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Abstract

Let X be a simply connected finite CW-complex. Denote by B aut X
the base of the universal fibration of fibre X. We show in this paper that
the Lusternik-Schnirelmann category of B aut X is not finite under some
hypothesis on X.

1 Introduction

In this paper, X will denote a simply connected CW-complex of finite type. The
LS-category of X, cat(X), is the least integer n such that X can be covered by
(n + 1) open subsets contractible in X, and is ∞ if no such n exists. The rational
category of X, cat0(X), is the LS-category of its rationalization X0 and satisfies
cat0(X) ≤ cat(X). One way to approach cat(X) consists to compute cat0(X) by
algebraic methods ([4]).

Recall first that the Sullivan minimal model of X is a free commutative cochain
algebra

(
ΛZ, d

)
such that dZ ⊂ Λ≥2Z, with Zn ∼= HomQ(πn(X), Q) ([10], [8]).

A differential graded Lie algebra (L, d) is called a Quillen model for X if there
is a quasi-isomorphism between the Sullivan minimal model of X and the cochain
algebra on (L, d).

The space X is called coformal if its Sullivan minimal model has the form (ΛZ, d)
where dZ ⊂ Λ2Z.

The nth Gottlieb group of X, Gn(X), is the subgroup of πn(X) defined as
follows. The homotopy class of α : Sn −→ X belongs to Gn(X) if the map
id ∨ α : X ∨ Sn −→ X extends to X × Sn.
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Fibrations whith fiber in the homotopy type of X are obtained, up to fiber
homotopy equivalence, as pull back of the universal fibration X −→ B aut•X −→
B aut X ([1],[3]); here aut X denotes the monoid of self-homotopy equivalences of
X, aut•X is the monoid of pointed self-homotopy equivalences of X, and B is the
Dold-Lashof functor ([2]).

Denote by B̃ aut X the universal covering of B aut X. We briefly recall the
construction of a model of B̃ aut X.

We derive from
(
ΛZ, d

)
a connected differential graded Lie algebra of derivations,

(DerΛZ, D) ([10]): in degree k > 1, we take the derivations of ΛZ decreasing degree
by k. In degree one, we only consider the derivations θ which decrease degree by one
and verify [ d, θ] = 0. The differential D is defined by Dθ = [ d, θ ] = dθ− (−1)|θ|θd
(see [10] for more details).

Theorem. ([10]) The differential graded Lie algebra (DerΛZ, D) is a Quillen model
for the universal covering B̃ aut X of B aut X.

We know from ([6]) that cat(B̃ aut X) is not finite when the rational homotopy of
X is finite dimensional or when X is a wedge of spheres. We shall use the model
above to carry on whith the computation of the rational LS-category of B̃ aut X.
Since cat(B aut X) ≥ cat(B̃ aut X) ≥ cat0(B̃ aut X), whenever cat0(B̃ aut X) =∞,
the LS-category of B aut X will also be infinite. We prove:

Theorem. Let X be a simply connected finite CW-complex. The LS-category of
B aut X is infinite provided one of the following hypothesis is satisfied:

(a) X is a coformal space and the Gottlieb group, G(X0), is non zero.

(b) X = Y × Z, G(Y0) = G(Z0) = 0, π∗(B aut Y ) ⊗ Q is not finite dimensional
and H̃∗(Z,Q) 6= 0.

(c) X = Y ∨Z, Z0 6= ∨Si
0, whith π∗(Y )⊗Q infinite dimensional and Y, Z coformal

spaces.

2 The classifying space spectral sequence

Let (ΛZ, d) be the Sullivan minimal model of X. Define a filtration of the differential
Lie algebra Der(ΛZ, d) by the Lie differential sub algebras

Fp = {θ ∈ Der(ΛZ, d) | θ(Z) ⊂ Λ≥pZ}.

This filtration is compatible with the differential, and verifies [ Fp, Fq ] ⊂
Fp+q−1. Therefore, we obtain a spectral sequence of differential graded Lie alge-
bras (Er(X), dr) such that E2(X) ∼= H∗(Der(ΛZ, d2)), where d2 denotes the
quadratic part of the differential d, and which converges to H∗(Der(Λ Z, d)). More-
over E∞0,∗(X) ∼= G(X0).
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Proposition 1 Let X be a finite simply connected CW-complex, then E∞q,∗(X) = 0
for all q greater than the homological dimension of X.

