15. Γ1, Γ2, ¬∆(t1=t2) `? ∆(t1=t2) (De2) on 9,14

16. Γ1, Γ2, ¬∆(t1=t2) `? ∆¬(t1=t2) (Dn1) on 15

17. Γ1, Γ2, ¬∆(t1=t2) `? ∆¬¬(t1=t2) (Dn1) on 16

564 T. M. Elnadi – A. Hoogewijs

18. Γ1, Γ2, ¬∆(t1=t2) `? ∆¬¬¬(t1=t2) (Dn1) on 17

19. ¬(t1=t2) `? ∆¬(t1=t2) (Ad1)

20. ¬(t1=t2) `? ∆¬¬(t1=t2) (Dn1) on 19

21. ¬(t1=t2) `? ∆¬¬¬(t1=t2) (Dn1) on 20

22. t1=t2 `? ∆(t1=t2) (Ad1)

23. t1=t2 `? ∆¬(t1=t2) (Dn1) on 22

24. t1=t2 `? ∆¬¬(t1=t2) (Dn1) on 23

25. t1=t2 `? ∆¬¬¬(t1=t2) (Dn1) on 24

26. Γ1, Γ2 `? ∆¬¬¬(t1=t2) (R′) on 18,21,25

27. Γ1, Γ2 `? ∆¬¬(t1=t2) (Dn2) on 26

28. Γ1, Γ2 `? ∆¬(t1=t2) (Dn2) on 27

29. Γ1, Γ2 `? ∆(¬(t1=t2)∧¬¬(t1=t2)) (Cd0) on 27,28 2

←

PT = 164.50 sec; WT = 11.42 sec;
DL = 131 steps; PL = 29 steps;
CO = 22.14 %; DE = 1.03;
DS = 0.18 steps/sec; ST = 5.67 sec.

→

include"karnak#.pro"
clauses
assume(sequent([l("Gamma1")],e(t(t_1),t(t_1)))).
assume(sequent([l("Gamma2")],e(t(t_2),t(t_2)))).
assume(sequent([l("Gamma1"),l("Gamma2")],

d(a(n(e(t(t_1),t(t_2))),n(n(e(t(t_1),t(t_2)))))))).
deduce(sequent([l("Gamma1"),l("Gamma2")],

n(a(n(e(t(t_1),t(t_2))),n(n(e(t(t_1),t(t_2)))))))).

⇐
THEOREM NAME:

The remaining part of =-2-val

SYMBOLS:

t1,t2 denote terms

Γ1,Γ2 denote lists

ASSUMPTIONS:

Γ1 `? t1=t1

Γ2 `? t2=t2

Γ1, Γ2 `? ∆(¬(t1=t2)∧¬¬(t1=t2))

Karnak? an automated theorem prover for PPC? 565

THEOREM:

Γ1, Γ2 `? ¬(¬(t1=t2)∧¬¬(t1=t2))

PROOF:

1. Γ1, Γ2 `? ∆(¬(t1=t2)∧¬¬(t1=t2)) assumption

2. ¬(t1=t2)∧¬¬(t1=t2) `? ¬(t1=t2)∧¬¬(t1=t2) (A)

3. ¬(t1=t2)∧¬¬(t1=t2) `? ¬(t1=t2) (C1) on 2

4. ¬(t1=t2)∧¬¬(t1=t2) `? ¬¬(t1=t2) (C2) on 2

5. ¬(t1=t2)∧¬¬(t1=t2) `? ¬(¬(t1=t2)∧¬¬(t1=t2)) (X) on 3,4

6. ¬∆(¬(t1=t2)∧¬¬(t1=t2)) `? ¬∆(¬(t1=t2)∧¬¬(t1=t2)) (A)

7. ¬∆(¬(t1=t2)∧¬¬(t1=t2)), Γ1, Γ2 `? ¬(¬(t1=t2)∧¬¬(t1=t2)) (X) on 1,6

8. ¬(¬(t1=t2)∧¬¬(t1=t2)) `? ¬(¬(t1=t2)∧¬¬(t1=t2)) (A)

9. Γ1, Γ2 `? ¬(¬(t1=t2)∧¬¬(t1=t2)) (R′) on 5,7,8 2

←
PT = 17.85 sec; WT = 1.32 sec;
DL = 44 steps; PL = 9 steps;
CO = 20.45 %; DE = 1.11;
DS = 0.50 steps/sec; ST = 1.98 sec.

