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Abstract

Under suitable assumptions we prove, via the Leray-Schauder fixed
point theorem, the existence of a solution for quasilinear elliptic boundary
value problem in C%(Q) N W24(Q),q > N which satisfies in addition the

1 —
condition, (1+ | = |?)2u € C*>%(Q).

1 Introduction

Let G be a bounded, open and not empty subset of RY with C** boundary,
N>2 0<a<1andletQ:=RY\G. In this paper we consider quasilinear elliptic
boundary value problems of the form,

) Yaij(zv,u)Dijju —u = f(r,u,Du) in
P
u = 0 on 0f)

These problems have been investigated by many authors under various assumptions
( see [3], [8], [10] and references mentioned there). Our aim is to establish, using
the Leray-Schauder fixed point theorem, the existence of smooth solutions for (P),
under the assumptions listed below:
(A1) The function g(z, z,p) := (1 + |z [*)* f(x, z,p) satisfies the conditions:

i) |glz,z,p)| < (]l 2]) (1—|—|p|2) forallz € Q, 2 € IR and p € R".
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i) [g(x,2,p) -9’2, p) | < @) {le—2" "+]2=2|+]|p-p },
forall L>0 ; 2,2 €Q ; 22 €[-L,L] and p,p € B(0).
where ¢ is a positive increasing function.
(A2) Suppose that all eventual solutions of the problem (P) in the space C*({2)
tending to zero at infinite are a priori bounded in L>(£2).
(A3) 1) vEF £ Yaylra)ag < oulEl
foralz €Q , 2€ R and €€ RY
i) Jay(e,2) —ay@,2) | < w@){lz-a"["+]z-2 [},
forall L >0 ; z,2 € Qand 2,2 € [-L,L].
where v and i are positive constants and ¢ is an increasing function.
(A4) We suppose that ~— 2u— (N —1)v < 1+ R?
where R is the radius of the largest ball contained in G = RN¥\Q.
Remarks 1.1

a. The assumption (A2) is satisfied if one of the following conditions holds:

(A’2) f is continuously differentiable with respect to the p and z variables.
Furtheremore, for some constant A > —1 we have,

0
a—f(x,z,())z)\ VeeQ, VzelR
2
(A”2) There exists a constant A such that ,
2f(x,2,0) > =22 forallz € Q and | z |[> A

b. By a further translation of the domain we assume, without loss of generality,
that the ball Bg(0) is contained in G. That is, |z |> R Vo e Q.

c.  Our results can be generalized for general unbounded subdomains of RY with
smooth boundary.

The main result of this paper is stated as follows :

Theorem 1.1  If the assumptions (A1l); (A2); (A3) and (A4) are satisfied,
then for any q > N, the problem (P) has a solution u in the space C**(Q)NW21(Q).

Furtheremore, (14 | x [*)?u € C?*%(Q).

Let p > 2= be fixed. From now on we suppose that the assumptions (A1); (A2);
(A3) and (A4) are satisfied.

2 A priori estimates

The purpose of this section is to establish the following theorem,

Theorem 2.1 There exists a constant ¢ > 0 such that any solution
u € W2P(Q) N C%%(Q) of the problem (P) satisfies,

1
) A+ e ulee < e

.. 9, —% /
i) fullhpe <cl@+lz) *llpey V2 C
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Where, here and in the following, we use the notations:

| v looq = sup|v(x) ] , W,q =  sup M
z€Q ’ syeQaty | T —y|*
[vlkae = lvleka@ = > I DWlooe+ > [D],q
|s|<k |s|=k
1/p
[ vk = llvllwreq = [Z / | D*v [P dx] .
js|<k /<

By a standard regularity argument it is easy to verify that any solution of (P) in
1 _

the space W??(Q) N W, *(Q) has the property:  (1+ | z |?)2u € C>%(Q).

Before proving the theorem 2.1, we establish the following lemmas:

Lemma 2.2 There exists a constant ¢ > 0 such that any solution
u € C*(Q)NW?2P(Q) of (P) satisfies the estimate,

| Du [joa0 <c

Proof: The technique used here is similar to the one used in the first part of [9].
Let 7 € 02, ¢ > 0 and ¢ be a real-valued function in C*(R¥Y) with {(z) = 1 for
| z |< 3 and ((z) = 0 for | z |[> 1. For r € (0,1), we define the function ¢, by
setting, Gr(w) := (7).

In what follows ¢ and ¢(r) denote generic constants that depend only on v, pu, N, q,
M =] u ||o0,0, and eventualy on r. By the elliptic regularity of the Laplacian to-

gether with the assumption (A3) we have,
| S0 e < e [ 13 ai(u(@)Dy(Gu) de (21)
Qr Qr

Where Q, := QN B,(Z).
On the other hand by [6, theorem 1 |, there exist a constant r; < 1 depending only
on 01, and two constants ¢ > 0 and 3 € (0,1) depending only on v, u, M, r; and

0f2 such that,
[U]g’grl < ¢ (2.2)

According to (A3), (2.1), (2.2) and the triangle inequality, we may choose 19 < 11
small enough so that for any r < ry we have,

[ S DGy (12 de < e || age, u@) Dy(GRu) 1772 de (23)
T Q?"

