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Abstract

In this tutorial paper we overview research being done in the field of struc-
tural complexity and recursion theory over the real numbers and other do-
mains following the approach by Blum, Shub, and Smale [12].

1 Introduction

Quite a lot of computational problems arising in classical fields of mathematics (such
as numerical analysis, optimization, geometry etc.) deal with the real or complex
numbers as underlying structure. However, theoretical foundations of computabil-
ity and complexity - as being developed for example by Gödel, Church, Turing and
others - have been restricted to discrete problems only. The Turing machine, widely
accepted by theoretical computer scientists as formal concept of a computing ma-
chine, intrinsically only works over finite alphabets. Classical complexity theory
thus is mainly concerned with problems from combinatorics, number theory and
logic.
As a consequence classical real number algorithms seem to be modeled (at least
theoretically) inadequately (cf. [114]). Generally the way of investigating such al-
gorithms (for example Newton’s method, Gaussian elimination etc) is not that of
changing all inputs into a bit representation analyzing the problem on that level;
elements from the underlying structure are rather taken as entities. As another ex-
ample consider the task of deciding, whether a given complex point belongs to the
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Mandelbrot set (cf. [7]). Here the Turing machine seems not to provide the right
approach to deal with. Hence the following question arises: what is a satisfactory
framework to handle recursion and complexity issues for problems in continuous
domains?
Notions of computation over arbitrary rings like the real random access machine,
algebraic circuits, straight line programs have already been considered at least since
the 80’s in algebraic complexity theory. Research in that field has been extremely
fruitful and is in fact closely related to the Blum-Shub-Smale model we want to
consider. This especially is the case for lower bound results. Here the currently
available methods are mainly based on “ non-uniform” techniques developed in al-
gebraic complexity theory. For a survey on that field we refer to [121], [131] as well
as the forthcoming book [15]. However, contrary to one of the fundamental features
of the Turing model, the non-uniformity of this approaches implies that only pro-
blems of fixed input dimension are dealt with. Thus concepts of uniform complexity
classes are not included.

In 1989 Blum, Shub and Smale [12] introduced a model of computation and
complexity over the reals as well as arbitrary rings. It gives a structural approach
to complexity theory over these domains, similar to the Turing machine over the
integers. Their model is uniform and thus allows to transform main ideas of discrete
complexity theory into a more general framework. By regarding real numbers as
entities it enables to combine the theory of computation with analysis, geometry and
topology. The famous P versus NP question reappears as a major open problem in
that approach, too. For some previous works in this direction see the references in
[12]. May be the closest approach was given by Skandalis (see [111]) who already
developed a uniform recursion model in general structures (in particular over fields).
But his model does not explicitly allow machine constants and no complexity aspects
are included.

Just like the Turing machine the Blum-Shub-Smale model (henceforth we use
the shorthand BSS-model) is an idealization of a computing machine. One hope in
analyzing it is to get new and different insights into the complexity of problems. As
one important example we mention the linear programming problem. Even though
it is well known to be solvable in polynomial time in the discrete setting ([59] and
[60]) the existence of so-called strongly polynomial-time algorithms is still a major
open problem (see [124]).

Let us point out that important work also has been done related to the difficult
question how to implement real number algorithms practically. Since this area is
out of the scope of this paper, we just refer to the survey [105] and the references
given there.

The aim of the present paper is to overview research in the Blum-Shub-Smale
approach since 1989. Clearly numerous former results can be revisited in the context
of the BSS-setting. However we want to focus on recent work directly addressed to
the BSS-theory.
Our survey is organized as follows: in section 2 the BSS-model over the real numbers
is introduced together with the basic related definitions and notions (computability,
decision problems, decidability, complexity classes, completeness etc). Subsection
2.2 deals with first results building up the starting point for doing complexity theory
over R (existence of NPR-complete problems, decidability of class NPR). The third
section collects research connecting BSS theory and discrete complexity issues. It
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mainly addresses the refinding of classical complexity classes as so called boolean
parts of real ones. To this aim some variations of the BSS model (additive, linear,
weak machines) are analyzed. We then turn to separation results and lower bound
methods. The “weak” models under consideration in section 3 allow a positive
answer to the P 6= NP -question in the according models by non-uniform methods.
Application of such methods to the original setting are discussed in 4.3.
Beside complexity theoretic questions also recursion theory has been investigated
for the Blum-Shub-Smale approach. Progress in that area is surveyed in section 5.
As these first sections will show many problems naturally lead to consideration of
varied models (different operations and/or cost-measures) and different underlying
structures. Thus many questions treated so far can be formulated for more general
structures as well. Results into this direction are summarized in section 6. Moreover
a machine-independent model-theoretic approach to capture real complexity classes
is presented in section 7. The paper concludes with some remarks concerning further
research directions and a current bibliography.

Throughout the sequel notions like discrete or classical complexity theory always
refer to the Turing machine model together with the bit-size measure. The same
holds for notions of complexity classes without an additional index (like P,NP,
P/poly, . . .). For a comprehensive treatment of the classical theory see [3], [46] and
the survey by Stockmeyer [119].

Even though we tried to present an almost complete survey we are quite sure of
having forgotten to mention (or even do not know) some related work. We apologize
for this.

2 The Blum-Shub-Smale model

Let us start with defining the computational model of the Blum-Shub-Smale machine
as well as introducing the main related complexity theoretical concepts. In this
section we deal with the real numbers as underlying structure, whereas more general
settings are considered in section 6.

2.1 Definitions

Essentially a BSS-machine can be considered as a Random Access Machine over
R, which is able to perform the basic arithmetic operations at unit cost and which
registers can hold arbitrary real numbers.

Definition 2.1 ([12]) Let Y ⊂ R∞ :=
⋃
k∈N Rk. A BSS-machine M over R with

admissible input set Y 1 is given by a finite set I of instructions labeled by 0, . . . , N .
A configuration of M is a quadruple (n, i, j, x) ∈ I × N × N × R∞. Here n denotes
the currently executed instruction, i and j are used as addresses (copy-registers)
and x is the actual content of the registers of M . The initial configuration of M ′s
computation on input y ∈ Y is (1, 1, 1, y). If n = N and the actual configuration is
(N, i, j, x), the computation stops with output x.