In the previous proof, we used one of the interaction methods which are explained in
[9], specifically proving a theorem through intermediate lemmas. The program may
fail to prove some theorem directly and succeed to prove it through intermediate
lemmas. This is because the non-normal proofs may be normal if one breaks them
into partial proofs. In order to clarify this, suppose that a proof of some theorem
contains in the kth step a conjunction α ∧ β which does not exist in the theorem.
Then, the program will not be able to discover this proof due to “principle 1”.
However, if one gives to the program the assumptions of the theorem together with
the kth step as a conjecture, then it may be able to prove this lemma because the
conjunction α ∧ β exists in it, unlike the original theorem.

• →
include"karnak#.pro"
clauses
formula(e(v(x),t(t_2))).
assume(replace(v(y),t(t_1),t(t),t("t(y/t_1)"))).
assume(replace(v(y),t(t_2),t(t),t("t(y/t_2)"))).
assume(replace(v(y),v(x),t(t),t("t(y/x)"))).
assume(replace(v(x),t(t_2),t("t(y/x)"),t("t(y/t_2)"))).
assume(replace(v(x),t(t_1),t("t(y/x)"),t("t(y/t_1)"))).
assume(notin(v(x),t(t))).
assume(notin(v(x),t(t_1))).
assume(notin(v(x),t(t_2))).
assume(sequent([e(t("t(y/t_1)"),t("t(y/x)"))],

e(t("t(y/t_1)"),t("t(y/x)")))).
deduce(sequent([e(t(t_1),t(t_2)),e(t("t(y/t_1)"),t("t(y/t_1)"))],

e(t("t(y/t_1)"),t("t(y/t_2)")))).

566 T. M. Elnadi – A. Hoogewijs

⇐
THEOREM NAME:

=-subs2

SYMBOLS:

x,y denote variables

t2,t1,t,t(y/t1),t(y/t2),t(y/x) denote terms

ASSUMPTIONS:

subst y t1 t t(y/t1)

subst y t2 t t(y/t2)

subst y x t t(y/x)

subst x t2 t(y/x) t(y/t2)

subst x t1 t(y/x) t(y/t1)

x is not in t

x is not in t1

x is not in t2

t(y/t1)=t(y/x) `? t(y/t1)=t(y/x)

THEOREM:

t1=t2, t(y/t1)=t(y/t1) `? t(y/t1)=t(y/t2)

PROOF:

1. subst x t2 t(y/x) t(y/t2) assumption

2. subst x t1 t(y/x) t(y/t1) assumption

3. x is not in t1 assumption

4. x is not in t2 assumption

5. t(y/t1)=t(y/x) `? t(y/t1)=t(y/x) assumption

6. x is not in t(y/t1) by 2,3

7. x is not in t(y/t2) by 1,4

8. t(y/t1)=t(y/x), x=t2 `? t(y/t1)=t(y/t2) (Et2x) on 1,5,6

9. t1=t2 `? ∆(t1=t2) (Ad1)

10. t1=t2 `? ∆(t1=t1) (De1) on 9

11. t1=t2, t(y/t1)=t(y/t1) `? t(y/t1)=t(y/t2) (S′t1x) on 2,4,6,7,8,10 2

←

PT = 42.68 sec; WT = 2.09 sec;
DL = 77 steps; PL = 11 steps;
CO = 14.29 %; DE = 1.36;
DS = 0.26 steps/sec; ST = 3.88 sec.