Proof. Let n be the homological dimension of X and θ ∈ Fp, p > n, such that
[d, θ] = 0, we shall prove that θ is a boundary i.e. there is a derivation θ′ such that
θ = [d, θ′]. For degree reasons, θ = 0 on Z≤ n+|θ|, so that we put θ′ = 0 on Z≤ n+|θ|.
Suppose now that that θ′ is defined on Z<r , r > n + |θ|, such that θ = [d, θ′] on
Z<r. Let x ∈ Zr, compute

d[θ(x) + (−1)|θ|θ′(dx)] = dθ(x) + (−1)|θ|dθ′(dx)
= (−1)|θ|θ(dx) + (−1)|θ|dθ′(dx)
= (−1)|θ|(θ − [ d, θ′ ])(dx)
= 0.

Therefore there is an element y in ΛZ such that θ(x) + (−1)|θ|θ′(dx) = dy. Then
define θ′(x) = y; the elements θ and [ d, θ′ ] agree on Z≤r . �

Corollary 2 Let X be a finite simply connected CW-complex such that G(X0) = 0,
then E∞≥2(X) is a nilpotent ideal of π∗(ΩB̃ aut X)⊗Q.

3 Proof of the theorem

3.1 Case (a)

Let n be an integer such that Gn(X0) 6= 0, then according to ([4]), n is odd. Denote
by (ΛZ, d2) the Sullivan minimal model of X. By definition ([4]), there is a derivation
θ of ΛZ such that θ(z) = 1 for some z ∈ Z, which commutes with the differential.
Write θ = θ0 + · · · θi · · · such that θi(Z) ⊂ ΛiZ. Since [d2, θ0] = 0 and θ2

0 = 0,
there is a KS-extension ([8]) (Λy, 0) −→ (Λy ⊗ ΛZ, d) −→ (ΛZ, d̄) such that
dx = d2x + yθ0(x) for x ∈ ΛZ. The spatial realization of this KS-extension is a
fibration with fibre X0 and basis K(Q, n+1). This provides a non trivial classifying
map f : K(Q, n + 1) −→ (B̃ aut X)0. Therefore, applying the mapping theorem
([4]), we conclude that the category of (B̃ aut X)0 is not finite.

Remarks:

– A Gottlieb element of degree n of (ΛZ, d) provides a derivation θ of ΛZ of
degree −n such that θ(z) = 1 and [d, θ] = 0 ([4]). As the homology class of
θ is non zero in πn+1(B̃ aut X) ⊗ Q, there is a fibration X0 −→ E −→ Sn+1

0

classified by θ : Sn+1
0 −→ (B̃ aut X)0. Moreover, if the hypothesis of case (a)

are satisfied, this map factors through K(Q, n + 1).

– The proof above holds for Sn× Y where Y is a finite CW-complex. Therefore
the hypothesis on the coformalty of X is not necessary if we require dz = 0.
In this case (ΛZ, d) ∼= (Λz, 0)⊗ (ΛY, d) ([9]).
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3.2 Case (b)

Let (ΛV, d) and (ΛW, d′) be Sullivan minimal models of Y and Z. There is an
isomorphism

Φ : Der((ΛV, d) ⊗ (ΛW, d′))
∼=−→

[
(DerΛV )⊗̂ΛW

]
⊕
[
ΛV ⊗̂(DerΛW )

]
,

where ⊗̂ denotes the complete tensor product.

Let θ ∈ Der((ΛV, d)⊗ (ΛW, d′)) be a derivation of degree n,

Φ(θ) =
∑
i≥0

θi ⊗ bi +
∑
j≥0

aj ⊗ ψj

where θi ∈ Der ΛV, ψj ∈ DerΛW, aj ∈ ΛV, bi ∈ ΛW are of respective degrees
n + i, n + j, ,−i, −j, with

(θi ⊗ bi)(v) = (−1)|v||bi|θi(v).bi, v ∈ V ; (aj ⊗ ψj)(w) = aj.ψj(w), w ∈W.