1In the sequel we will say a BSS-machine over Y.
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The instructions M can perform are of the following types :

computation: n : xs ← xk ◦n xl, where ◦n ∈ {+,−, ∗, :} or
n : xs ← α for some constant α ∈ R .
The register xs will get the value xk ◦n xl or α resp. All other register-entries
remain unchanged. The next instruction will be n+ 1 and the copy-registers
are changed selectively according to i← i + 1 or i← 1 and similarly for j.

branch: n: if x0 ≥ 0 goto β(n) else goto n+ 1. According to the answer of the
test the next instruction is determined (here β(n) ∈ I). All other registers are
not changed.

copy: n : xi ← xj, i.e. the content of the “read”-register is copied into the “write”-
register. The next instruction is n+ 1; all other registers remain unchanged.

All α appearing among the computation-instructions built up the (finite) set of
machine constants of M .

Remark 2.2 The kind of operations allowed depends on the underlying structure.
A branch x ≥ 0? for example does only make sense in an ordered set, see below.
The copy-registers and -instruction are necessary in order to deal with arbitrary
long inputs from R∞. The way of changing the entries in the copy-registers (the
“addressing”) seems to be rather restrictive because of the fact that there is no
indirect addressing. However it is general enough for our purposes, see Remark 2.6
below.

Now to any BSS-machine M over Y there corresponds in a natural way the
function ΦM computed by M . It is a partial function from Y to R∞ and is given as
the result of M ′s computation on an input y ∈ Y .

The following notions are crucial for recursion- and complexity-theory.

Definition 2.3 Let A ⊂ B ⊂ R∞ and M be a BSS-machine over B.

a) The output-set of M is the set ΦM(B). The halting-set of M is the set of all
inputs y for which ΦM (y) is defined.

b) A is called recursively enumerable over B iff A is the output-set2 of a BSS-
machine over B.
(If B = R∞ A is simply called recursively enumerable.)

c) A pair (B,A) is called a decision problem. It is said decidable iff there exists a
BSS-machine M̃ with admissible input set B such that ΦM̃ is the characteristic
function of A in B. In that case M̃ decides (B,A).

As it can be easily seen (B,A) is decidable iff A and B \ A are both halting sets
over B.

Questions on recursion theory will be treated in section 5. We first turn to
complexity issues. In order to deal with complexity we have to define as well a
cost-measure for BSS-algorithms as a size-measure for problem-instances.

2This terminology agrees with the terminology classically used for Turing machines. In [12],
the term “recursively enumerable”is used for halting sets. But for BSS-machines over the reals,
both classes of halting sets and output sets are equal (see [12] and Section 5 below).
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Definition 2.4

a) For x ∈ R∞ such that x = (x1, . . . , xk, 0, 0, . . .), the size is defined as

size(x) := k.

b) Let M be a BSS-machine over Y ⊂ R∞, y ∈ Y. The running time of M on y
is defined by

TM(y) :=

{
number of operations executed by M if ΦM (y) is defined
∞ else

The above definition provides a first important difference with classical complexity
theory. Part a) states that any real number - independently of its magnitude - is
considered as entity. Similarly b) defines the cost of any basic operation to be 1 -
no matter about the operands.

We can now define the most important complexity classes PR and NPR for real
decision problems.

Definition 2.5 ([12])

a) A decision problem (B,A), A ⊂ B ⊂ R∞ belongs to class PR (deterministic
polynomial time) iff there exist a BSS-machine M with admissible input-set B
and constants k ∈ N, c ∈ R such that M decides (B,A) and

∀ y ∈ B TM(y) ≤ c · size(y)k.

b) (B,A) belongs to class NPR (nondeterministic polynomial time) iff there exists
a BSS-machine M with admissible input-set B×R∞ and constants k ∈ N, c ∈
R such that the following conditions hold :

i) ΦM (y, z) ∈ {0, 1},
ii) ΦM (y, z) = 1 ⇒ y ∈ A,

iii) ∀y ∈ A∃z ∈ R∞ΦM(y, z) = 1 and TM(y, z) ≤ c · size(y)k.

c) (B,A) belongs to class co-NPR iff (B,B \ A) ∈ NPR.

Remark 2.6 As is shown in [98] the class NPR would not change if a more general
way of addressing is used in the definition of BSS-machines.
In a similar way as above one defines further complexity classes, for example EXPR
and NEXPR (here the running time is bounded to be single-exponential).

The class PR can be considered as a theoretical formalization of problems being
efficiently solvable; the running time increases only polynomially with the problem
size (even if in practice big constants k and c can destroy this effect for small input
sizes). Nondeterminism in part b) of the definition refers to the vector z. The
NPR-machine is not allowed to answer “yes” if the input does not belong to A and
for each y ∈ A there must be a “guess” z that proves this fact in polynomial time.
However there is no indication how to get the right guess.
Obviously it is PR ⊂ NPR. The question whether PR 6= NPR can be considered
as the main unsolved problem in real complexity theory and is the analogue to the
classical P versus NP problem in the Turing-theory (see [21] and [46]). Informally
the difference between PR and NPR is the difference of fast proof-finding versus fast
proof-checking.
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Example 2.7 ([12]) For k ∈ N, let F k be the set of all polynomials in n unknowns,
n ∈ N, with real coefficients and of degree ≤ k. Consider the subsets of F k

F k
zero := {f ∈ F k | f has a real zero}

and
F k
zero,+ := {f ∈ F k | f has a real zero with all components being nonnegative},

where a polynomial is represented as an element of R∞ by writing down the coeffi-
cients of all its monomials in a given order. Then (F k, F k

zero) and (F k, F k
zero,+) belong

to NPR for all k ∈ N by guessing a (nonnegative) zero x, plugging it into f and
evaluating f(x). If k ≥ 4 the according problems lead into the heart of complexity
theory as we will see in the next subsection.