Karnak? an automated theorem prover for PPC? 567

In the previous proof, one may notice that the assumption

t(y/t1)=t(y/x) `? t(y/t1)=t(y/x)

takes the form α `? α. In addition, the variable x and the assumptions about it do
not appear in the original theorem. The explanation of that is much similar to the
case in the proof of (=-subs1). The assumptions about the variable x are discharged
assumptions in the sense that they can be preceded by “Let”. Using discharged
assumptions is another one of the interaction methods which are explained in [9].
In addition, the reader may notice that some of the assumptions are not used in the
proof. This shows how the program may help to reduce the number of assumptions
where the unused ones do not appear in the proof.

568 T. M. Elnadi – A. Hoogewijs

Appendix D

The KARNAK? Proofs for (CuRu), (Gd2) and (SeAt′)

• →

include "karnak#.pro"
clauses
assume(sequent([l("Gamma1")],st(alpha))).
assume(sequent([l("Gamma2"),st(alpha)],st(beta))).
deduce(sequent([l("Gamma1"),l("Gamma2")],st(beta))).

⇐
THEOREM NAME:

Cut Rule (CuRu)

SYMBOLS:

α,β denote formulas

Γ1,Γ2 denote lists

ASSUMPTIONS:

Γ1 `? α

Γ2, α `? β

THEOREM:

Γ1, Γ2 `? β

PROOF:

1. Γ1 `? α assumption

2. Γ2, α `? β assumption

3. Γ1 `? ∆α (∆) on 1

4. ¬∆α `? ¬∆α (A)

5. ¬∆α, Γ1 `? β (X) on 3,4

6. ¬α `? ¬α (A)

7. ¬α, Γ1 `? β (X) on 1,6

8. Γ1, Γ2 `? β (R′) on 2,5,7 2

←

PT = 0.17 sec; WT = 0.06 sec;
DL = 17 steps; PL = 8 steps;
CO = 47.06 %; DE = 1.12;
DS = 47.06 steps/sec; ST = 0.02 sec.

Karnak? an automated theorem prover for PPC? 569

• In this proof, we use a version of KARNAK? called “karnak#1.pro” which does not
contain (Gd2). When we tried to prove the dependency of (Gd2) manually, we did
not succeed. This shows that KARNAK? is practically useful. In fact, it may be
difficult to discover natural proofs even if they are short, although it is always easy
to understand and verify them even if they are long.

→
include "karnak#1.pro"
clauses
deduce(sequent([for(v(x),d(st(alpha)))],d(for(v(x),st(alpha))))).

⇐
THEOREM NAME:

(Gd2)

SYMBOLS:

x denotes a variable

α denotes a formula

THEOREM:

∀ x ∆α `? ∆(∀ x α)

PROOF:

1. ¬α `? ∆(∀ x α) (Gd3)

2. ∀ x ∆α `? ∀ x ∆α (A)

3. ∀ x ∆α `? ∆α (G) on 2

4. ¬∆α `? ¬∆α (A)

5. ¬∆α, ∀ x ∆α `? ∆(∀ x α) (X) on 3,4

6. ¬∆(∀ x α) `? ¬∆(∀ x α) (A)

7. ∀ x α `? ∆(∀ x α) (Ad1)

8. ¬(∀ x α) `? ∆(∀ x α) (Ad2)

9. α `? α (A)

10. ¬∆(∀ x α), ¬∆α, ∀ x ∆α `? α (X) on 5,6

11. ¬∆(∀ x α), ¬α `? α (X) on 1,6

12. ¬∆(∀ x α), ∀ x ∆α `? α (R′) on 9,10,11

13. ¬∆(∀ x α), ∀ x ∆α `? ∀ x α (Gx) on 12

14. ¬∆(∀ x α), ∀ x ∆α `? ∆(∀ x α) (∆) on 13

15. ∀ x ∆α `? ∆(∀ x α) (R′) on 7,8,14 2

←
PT = 2682.83 sec; WT = 12.47 sec;
DL = 168 steps; PL = 15 steps;
CO = 8.93 %; DE = 1.07;
DS = 0.01 steps/sec; ST = 178.86 sec.