By differentiation we obtain,

DZ(Cgu) = CT?DZ/U/ + 2GuD; Gy (2'4>
Dij (C3u> = CgDzju + QCT [DZUDJCT + DjuDZCT] + QUDiCrDer + QCTUDier

Using (2.4), (A1) and (A3) , it is easy to verify that for any r < o we have,

I (e u@)Dy(ct) [ de < e [ (G Du ) Pde o) (25)

and,
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S (G Dy ) < (2.6)
{/ S| Dy (Cu) |q+2dx+/ ¢ | Du ) dx}—l—c( )

Combining the identities (2.4), (2.5) and (2.6) with the following interpolation in-
equality [9], [7] :

4
|, (@10 |2>q+2d~"f§0{<g> /( ¢ | Du?) dx+5q+2/ > (G |DUU|q+2d:c}

where, ¢ :=| u—u(Z) ||o0.0.
we obtain for any r < 79 the inequality,
/Q S| Dy (Cu) |q+2dx+/ | Du [2)™de < (2.7)

2 { [ 51 Dy(¢u) [+ [ (2] Du e

e <§>4 I (G Du Y'da + (1)

Then, from (2.2) and (2.7), we get for 7 small enough,
[ X1 Dy(¢a) [Pt [ (2] Du e < (28)
o) [ (€3 Du PY'de + ()

This inequality is valid for any nonnegative real ¢ then, by induction we deduce the
estimate,

| (€21 DuP)de < o) (2.9)
Combining the identities (2.4), (2.8) and (2.9) we obtain,

I ¢Fu llwaae (@) < o)

Then, because of the arbitrariness of ¢ in IR", the Sobolev imbedding theorem [1]

yields
’ I Gulhans< e

where ¢ is a constant depending only on o and the parameters indicated previously.
In particular,
H Uu HLOC,QQB%(@) S C v.f' - 39 (210)

Similarly, there exist constants ro < § and ¢y > 0 depending only on v, yi, a, 79,7, N
and M such that for any xq € , satisfying dist(xo, 02) > £ we have:

H u Hl,oc,BrO(a:O) < ¢ (211)
It then follows from (2.10) and (2.11) that,
Y I Diw flon < 3rg® max(co, ).
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Lemma 2.3 There exists a constant ¢ > 0 such that any solution u of (P) in

the space C%*(Q) N W2P(Q) satisfies: 1
pace CER(Q) NWEHQ) satisfies: (04 |2 2)F | u(a) |< e
e

Proof: The desired estimate will be obtained by the construction of suitable
comparaison functions in bounded subdomains Q' of Q. Precisely let us set,

we) = ullgg o KO+ |2 )72
where K is a positive constant to be specified later. By differentiation we have,
Diw = —Kx;(14 | z |?)
Dijjw = 3Kzz;(1+ | = )

_3
2

_5 _3
2 2

— Kog(1+ | = |?)

By a direct calculation we obtain,

Ew = 3K(1+ | X |2)_g Zdij(:c):ci:cj — K(1+ | €T |2>_% Zdzz(x>

[l

K14 |2 %)= [l g0

Let Ay < ... < Ay be the eigenvalues of the matrix A = [a;;(x)].
Then, Since Y a;(z) = > A\ we have,

Lw < K(+|z[)7? By — Saa(2) | - K(1+ | z 2

1
2

wjw

IN

N-1 )
K+ |x|?)” [QAN -> )\i] — KA+ |z]*)?
=1

1
2

< K(+|a[)? 2u— (N =1 ] - K(1+ |z )

But by (A1) we have, | f(z,u(z), Du(x)) |< Mi(1+ | x |2)_% where,

M, = o] u lloon ) [H— | Du |13 0.0 } Then, for having L(w £ u) < 0 in it
suffies to have,

2u—(N-1p < (1-2)(1+]z? Ve

If we seek K in |M;, +o0[, the last condition holds if the following inequality is
satisfied,

2u—(N—1v < (1-28)[1+ R
by (A4) this inequality is equivalent to the choice,

2u— (N —=1)v !
K > Ky := M |1 -
P T S

for this choice we have,
Lw+u) <0 in
wru >0 on 00

It then follows from the weak maximum principle that,

[ u(@) | <[ ullgpor +EA+ |2 %)

_1
2

Vo e Q

Consequently, letting Q' — Q, we obtain the desired estimate.
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Proof of the theorem 2.1

Let us set v(z):=(1+ |z |2)%u.
By differentiation we obtain,

Dwv = (14|« |2)%Dz~u +z;(14+ |z |2)_%u

Dijv = (1+ |z |2>%Dz‘ju + (14 |z |2)_%[:chz~u + x;Dju] (2.12)