In order to compare problems with respect to the difficulty of solving them the
notion of polynomial time reducibility is central. The underlying idea is that a
problem (B1, A1) is at least as hard to solve as problem (B2, A2) if each instance of
the latter can be reduced fast (i.e. in polynomial time) into one of the first.

Definition 2.8 Let (B1, A1), (B2, A2) be decision problems.

a) (B2, A2) is reducible in polynomial time to (B1, A1) iff there exists a BSS-
machine M over B2 s.t. ΦM (B2) ⊂ B1 ΦM (y) ∈ A1 ⇔ y ∈ A2 and M works
in polynomial time.
Notation : (B2, A2) ≤R (B1, A1)

b) (B1, A1) ∈ NPR is NPR-complete iff (B1, A1) is universal in NPR w.r.t. ≤R
(i.e. any problem in NPR is reducible to it in polynomial time).

c) (B1, A1) ∈ co-NPR is co-NPR-complete iff it is universal w.r.t. ≤R in co-NPR .

Complete problems are essential for complexity classes because they represent the
most hardest problems in it. As in the classical theory the relation ≤R is both
transitive and reflexive. This implies PR = NPR iff it exists a NPR-complete pro-
blem in class PR. That is the reason why studying complete problems bears such
importance.

2.2 Basic complexity results

Before continuing the work on problems like PR versus NPR some basic questions
must be solved. Of course if problems in NPR would not be decidable it would not
make sense to speak about their complexity. Moreover, because of its importance
one is interested in knowing whether NPR-complete problems exist and how they
look like. Proving completeness results for decision problems in principle is possible
by reducing known complete problems to those in question. Nevertheless it remains
the task to find a “first” complete problem. This is one of the major results in [12].

Theorem 2.9 ([12])

a) For any k ≥ 4 the problem (F k, F k
zero) is NPR-complete.

b) All problems in class NPR are decidable in single exponential time.



A survey on real structural complexity theory 119

The theorem is established by adapting Cook’s famous NP−completeness result
for the 3-Satisfiability problem (see [21] and [46]) in Turing theory to the BSS-
model. By using a kind of symbolic dynamics the computation of any machine
can be described via a system of polynomial equations. Accepting computations
are then related to satisfiable systems which themselves correspond to polynomials
in F k

zero . The decidability of problems in NPR is much harder to show than in
discrete complexity theory. This is due to the fact that the space of guesses is a
continuum. The problem is closely connected with so called quantifier-elimination
over real closed fields : the problem whether a f ∈ F k has a zero can be formulated
via the first-order formula

∃x1, . . . , xn f(x1, . . . , xn) = 0.

Answering this question can be done by transforming the formula into a sentence
without quantifiers and checking its validity. An algorithm for quantifier elimina-
tion in real closed fields was first given by Tarski [122]. The stated time bounds are
qualitatively established in [50],[53] and [103].
Let us remark that the general problem of quantifier elimination (i.e. the formula
contains both universal and existential quantifiers) is intrinsically of doubly expo-
nential complexity ([38]). For more about the complexity of elimination theory
beside the above mentioned papers see [52].

As follows immediately the problem of deciding whether a degree 4 polynomial
has no zero is co-NPR-complete (cf. also section 6).

If PR 6= NPR is assumed then k = 4 is a sharp bound in Theorem 2.9. This is a
result by Triesch [125], who proved (F k, F k

zero) to belong to PR for k ∈ {1, 2, 3} .
Some more completeness results have been obtained, among them for example

• (QS,QSyes) : does a system of quadratic polynomials have a common zero
(NPR-complete [12]).

• is a semi-algebraic set, given by polynomials of degree at most d, non-empty
(NPR-complete for d ≥ 2 [12])

• (F k, F k
zero,+) (NPR-complete for k ≥ 4 [78])

• is a semi-algebraic set, given by polynomials of degree at most d, convex (co-
NPR-complete for d ≥ 2 [34]).

For further results cf. also [34].
Especially with respect to classical complexity theory (F 2, F 2

zero,+) is interest-
ing. It can be seen as a non-convex quadratic programming problem (with linear
constraints). Quadratic Programming is known to be NP -complete in the Turing-
setting; however there is not a corresponding result to Triesch’s one for nonnegative
zeros of degree 2 polynomials and the question is related to the existence of so called
strongly polynomial algorithms for mathematical programming problems (see [102]).
(F 2, F 2

zero,+) bounds the complexity of many important combinatorial problems if
considered over the reals (for example 3-Satisfiability, Hamiltonian Circuit, Travel-
ing Salesman all are reducible to it in polynomial time, cf. [78]). Thus it would
be surprising to establish a result like (F 2, F 2

zero,+) ∈ PR . On the other hand there
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are good reasons to conjecture (F 2, F 2
zero,+) not to be any more complete in the real

setting. We return to this question later on.

Beside the time measure for computations also the used space resources can be
considered. In fact the according counterparts to time classes - for example PSPACE
- are extremely important in discrete complexity theory. In principle this concept
can similarly be defined in the BSS-model; however a result by Michaux shows the
irrelevancy of this notion to this broad context.
In [90] and [93], Michaux showed that there exists an universal constant c such
that for any decision problem and for any input, the size of space needed for the
computation is at most the size of the input plus c. So this implies that any decision
problem (over any ordered rings) can be solved in linear space. Unfortunately the
price to pay is an exponential loss of time in the calculations. In Koiran [64] it is
shown that the same result holds in a weak version BSS-model (where multiplication
is not allowed) but with a polynomial slowdown. So in this model any polynomial
time decision problem can be solved by an algorithm working in polynomial time
and linear space. The reader is also invited to look to Poizat’s book [100, chapter
8] where the result is discussed and proved by using circuits in a very clever way. In
particular he shows the following :

Theorem 2.10 In the BSS-model over the structure (R; +,−, x
2
,=, <) every poly-

nomial time decision problem can be solved by an algorithm working in polynomial
time needing constant additional space3.

This question is treated in the general setting of recursion theory for structures of
finite type (see section 6 for a definition) in [44].

Finally let us mention that the space notion nevertheless seems to be important
if it is combined with time-resources. A first result into this direction is given in
[49]. We’ll come back to it in section 7.