570 T. M. Elnadi – A. Hoogewijs

• →

include "karnak#.pro"
clauses
assume(sequent([l("Gamma1"),n(st(alpha))],st(alpha))).
assume(sequent([l("Gamma2")],d(st(alpha)))).
deduce(sequent([l("Gamma1"),l("Gamma2")],st(alpha))).

⇐
THEOREM NAME:

Self-assertion Rule (SeAt′)

SYMBOLS:

α denotes a formula

Γ1,Γ2 denote lists

ASSUMPTIONS:

Γ1, ¬α `? α

Γ2 `? ∆α

THEOREM:

Γ1, Γ2 `? α

PROOF: b

1. Γ1, ¬α `? α assumption

2. Γ2 `? ∆α assumption

3. ¬∆α `? ¬∆α (A)

4. ¬∆α, Γ2 `? α (X) on 2,3

5. α `? α (A)

6. Γ2, Γ1 `? α (R′) on 1,4,5 2

←

PT = 0.17 sec; WT = 0.00 sec;
DL = 9 steps; PL = 6 steps;
CO = 66.67 %; DE = 1.00;
DS = 35.29 steps/sec; ST = 0.03 sec.

Acknowledgments: Invaluable comments were received from anonymous referees and
J.H.Cheng.

Karnak? an automated theorem prover for PPC? 571

References

[1] Barringer H., Cheng J.H., Jones C.B., A Logic Covering Undefinedness in Pro-
gram Proofs, Acta Informatica 21, 251-269 (1984).

[2] Bolc L., Borowik P., Many-Valued Logics. 1 Theoretical Foundations, Springer
Verlag (1992).

[3] Bowen K.A., Programming with Full First-Order Logic, MI 10, 421-440 (1982).

[4] Cheng J., A Logic for Partial Functions, PhD Thesis, Department of Computer
Science, Manchester University (1986).

[5] Duffy D., Principles of Automated Theorem Proving, Wiley (1991).

[6] Elnadi T.M., Hoogewijs A., An Automated Theorem Prover for the Partial

Predicate Calculus PPC, submitted to Journal of Automated Reasoning (1994).

[7] Hoogewijs A., A Calculus of Partially Defined Predicates, Mathematical Scripts,

Gent University (1977).

[8] Hoogewijs A., Partial-Predicate Logic in Computer Science, Acta Informatica

24, 381-393 (1987).

[9] Hoogewijs A., Elnadi T.M., KARNAK: An Automated Theorem Prover for
PPC, The CAGe Reports No. 10, Gent (1994).

[10] Jones C., VDM Proof Obligations and their Justification, Lecture Notes in Com-
puter Science 252, Springer Verlag, 260-286 (1987).

[11] Jones C., Jones K., Lindsay P., Moore R., Mural: A Formal Development
Support System, Springer Verlag (1991).

[12] Kanger S., A Simplified Proof Method for Elementary Logic, Computer Pro-
gramming and Formal Systems, Eds. P. Braffort, D. Hirshberg. North Holland,

87-94 (1963).

[13] Malinowski G., Many-Valued Logics, Oxford Logic Guides 25, Oxford (1993).

[14] Ryan M., Sadler M., Valuation Systems and Consequence Relations in Handbook
of Logic in Computer Science Vol. 1, Clarendon Press, Oxford, 1-78 (1992).

[15] Wang H., Towards Mechanical Mathematics, IBM J. Res. Dev. 4, 2-22 (1960).

Tarek Mohamed Elnadi
Mathematics Department, Faculty of Science,
Mansoura University, Egypt

ten@cage.rug.ac.be

Albert Hoogewijs
Department of Pure Mathematics and Computer Algebra,
Gent University, Belgium

bh@cage.rug.ac.be