The Lie bracket in
[
(DerΛV )⊗̂ΛW

]
⊕
[
ΛV ⊗̂(DerΛW )

]
is defined by :

[ θ1 ⊗ w1, θ2 ⊗ w2] = (−1)|θ1||w1|[ θ1, θ2]⊗w1w2, θi ∈ DerΛV, wi ∈W ;

[θ ⊗ w, v ⊗ ψ] = (−1)|w||v⊗ψ|+|θ||v|vθ ⊗ ψ(w) + (−1)|v||w|θ(v)⊗wψ,

θ ∈ DerΛV, ψ ∈ Der(ΛW ), v ∈ V, w ∈W ;

[ v1 ⊗ ψ1, v2 ⊗ ψ2 ] = (−1)|v2||ψ1|v1v2 ⊗ [ψ1, ψ2], ψi ∈ DerΛW, vi ∈ V.

Since H∗(Y, Q) and H∗(Z, Q) are finite dimensional, we can replace (ΛV, d) and
(ΛW, d′) by finite models, and in this case the complete tensor product is equivalent
to the usual tensor product. Therefore

H∗(Der(ΛV ⊗ ΛW )) ∼= [H∗(DerΛV ) ⊗H∗(Z)]⊕ [H∗(Y )⊗H∗(DerΛW )] .

Then I =
[
H∗(DerΛW ) ⊗ H̃∗(Z)

]
⊕
[
H̃∗(Y )⊗H∗(DerΛW )

]
is an infinite nilpotent

Lie ideal of H∗(Der(ΛV ⊗ΛW )), since G(Y0) = G(Z0) = 0. Therefore, according to
([5]), the LS-category of B aut X is not finite.

3.3 Case (c)

Let (ΛV, d), (ΛW, d′), (ΛT, D) denote respectively minimal models of Y, Z and
X. Let α ∈ H∗(Z, Q) be an element of the highest degree. It is represented by a
cocycle u ∈ (ΛW )n. Recall that T = V ⊕W ⊕W ′ with

1. DW ′ ⊂ (Λ+V ⊗ Λ+W ) ⊕ (Λ+W ′ ⊗ Λ(V ⊕W )).

2. The ideal I = (Λ+V ⊗ Λ+W ) ⊕ (Λ+W ′ ⊗ Λ(V ⊕W )) is acyclic.

Choose an element y ∈ V such that |y| = k > n. Define a map f : Q.y −→ ΛT
by f(y) = u, and extend it as a derivation θ of ΛT which commutes with the
differential as follows:
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– If z ∈W, then θ(z) = 0;

– Define θ on V by induction of the degree: θ = 0 on the supplementary of Q.y in
V ≤k. If |z| > k, suppose that θ had been defined on V <|z|, then θ(Dz) ∈ Λ≥3T
is cocycle in I. As θ(Dz) is a coboundary, we choose z′ ∈ Λ≥2T such that
θ(Dz) = Dz′, and define θ(z) = (−1)|θ|z′.

– Similary for z ∈ W ′, if |z| ≤ k, define θ(z) = 0, and extend it on W ′ such
θ(W ′) ⊂ Λ≥2T.

The derivation θ is a cycle in Der ΛT and it is not a boundary. In fact suppose that
there is a derivation θ′ in Der ΛT such that [D, θ′] = θ. Therefore

u + (−1)|θ
′|θ′(Dy) = Dθ′(y),

thus u is cohomologuous to an element in the ideal generated by V, but this is im-
possible.

Since we have associated to each element y ∈ V > n an element θ ∈ E∞≥2(X), E∞≥2(X)
is not finite dimensional. According to corollary 2, E∞≥2(X) is a nilpotent ideal of
π∗(B aut X)⊗Q, therefore the category of B aut X is not finite ([5]).

4 Examples

– We know from ([6]) that the category of BautX is infinite whenever π∗(X)⊗Q
is finite dimensional. The part (a) of the theorem above is a generalization
of this result for coformal spaces. For instance, the LS-category of BautX is
not finite if X is a coformal space such that the center of π∗(ΩX) ⊗Q is not
trivial.

– Combining assertion (a) with (b) of the theorem, we obtain that the LS-
category of B aut X is not finite if X is a product of wedge of spheres or
more generally if X is a product of coformal spaces Xi such that the center of
π∗(ΩXi)⊗Q is trivial.

– If X is a wedge of at least three coformal spaces, then the LS-category of
B aut X is not finite.
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