3 Relations with discrete complexity theory, weak and linear

Blum-Shub-Smale models

Even though in the BSS-approach reals are entities and its representation by bit-
strings (if possible) seems to be of no importance a-priori, there are tight relations
also to classical complexity theory. At least for combinatorial problems this is not
fully surprising due to the fact that here bit- and algebraic-size measure coincide.
In order to study such relations closer it turned out to be fruitful considering not only
the BSS-model itself but also some modifications. To this aim especially the ”weak
BBS-model” introduced by Koiran [62] as well as linear variants of BSS-machines
are important (later on we will come back to other variations of the BSS-model in
greater generality).

The weak BSS-model was inspired by the idea to bring the BSS-theory nearer
to classical complexity theory by using a different cost-measure for the operations.
Consider the following program :

3The symbol x2 stands for the function which divides x by 2.
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input x ∈ R
for i = 1 to n

do x← x2

od
output x

Here within n steps the value x2n is computed, i.e. a polynomial of degree 2n can be
computed in n steps. To avoid such an effect (which is very untypical for the Turing-
model) Koiran introduced a different cost measure for the allowed operations. The
key idea is to consider the real constants of a machine as separated inputs in order
to speak about the bit size of numbers appearing during a computation.

Let M be a BSS-machine with real constants α1, . . . , αs. For any input-size n M
realizes an algebraic computation tree (for this notion cf. [131]). If any node ν is
passed by M during this computation, the value computed by M up to this node
is of the form fν(α1, . . . , αs, x1, . . . , xn) where fν ∈ Q(α1, . . . , αs, x1, . . . , xn) is a
rational function with rational coefficients only. Now the weak cost of the according
operation is fixed as maximum of deg(fν) and the maximum height of all coefficients
of fν (here the height of a rational p

q
is given by blog(|p|+ 1) + log(|q|)c ).

Definition 3.1 ([62]) The weak BSS-model is given as the BSS-model together with
the weak cost-measure, i.e. the weak running time of a BSS-machine M on input
x ∈ R∞ is the sum of the weak costs related to all operations M performs until
ΦM (x) is computed. Weak deterministic and non-deterministic polynomial time as
well as weak polynomial time reducibility are defined in a straightforward manner
(and denoted by an index w, i.e. Pw, NPw etc.).

Koiran [62] studies boolean parts4 of (weak) real complexity classes :

4The idea that classes of boolean problems can be helpful to the understanding of BSS-classes
of complexity is already present in the preprint of [48](circulating in 1991). There one can find
some interesting considerations about the class of problems solvable in digital nondeterministic
polynomial time.
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Definition 3.2

a) ([26], [30], [62]) Let C be a complexity class over the reals ; the boolean part
BP (C) of C denotes {L ∩ {0, 1}∗;L ∈ C}.

b) ([48] and also [30]) If C is a non-deterministic complexity class, thenDC (digital
C) denotes the subclass of those problems in C of which membership can be es-
tablished by guessing only elements from {0, 1}∗ (for exampleDNPR, DNPw).

The aim now is to recover classical (boolean) complexity classes as boolean parts
of real ones.
A characteristic result is the following : (For a definition of the mentioned classical
complexity classes, see [3],[46].)

Theorem 3.3 ([62])

BP (Pw) = P/poly.

The proof idea of this main theorem in [62] is crucial for most results into this
direction. To switch from weak BSS-computations to Turing-computations the main
task is to deal with the real constants of a weak BSS-machine M . Koiran’s idea is
to substitute them by rationals the bit-sizes of which are small and to perform the
same computation, but now with the rational constants. In order to realize such a
substitution - which has to guarantee the same results of the computation at least
on inputs from {0, 1}n for every n ∈ N- the following result on semialgebraic sets is
established :

Theorem 3.4 ([62]) Let S ⊂ Rs be a semialgebraic set with defining polynomials

Pi(α1, . . . , αs) > 0, i = 1, . . . , N, Pi ∈ Z[α1, . . . , αs],

let D be the max deg(Pi), and H the maximum height of the coefficients in the
Pi’s. If S is nonempty then there exist constants a, b depending only on s and an
ᾱ ∈ Qs ∩ S such that the height of ᾱ is bounded by a ·H ·Db .

The theorem states that there exist small rational points in a semialgebraic set
defined by ”small” polynomials over Z. Note that the height of ᾱ is independent
of the number N of polynomials. Analyzing weak polynomial time computations
for a fixed input dimension a situation as in Theorem 3.4 can be derived. Due
to the fact that only inputs from {0, 1}∗ have to be considered, the real constants
α1, . . . , αs are exchanged with ᾱ. Since ᾱ is small the arising algorithm can be
executed in polynomial time also by a Turing-machine. However, for different input
dimensions different rational points ᾱ can appear. This forces the resulting process
to be non-uniform - the reason why P/poly comes into play.

It should be noted that similar results in the theory of neural networks have
been obtained independently by Sontag and Siegelmann [117]. For readers more
interested in the relation with neural networks see also [72].

Beside the weak model also linear real models give strong connections with dis-
crete complexity theory. This is due to the fact that Turing-computations can be
simulated by very easy arithmetic operations.
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Definition 3.5 If the set of operations in the BSS-model is reduced to additions/
subtractions or to linear operations (i.e. addition/subtractions and scalar multipli-
cations with a fixed finite set of reals) we get additive resp. linear BSS-machines. If
only test-operations “x = 0?” can be performed we get BSS-machines branching on
equality.
Notationally we will indicate the kind of branching as upper index whereas the kind
of model as lower index (for example P=

lin stands for problems being decidable in
deterministic polynomial time by a linear machine branching on equality).

We summarize some further results which more or less all make use of a result
similar to that given by Theorem 3.4. They (and other ones) can be found in [26],
[27], [36], [62], [64].

The class P/poly can also be found again as boolean part of P≤add resp. P≤lin, i.e.

P/poly = BP (P≤add) = BP (P≤lin) ([64]).

