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Abstract
Let X be a simply connected finite CW-complex. Denote by B aut X
the base of the universal fibration of fibre X. We show in this paper that
the Lusternik-Schnirelmann category of B aut X is not finite under some
hypothesis on X.

1 Introduction

In this paper, X will denote a simply connected CW-complex of finite type. The
LS-category of X, cat(X), is the least integer n such that X can be covered by
(n + 1) open subsets contractible in X, and is co if no such n exists. The rational
category of X, cato(X), is the LS-category of its rationalization X, and satisfies
cato(X) < cat(X). One way to approach cat(X) consists to compute cato(X) by
algebraic methods ([4]).

Recall first that the Sullivan minimal model of X is a free commutative cochain
algebra (AZ, d) such that dZ C A=?Z, with Z™ & Homg(m,(X), Q) ([10], [8]).

A differential graded Lie algebra (L, d) is called a Quillen model for X if there
is a quasi-isomorphism between the Sullivan minimal model of X and the cochain
algebra on (L, d).

The space X is called coformal if its Sullivan minimal model has the form (AZ, d)
where dZ C A2Z.

The n'* Gottlieb group of X, G,(X), is the subgroup of 7,(X) defined as
follows. The homotopy class of o : S™ — X belongs to G,(X) if the map
dVa: XVIS"— X extends to X x S".
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Fibrations whith fiber in the homotopy type of X are obtained, up to fiber
homotopy equivalence, as pull back of the universal fibration X — B aut*X —
B aut X ([1],[3]); here aut X denotes the monoid of self-homotopy equivalences of
X, aut®*X is the monoid of pointed self-homotopy equivalences of X, and B is the
Dold-Lashof functor ([2]).

Denote by B aut X the universal covering of B aut X. We briefly recall the
construction of a model of B aut X.

We derive from (AZ , d) a connected differential graded Lie algebra of derivations,
(Der AZ, D) ([10]): in degree k > 1, we take the derivations of AZ decreasing degree
by k. In degree one, we only consider the derivations # which decrease degree by one
and verify [d, 6] = 0. The differential D is defined by D8 = [d, 0] = df — (—1)"°4d
(see [10] for more details).

Theorem. ([10]) The differential graded Lie algebra (Der AZ, D) is a Quillen model
for the universal covering B aut X of B aut X.

We know from ([6]) that cat(B aut X) is not finite when the rational homotopy of
X is finite dimensional or when X is a wedge of spheres. We shall use the model
above to carry on whith the computation of the rational LS-category of B aut X.
Since cat(B aut X) > cat(B aut X) > cato(B aut X), whenever cato(B aut X) = oo,
the LS-category of B aut X will also be infinite. We prove:

Theorem. Let X be a simply connected finite CW-complex. The LS-category of
B aut X is infinite provided one of the following hypothesis is satisfied:

(a) X is a coformal space and the Gottlieb group, G(Xy), is non zero.

(b)) X =Y x Z, G(Yy) = G(Z) =0, m(BautY) ® Q is not finite dimensional
and H*(Z,Q) # 0.

(c) X =YVZ, Zy# VS, whith 7.(Y)®Q infinite dimensional and Y, Z coformal
spaces.

2 The classifying space spectral sequence

Let (AZ, d) be the Sullivan minimal model of X. Define a filtration of the differential
Lie algebra Der(AZ,d) by the Lie differential sub algebras

F,=1{0 € Der(AZ,d) | 6(Z) c A>Z}.

This filtration is compatible with the differential, and verifies [ F,, F,| C
F,iq-1. Therefore, we obtain a spectral sequence of differential graded Lie alge-
bras (E"(X), d") such that E*(X) = H.(Der(AZ, ds)), where dy denotes the
quadratic part of the differential d, and which converges to H,(Der(A Z, d)). More-
over EgS,(X) = G(Xo).
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Proposition 1 Let X be a finite simply connected CW-complex, then E25,(X) =0
for all q greater than the homological dimension of X.

Proof. Let n be the homological dimension of X and 6 € F,, p > n, such that
[d, 8] = 0, we shall prove that # is a boundary i.e. there is a derivation ¢’ such that
0 = [d, #']. For degree reasons, § = 0 on Z="* 5o that we put #' = 0 on Z="+l,
Suppose now that that 6" is defined on Z<",r > n + ||, such that § = [d, €] on
Z<". Let x € Z", compute

dl(x) + (=110 (dw)] = db(x) + (=1)"\d¢’ (d)

d
(=D)6(dx) + (—1)"“1de (dx)
(=
0.

)0 = [d,0'])(dx)

Therefore there is an element y in AZ such that 6(z) + (—1)9¢'(dr) = dy. Then
define ¢'(z) = y; the elements 6 and [d, 0’| agree on Z=". ]

Corollary 2 Let X be a finite simply connected CW-complex such that G(Xy) = 0,
then E5(X) is a nilpotent ideal of .(0B aut X) ® Q.

3 Proof of the theorem

3.1 Case (a)

Let n be an integer such that G, (Xy) # 0, then according to ([4]), n is odd. Denote
by (AZ, ds) the Sullivan minimal model of X. By definition ([4]), there is a derivation
0 of AZ such that 6(z) = 1 for some z € Z, which commutes with the differential.
Write § = 6y + ---0;--- such that 6;(Z) C A'Z. Since [da, 6p] = 0 and 62 = 0,
there is a KS-extension ([8]) (Ay, 0) — (Ay ® AZ, d) — (AZ, d) such that
dr = dox + yOo(x) for x € AZ. The spatial realization of this KS-extension is a
fibration with fibre Xy and basis K(Q,n+ 1). This provides a non trivial classifying
map f: K(Q, n+1) — (B aut X)o. Therefore, applying the mapping theorem
([4]), we conclude that the category of (B aut X ), is not finite.