01+ | & [1)7Fu =z (14 | [2)F
Using (2.12), we obtain by a direct calculation,
[_/U = g(ZL',U, DU) + 2<1+ | x |2>_% Zdzj(x)xszu

1 3 (2.13)
+(1+ |z P)2uX s — (14 | 2 [*) " 2u X a;(x)z;
Now, we show that,
| @i lloao < c (2.14)
I9(,u, Du) foae < c (2.15)
By the assumption (A3) we have,
| @ij llo,0,0< 24 (2.16)
And for z, 2" € Q we have,
| ayj(w) —ay(a) | = | ay(e,ul@)) = ay(a' u(@) |
< Yl ulooe) [ [o—2"[*+ ule) —u(@) | ] (2.17)
< Yl ulooe) [+ [ uloas ] o —2" |

Then, by virtue of the assumption (A2) and the lemma 2.2 | the inequalities (2.16)
and (2.17) imply the estimates (2.14). In the other hand by the lemma 2.2 and the
assumptions (A1)-(A2) we have,

| 9(u, Du) llope < @]l wllooe)| 1+ Dull3og |
< c

and,

| 9(z, u(z), Du()) — g(a’, u(z’), Du(z")) |
< ¢(lulloo) { lo—a"[*+ | u@) —u(@) | + | Du(x) — Du(’) | }
< ¢o(lullioe) { 14 | wlloae + | Dulloan }|z—2"|°
< cloz—a |,

The estimate (2.15) is then established. So, using the estimates (2.14)-(2.15) and
the identity (2.13), we deduce the estimate,

| Lv [loa.0< ¢ (2.18)
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We apply now the Schauder estimate in unbounded domain [5], [2] to obtain,

lvlzan < ef Lo loan + 1 oo} (2.19)
Hence, by virtue of the lemma 2.3, the estimates (2.18) and (2.19) imply,
[ v ll200 <c (2.20)

The first assertion of the theorem 2.1 is then established. Let now Q' be arbitrary
subdomain of €. Using the estimate (2.20) we obtain,

lull,g = ¥ [ 1D%u)] da

|s|<2

< X [ ta Py Eas 1o Pt Du) | |

|s|<2
2_£
< c/ (14 |z |2) 2da
Q/

The theorem 2.1 is then proved

3  Proof of the main theorem

Let £ and F be the closures of the sets,

E={uecC?®Q) / (1+ |z |2)%u €C?(Q) and u=0o0ndN }
and

Fi={heC™Q) / (I+]|z[)?he Q) }
respectively in the Holder spaces C2%(2) and C%%(Q).

Let v be arbitrary and fixed in W2?(€) N W, ?(€) and define the linear operators :
82
Ly := -1

i

L1 = Zaij(x,'u(:c))Dij —1
Li:=tLi+(1—tLy, tel0,1]

Using the Schauder estimate in unbounded domains ( see [5], [2]) the maximum
principle and the fact that the elements of E vanish on 02 and tend to zero at
infinite we obtain the estimate :

H u HQ’OC’Q < c H Ltu HO,O&,Q Yu € E s Vit € [O, 1] (31)

On the other hand it is well known that for any function f € F, the linear equation
Lou = f has a unique solution in W2P(Q) N W, ?(Q) ( see [2]). By a standard
regularity argument this solution belongs in fact to the space E. Consequently, by
the density of F' in F and the estimate (3.1) it is easy to see that Ly is onto from
the Banach space E into F. So, the method of continuity and the estimate (3.1)
ensure that the linear operator L; is onto from E into F'. By a standard regularity
argument it is easy to see that L restricted to E is onto from E into F. In the
other hand the assumption (A1) asserts that f(.,v, Dv) belongs to F'. Then, the
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linear problem,

) {Zaij(x,'u)Diju—u = f(xz,v,Dv) in

u = 0 on Of

is uniquely solvable in E. Hence, the operator T" which assigns for each v in
W2P(Q) N WyP(Q) the unique solution of (P,) is well defined. To prove that T
is completely continuous from W2?(Q) N W, ?(Q) into itself, let (v,), be a bounded
sequence in W22(Q)NW,*(Q) and set u,, := Tv, . A similar argument as that used
in the theorem 2.1 leads to the estimates:

| Un 200 <c Vn € IN, (3.2)
ln loper el @+Ta®) 2 llope vneN, VO CQ  (33)

Using the estimates (3.2) and (3.3), it is easy to verify that the sequences of deriva-
tives of u, up to order 2, satisfy the assumptions of [1, theorem 2.22]. The sequence
(up) is then precompact in W2P(Q) N W, ?(Q). The continuity of T follows easily.
According to theorem 2.1 the fixed points of the family of operators (J.T)Je[o’l]
are apriori bounded in W?2?(Q) N W,*(Q) by the same constant then, the Leray-

Schauder fixed point theorem [4, theorem 11.3] asserts that 7" has a fixed point u.

It is clear that u solves (P) and satisfies, (1+ | |2)%u € C?%(Q). In particular,
u e C**(Q)NW24(Q) for any ¢ > N. The main theorem is then established.
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