For the corresponding non-deterministic classes one gets

NP/poly = BP (DNPw) = BP (NP≤add) = BP (NP≤lin) ([36], [64]).

The uniform boolean classes P and NP can also be recovered as boolean part of
complexity classes but for additive or linear BSS-machines branching on equality

P = BP (P=
add) = BP (P=

lin)

and
NP = BP (NP=

add) = BP (NP=
lin) ([64])

(here the proofs rely on a symbolic computation avoiding to deal with the machine
constants as real numbers). These results are generalized for the polynomial-time
hierarchy upon NP=

add and NP≤add in [28].
Additive machines have also been studied for parallel computations [22]. Let NCadd

denote the class of decision problems decidable by a uniform family {Cn}n∈N of
additive circuits with polylogarithmic depth and polynomial size. The corresponding
uniformity condition forces Cn to be computable by a Padd-machine in polynomial
time. Then

BP (NC=
add) = NC, BP (NC≤add) = NC/poly and NC≤add ( P=

add ([22]).

As a consequence of Koiran’s results in [62] one obtains that Stockmeyer’s
polynomial-time hierarchy ([118] and [119]) would collapse to its second level if
the classes Pw and DNPw coincide ([36], [62]). A related result for parallel weak
computations is given in [36].

For boolean parts of complexity classes in the (full) BSS-model some results
have been obtained by the above techniques, too. Cucker and Grigoriev [26] proved
PSPACE/poly to equal the boolean part of parallel polynomial time (as worked
out in [36] one can also reduce considerations to weak parallel polynomial time).
Koiran showed that BP (P=

R ) ⊂ BPP (problems recognizable in polynomial time by
a probabilistic Turing machine with bounded error probability, [62]) and that the
real counterpart PHR of the polynomial-time hierarchy does not contain all subsets
in {0, 1}∗ (see [62], an extension can be found in [26]). For an exact definition of
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PHR as well as specification of complete sets for the different levels of it we refer to
[25].

Finally let us mention that different classes of non-determinism within complex-
ity theory as well over the integers together with the algebraic cost-measure as over
general structures of finite type are studied in [54] and [55].

4 Separation results, lower bounds

In this section for the real models considered so far we overview complexity results
not concerned with boolean parts. Special interest will be given to separation results
and to lower bounds (which often provide separations of certain complexity classes).
One serious problem concerning lower bound methods is that most of them use non-
uniform ideas, i.e. restrict themselves to a fixed input dimension trying to prove
lower bounds for that dimension. Thus methods from algebraic complexity theory
play an important part. We do not want to go into detail for such methods and refer
the interested reader to [15], [68], [69], [121], [131]. However one argument used for
some of the following results should be presented.

Theorem 4.1 Let X ⊂ Rn (resp. X ⊂ Cn) be an irreducible algebraic variety
given as zero-set of an irreducible polynomial f . Furthermore in the real case let
dim(X) = n−1. Then any BSS-algorithm deciding the set (Rn, X) (resp. (Cn, X))
has to compute a non-trivial multiple of f on a Zariski-dense subset of X.

The proof is given for example in [16],[106]. The main idea is to show that there
exists at least one computation path along which “Zariski-almost” all inputs are
branched (using Baire’s category theorem). Such a “typical” path is then shown
to compute necessarily a test-function vanishing on X. Application of the Risler-
Dubois- (over R) resp. the Hilbert-Nullstellensatz (over C) yields the assertion.
The theorem states that for certain polynomials testing whether they vanish is not
easier than evaluation (modulo the factor hidden in the assertion). We will see later
on that sometimes it is possible to switch from the (unknown) multiple to f itself.

4.1 Weak BSS-model

Using the above argument several separation results for the weak model follow :

Theorem 4.2 ([36])
Pw ( PR ⊂ NPR = NPw.

First of all this means that the Pw versus NPw question is solved in Koiran’s model
(one can indeed show the stronger separation Pw ( NPw ∩ co−NPw). The relation
Pw ( PR is established by considering for fixed n ∈ N an irreducible polynomial p of
degree 2n such that the according variety X can be decided in (strong) polynomial
time by using a repeated squaring. According to Theorem 4.1 a weak machine solv-
ing the problem has to compute a multiple of p in weak polynomial time : this is not
possible since the degree of p has to be polynomial in the time of the computation.
The equation NPR = NPw is interesting in its own. Full non-determinism is not
stronger than the weak one. The reason why is that high degree intermediate re-
sults can be guessed in order to reduce the weak costs. Moreover Cucker, Shub, and
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Smale show that the problems (F 4, F 4
zero) and (QS,QSyes) to be complete also in the

weak setting, i.e. w.r.t. weak polynomial time reductions. Note that the question
whether every NPR-complete problem is NPw-complete too is highly non-trivial : if
the answer would be “yes” Theorem 4.2 would imply PR 6= NPR (because otherwise
every problem in NPR = PR would be NPR-complete).

Some corollaries following from Theorem 4.2 should be mentioned. For example
it can be shown that neither PR nor NPw are subsets of PARw, a consequence
of which is DNPw ( NPw (here PARw denotes all problems being decidable in
weak polynomial time using an exponential number of processors, cf. [36]; similar
for PARR). The latter implies typical combinatorial problems like Knapsack or 3-
Satisfiability not to be NPw− complete because they are members of class DNPw .
Similar arguments are used for the main result in [82]. As mentioned above one
major open problem in mathematical programming is the question for existence
of strongly polynomial time algorithms solving Linear Programming or non-convex
Quadratic Programming (i.e. the question whether these problems belong to PR,cf.
[102]). In discrete complexity theory the first is known to be in class P whereas the
second is NP−complete. Thus assuming P 6= NP both have different complexity
behavior. Vavasis [127] conjectured a similar result within the real framework to need
very different proof methods (if it is true at all). This is supported by the results in
[82], [83] . There it is shown that both kinds of programming problems belong to
DNPw (the search of a solution can be restricted to very special directions, which
are codable by digits). Thus on the one hand they are not NPw-complete in Koiran’s
model, on the other hand together with Theorem 4.1 also NPR-completeness of any
DNPR problem would have strong consequences: multiples of resultant polynomials
have to be computed (non-uniformly) fast in that case [82]. We will address this
question later on again.
It is thus reasonable to conjecture that Quadratic Programming is not any longer
complete, if real models are considered.