Remarks:

— A Gottlieb element of degree n of (AZ, d) provides a derivation 6 of AZ of
degree —n such that 0(z) = 1 and [d,0] = 0 ([4]). As the homology class of
f is non zero in m,,1 (B aut X) ®Q, there is a fibration Xo — E — S§*!
classified by 0 : Sp*! — (B aut X)o. Moreover, if the hypothesis of case (a)
are satisfied, this map factors through K(Q,n + 1).

— The proof above holds for S™ x Y where Y is a finite CW-complex. Therefore
the hypothesis on the coformalty of X is not necessary if we require dz = 0.
In this case (AZ, d) = (Az,0) ® (AY, d) ([9]).
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3.2 Case (b)

Let (AV, d) and (AW, d’) be Sullivan minimal models of Y and Z. There is an
isomorphism

o

 : Der((AV, d) ® (AW, d)) — [(DerAV)@AW| & [AV&(DerAW)]

where ® denotes the complete tensor product.

Let 6 € Der((AV, d) @ (AW, d')) be a derivation of degree n,

DO) =Y 0 Db+ Y 0,00
i>0 5>0
where 0, € Der AV, ¢; € DerAW, a; € AV, b; € AW are of respective degrees
n+1i, n+j, ,—i, —j, with
(0; @ b;)(v) = (—=D)PIPlG;(0).b;, v €V (a; @ ¥))(w) = aj.abj(w), w € W.
The Lie bracket in [(DerAV)@AW} ® [AV@(DGTAW)} is defined by :

[91 ® wi, 0 ®w2] = (_1)|6’1||w1|[91’ 92] & wiw2, 91 c De?“AV, w; € W;

[0 ®@w, v Y] = (= 1)lleee Oy @ o (w) + (=1)110(v) @ w,
0 € DerAV i) € Der(AW), veV, we W,

[01 ®@ 1,03 @] = (=1)2Wrly 09 @ [1)1,102), ;i € DerAW, v; € V.

Since H*(Y, Q) and H*(Z, Q) are finite dimensional, we can replace (AV,d) and
(AW, d') by finite models, and in this case the complete tensor product is equivalent
to the usual tensor product. Therefore

H.(Der(AV @ AW)) = [H,(DerAV) ® H*(2)] @ [H*(Y) ® H,(DerAW)).

Then [ = [H*(DG’I“AW) ® PNI*(Z)} ® [}NI*(Y) ® H*(DG’I“AW)} is an infinite nilpotent
Lie ideal of H,(Der(AV @ AW)), since G(Yy) = G(Zy) = 0. Therefore, according to
([5]), the LS-category of B aut X is not finite.

3.3 Case ()

Let (AV, d), (AW, d'), (AT, D) denote respectively minimal models of Y, Z and
X. Let a € H*(Z, Q) be an element of the highest degree. It is represented by a
cocycle u € (AW)™. Recall that T =V & W & W' with

L. DW' C (ATV@ATW) & (AW @ A(V e W)).

2. Theideal I = (ATV @ ATW) @ (ATW' @ A(V & W)) is acyclic.

Choose an element y € V' such that |y| = k > n. Define a map f: Q.y — AT

by f(y) = u, and extend it as a derivation 6 of AT which commutes with the
differential as follows:
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— If z € W, then 6(z) = 0;

— Define 6 on V by induction of the degree: # = 0 on the supplementary of Q).y in
V=k_1f |z| > k, suppose that § had been defined on V<l then §(Dz) € A=3T
is cocycle in I. As 0(Dz) is a coboundary, we choose 2’ € A=*T such that
0(Dz) = Dz, and define 0(z) = (—1)l2,

— Similary for z € W', if |z] < k, define 6(z) = 0, and extend it on W’ such
H(W') C A=*T.

The derivation 6 is a cycle in Der AT and it is not a boundary. In fact suppose that
there is a derivation ¢ in Der AT such that [D, 0'] = 6. Therefore

u+ (-1)71¢'(Dy) = DO (y),

thus u is cohomologuous to an element in the ideal generated by V, but this is im-
possible.

Since we have associated to each element y € V=" an element § € EZ5(X), EZ5(X)
is not finite dimensional. According to corollary 2, E;(X) is a nilpotent ideal of
(B aut X) @ @, therefore the category of B aut X is not finite ([5]).

4 Examples

— We know from ([6]) that the category of Baut X is infinite whenever m,(X)®Q
is finite dimensional. The part (a) of the theorem above is a generalization
of this result for coformal spaces. For instance, the LS-category of BautX is
not finite if X is a coformal space such that the center of m,(QX) ® Q is not
trivial.

— Combining assertion (a) with (b) of the theorem, we obtain that the LS-
category of B aut X is not finite if X is a product of wedge of spheres or

more generally if X is a product of coformal spaces X; such that the center of
T(2X;) ® Q is trivial.

— If X is a wedge of at least three coformal spaces, then the LS-category of
B aut X is not finite.
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