Before switching to linear models let us mention few further results : Both DNPw
and DNPR possess complete problems [30]. The class DNPw can be characterized
as subclass NP 1

w of NPw, where instead of a polynomial number of reals only a
single real is guessed (i.e. guesses are reduced to a one-dimensional space, cf. [82]).
A similar characterization for the full model is unknown. Finally, we have seen that
DNPw ( NPw, but it is not clear whether Pw ( DNPw . However for equational
weak machines the real Knapsack-problem can be used to separate also these two
classes, i.e. Knapsack ∈ DNP=

w \P=
w ([36]). Results on weak exponential time can

also be found in [36].
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4.2 Linear and additive machines

Considering the order-free linear resp. additive BSS-model the P versus NP ques-
tion can be answered.

Theorem 4.3 ([80], [81])

P=
lin 6= NP=

lin and P=
add 6= NP=

add .

The proofs again use non-uniform methods; to show that deciding integer-solvability
of linear equational systems separates the according classes. (The result was inde-
pendently proven by Smale, see [107]). Koiran [64] mentioned the Knapsack-problem
to establish the same separation.
For the ordered case things seem to be much more difficult. Non-uniform approaches
so far have not suffice to show P≤lin 6= NP≤lin. In fact, Meyer auf der Heide [88] has
solved the Knapsack-problem non-uniformly in polynomial time; however, the no-
tion of non-uniformity used in the latter work is more general than that of families
of circuits with polynomial size!

The concept of digital nondeterminism, which turned out to be important for
both the weak and the full BSS-model, is of no special meaning in linear and additive
settings. As proved by Koiran we have

Theorem 4.4 ([64])

DNP≤lin = NP≤lin, DNP
=
lin = NP=

lin, DNP
≤
add = NP≤add

and
DNP=

add = NP=
add .

The basic idea to switch from arbitrary to digital nondeterminism is guessing the
coding of an accepting computation path instead of guessing real numbers which
force the according machine to take that path. Then it has to be checked whether
the guessed path can appear during a computation (the same idea is also used to
gain the above mentioned result DNPw = NP 1

w).
Additionally let us mention that all the above NP -classes are decidable in the cor-
responding framework. For NP=

lin, NP
=
add cf. [81], for NP≤lin see [41] and for NP≤add

cf. [43] as well as [28] and [116]. The existence of complete problems in the additive
models is settled in [30]. For linear machines a positive answer is given in [47], even
though in that case no universal machine exists (see [81] and section 6 below). This
seems to be related to the non-existence of so called universal machines (cf. [81] and
section 6 below).

4.3 Full BSS-model

Because of its meaning for real complexity theory it is important to study lower
bounds for problems in NPR, especially complete ones. As mentioned above, the
problem (QS,QSyes) of deciding whether a system of quadratic polynomials has a
real solution is NPR−complete. Shub [106] has related this problem with Theorem
4.1. Instead of dealing with arbitrary quadratic systems he considers homogeneous
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systems of n polynomials in n unknowns and asks for non-trivial solvability. The
problem clearly belongs to NPR. It is well known ([106], [129]) that for every n ∈ N
the solvable systems built up an algebraic variety given as the zero-set of the so-
called (irreducible) Resultant polynomial RESn. Application of Theorem 4.1 now
yields

Theorem 4.5 ([106]) If PR = NPR then there exists a (non-uniform) BSS-algo-
rithm computing for every n ∈ N a non-trivial multiple of RESn in polynomial
time.

Computation of resultant polynomials seems to be a hard task (cf. [18]). Thus
Shub’s idea is to attack the “PR = NPR?” question by proving lower bounds for
the latter problem. The relevance of such lower bounds is also substantiated by the
following result

Theorem 4.6 ([82]) If some problem in DNPR is NPR−complete then there exists
a (non-uniform) BSS-algorithm computing for every n ∈ N a non-trivial multiple of
RESn in polynomial time.

Thus a problem like Linear or Quadratic Programming is hard to solve in the BSS-
odel only if computation of resultants is easy (in the above sense). BSS-algorithms
for solving special subcases of LP problems are investigated in [13].
However the known lower bounds for computation of RESn are far away from being
exponential (which would be necessary to solve the PR = NPR? question in the
negative). This is probably due to the lack of uniform lower bound methods. The
currently best known bound for testing RESn to vanish is of order Ω(n3) ([70]).
Here the problem in exploiting Theorem 4.1 is the ignorance of the multiple. To
circumvent this problem in [70] there is used a special complexity measure for poly-
nomials which is related to its computational complexity and can be transferred
from a multiple of the generating polynomial to this polynomial itself. The idea
behind is that

• for computing a polynomial every appearing variable has to be used at least
once and

• in n steps polynomials of degree 2n can be computed (see above). Thus it
is reasonable to include into the complexity measure a term related to the
logarithm of the degree (this is the approach undertaken by Strassen to prove
his “degree-bound”, cf. [121]. For the resultant polynomials RESn it yields a
lower bound of order n + logn).

Let Vf be the number of variables a polynomial f really depends on and Df the
maximum degree of a single variable in f . Then the above together with Theorem
4.1 gives

Theorem 4.7 ([70])

a) At least Vf + log2(Df ) − 1 many computational steps are necessary for com-
puting a polynomial f from inputs x1, . . . , xn.

b) Testing the resultantRESn to vanish needs at least Ω(n3) computational steps.



128 K. Meer – C. Michaux

Even though we have not yet dealt with computations over the complex numbers
(see section 6) let’s mention one further extremely interesting application of Theorem
4.1 given by Shub and Smale ([110]), which fits into the context.
As seen above the number m := 22n can be computed using log(logm) operations
of the form {+,−, ∗} . In general, this is not true for any natural number ([110]).
Shub and Smale pose the question whether at least for the factorials k!, k ∈ N a
similar statement holds.

Definition 4.8 ([110]) A sequence (ak) ∈ NN is said ultimately easy to compute if
there exist a constant c and non-zero integers mk such that every element of the
sequence (ak ·mk) is computable in at most (log(ak ·mk))

c
many steps starting from

the integer 1 and using operations from {+,−, ∗} . Otherwise it is said ultimately
hard to compute.

Shub and Smale now prove

Theorem 4.9 ([110]) If the sequence (k!), k ∈ N is ultimately hard to compute
then PC 6= NPC over the complex numbers (for exact definition see section 6 below).

The result is interesting due to the fact that it combines a problem from number-
theory with the PC = NPC question. One important step of the proof once more is
Theorem 4.1. By some tricky further arguments it is shown that the test functions
which are performed along the typical path (given by 4.1) in case that PC = NPC
could be used to construct a fast computation of certain multiples of k!.
As a further consequence it is possible to relate the PC = NPC question with the
problem how many integral zeros a polynomial f ∈ Z[t] admits. More explicitly, in
[10] it is shown that in case this number is polynomially bounded in the complexity
of computing f from 1 and t it follows PC 6= NPC.
For a result into the direction of how fast certain integers can be computed see [87]
(also Shallit and Moreira have dealt with this question, cf. [110]).

Let us now turn to the presentation of separation results which have already
been proved in the (full) BSS setting. The well known time hierarchy theorems in
the Turing theory can be transformed in a similar way to our situation. This is done
for deterministic time in [32] and for nondeterministic time in [33]. However, due
to the problems related with a meaningful definition of space (which have already
been mentioned in section 2), there is no comparable hierarchy theorem for space
classes.

Another application of Theorem 4.1 is established in [24] in order to study the
class NCR of problems being decidable in parallel polylogarithmic time using a poly-
nomial number of processors (i.e. BSS-machines). Within the discrete theory the
exact relation between polylogarithmic parallel and polynomial time computations
is still unknown. Cucker considers the problem

FER := {x ∈ R∞| size(x) = n and x2n

1 + x2n

2 = 1}

and shows

Theorem 4.10 ([24]) FER belongs to class PR but is not decidable by a parallel
BSS-machine using an arbitrary number of processors each working within time
logk(n) (k ∈ N arbitrary, fixed).
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The reason why the theorem holds is that - due to Theorem 4.1 - a single processor
would have to compute a polynomial of degree 2n in polylogarithmic time.
Thus over the reals it follows

Theorem 4.11 ([24])
NCR ( PR .

Let us mention that the same result independently has been worked out in [95]. A
closer look to parallel complexity classes over the reals is undertaken in [33], where
different notions of parallel algorithms are studied.

Beside the (somehow artificial) problem FER there are some more natural pro-
blems establishing the above separation, too. In [37] the notion of PR-complete pro-
blems is introduced adapting from classical complexity theory the idea of parallel
polylogarithmic time (PPT) reducibility within class PR. The following completeness
result exhibits a most difficult problem in PR w.r.t. this type of reductions :

Theorem 4.12 ([37]) The problem of deciding whether a given algebraic circuit
yields 1 as result on a given input is PR-complete w.r.t. PPT-reductions.

Together with the above separation result this implies the non-existence of a PPT-
algorithm for the circuit-evaluation problem (as well as for any other PR−complete
one).
By using the fact that (F 4, F 4

zero) is solvable in parallel polynomial time by an
exponential number of processors ([53], [103]), Cucker extends the results as follows :

Proposition 4.13 ([24])

NPR ( EXPR and PARR ( EXPR .

A further result related with real exponential time is given in [85]. It combines the
real complexity of the NP -complete 3-Satisfiability problem with exponential time
classes using methods from the discrete theory (namely “sparseness”).

Proposition 4.14 ([85])

3-Satisfiability 6∈ PR ⇒ NEXPR 6= EXPR .

An analogue of the notion of sparseness, which turned out to be extremely fruitful
in the classical setting, has not been invented so far for continuous spaces. Beside
the previous result another attempt to introduce it is analyzed in [29], but only
for additive machines. There seems to be some further work necessary to settle a
meaningful notion of sparseness for the BSS theory, too.

As we have seen the Knapsack problem can be used to provide some separations
in restricted models. But also in the full setting a generalized version gives fruitful
results : Cucker and Shub [35] investigate the relations between deterministic and
nondeterministic polynomial time if the time resources are restricted to a fixed
polynomial.

Theorem 4.15 ([35]) For every d ∈ N, d ≥ 1 deterministic polynomial time O(nd)
is strictly included in nondeterministic polynomial time O(nd), i.e.

DTIMER(O(nd)) ( NTIMER(O(nd)) .
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The proof applies another lower bound result well known in algebraic complexity
theory, which provides bounds in terms of the number of connected components the
set to be decided has (cf. [5],[120]). Now for each d a generalized Knapsack problem
is constructed whose complement has enough connected components to yield the
claim.

Let us mention that for all above separations (from Theorem 4.10 on) similar
results within the Turing model are not known to be true.

The methods used so far for getting lower bounds on the time complexity of
problems are closely connected with algebraic geometry. In [113] Smale investigates
lower bounds on the number of branches (called topological complexity) necessary
for solving one of the fundamental numerical problems, namely zero-approximation.

Theorem 4.16 ([113]) Let f : C → C be a polynomial of degree d, with leading
coefficient 1. Then it exists a universal constant ε(d) > 0 such that for all 0 < ε <
ε(d) the topological complexity of any BSS-algorithm computing ε−approximations

to all zeros of f is at least (log2(d))
2
3 .

(Even though the claim deals with complex numbers the theorem refers to real
algorithms identifying C with R2).

The proof technique leads into the area of algebraic topology by relating the
topological complexity with the Schwarz-genus of functions and the latter with the
cup-length of certain adjoint cohomology-rings. The result itself is also interesting
with respect to the question why models different to the Turing-machine are neces-
sary to deal with numerical problems from a theoretical point of view (cf. [115]).
Theorem 4.16 has been strengthened by Vassil’ev [127] and extended to multivari-
ate polynomials by Levine [67] and Vassil’ev [127]. Lower bounds on the topological
complexity of other computational problems can be found in [12], [57], [56] and [99].
Finally in the direction P = NP let us mention that Emerson in his paper [39]
proves that some of the theorems proved by Baker, Gill and Solovay about rela-
tivization of the problem P = NP are still true in the BSS-setting :
he shows the existence of oracles A, B and C such that PR

A = NPR
A PR

B 6= NPR
B

and NPR
C 6= co−NPRC.

This result is also part of recursion theory we will discuss in the next section.

5 Recursion theory

A large part of the BSS-paper (sections 7-10) is devoted to the foundations of a
recursion theory over the reals and over arbitrary ordered rings. In this section we
review these foundations and subsequent developments.
Let us recall part of definition 2.3 :
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Definition 5.1 Let A ⊂ R∞ and M be a BSS-machine over R∞ .

a) The output-set of M is the set ΦM (A). The halting-set of M is the set of all
inputs y for which ΦM (y) is defined.

b) The subset A is said decidable if both A and its complement Ac are halting
sets.

Investigations in the world of halting and output sets over the reals are led with
respect to classical results in the world of Turing recursion. So the authors of [12]
tried to show that the main classical results still hold in their recursion theory over
the reals and over an arbitrary ordered ring.
In the sequel all the results listed without references are proved in [12].
The first basic result concerning halting sets is the following :

Theorem 5.2 Any halting set A over R is the countable union of basic semialge-
braic sets.

The proof is easy by tracing through the definitions of a BSS-machine M and of the
running time of M . In fact it shows that for any fixed value of the running time the
set of accepted inputs is a basic semialgebraic set.
The proof also shows that the result is still valid in an arbitrary ordered ring R. For
logicians at least it is convenient to remark that semialgebraic sets overR are exactly
the subsets which are definable over R by first-order formulas without quantifiers in
the natural language for ordered rings :(+, .,−, 0, 1, <).
An immediate consequence is that an halting set over R has at most countably many
connected components (a semialgebraic set over R has a finite number of connected
components). This allows to give examples of halting sets which are undecidable,
independent on the existence of a universal BSS-machine.
For example the Cantor Middle third set is an halting set which is not decidable
(see [12, page 8]). More generally complements of Julia sets are easily shown to be
halting sets over R. But most of them are undecidable over R (see [12, Section 10]).
In the same area we also have to cite Sullivan’s result (unpublished but see [11])
that the Mandelbrot set is undecidable over R (the proof uses theorem 5.2). In [20]
degrees of unsolvability for Julia sets are investigated.
Theorem 5.2 can be made more precise : the countable union has to be effective,
i.e it can be listed by a BSS-machine. This result is valid in any ordered ring. It
implies that the coefficients which appear in the polynomial inequalities defining the
semialgebraic sets lie in a finitely generated subring of the ring R. This and some
easy considerations show that the set Q of rational numbers is a halting set over R
but is undecidable (independently proved by Mansfield [76] and by Mercier [89], see
also[91]).
Any subset S of the natural numbers can be encoded in the digits of the binary
expansion of a real r in the interval [0, 1] : the nth digit of r is 1 or 0 according to
whether n is in S or not. This fact has as immediate consequence that, in the case
of R, the following is true :

Theorem 5.3 ([91]) A countable union of basic semialgebraic subsets of R∞ is a
halting set over R if and only if the set of real coefficients which appear in the defining
inequalities (of the basic semialgebraic sets) lie in a finitely generated subring of R.
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In particular any subset of Z becomes decidable over R, any function from N to N
is computable over R ([23]). In fact the trace on Z of the BSS-computable world
over R is trivial : everything is computable. Let us compare with the fact that
BSS-computable world over Z is the classical one!
In [12], a universal BSS-machine is build over an arbitrary ordered ring R. This
universal machine mimics the behavior of any BSS-machine over R. By diagonal-
isation, this yields an halting set being undecidable. So, just as in the classical
situation, the halting problem for BSS-machines over an ordered ring is undecidable
(by a BSS-machine over R).
In the classical setting this result is the crux to the proof of Gödel Theorem. It
allows to find a subset of N which is definable in Peano Arithmetic (i.e. in the
structure < N,+, . >) but which is Turing undecidable.
In [11], Blum and Smale show that :

Theorem 5.4 Any algebraic number ring R (i.e. a finite algebraic extension of
Z) has a subset which is first-order definable over R (in the natural language for
ordered rings) but BSS-undecidable over R.

Together with some technical results, it gives a Gödel Theorem for these subrings
of R.
Conversely assuming that R is an ordered field of infinite transcendence degree which
is dense in its real closure, they show that all definable (in the sense above) subsets
of R are decidable over R if and only if R is real closed. The proof of this result
is similar to the proof by van den Dries of the converse to Tarski’s Theorem (see
[128]).

A classical result in Turing recursion is that the class of halting sets is equal to
the class of output sets (called here property HO). This is quite trivial. The same
is still true over the reals but, again, this is a consequence of Tarski’s Theorem (see
[12]). Michaux [92] shows that the real closed fields are the only ordered rings of
infinite transcendence degree which are dense in their real closure and verify this
property HO (let us remark that property HO is a priori weaker that the property
“all definable subsets are decidable”). Byerly [17] completes the classification of
subrings of the reals with property HO by determining finitely generated subrings
of the reals which have this property.
Saint Jones in her dissertation [104] pursues the investigation of the relationship
between definability and property HO in subrings of the reals. The results for
subrings of the reals are summarized in the following theorem :

Theorem 5.5 A subring R of the reals has property HO iff one of the following
conditions holds :

• R is a real closed field.

• R is of finite transcendence degree (over Q) and it is a recursive ring relative
to the Dedekind cuts of members of a transcendence base of R over Q.

The classical theorem which states that the class of Turing computable functions
is the class of (partial) functions obtained from the projections, the zero function
and the successor function by applying composition, juxtaposition, primitive recur-
sion and minimalization is still valid in the BSS-setting (see [12]) with some minor
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rearrangements : the basic functions are the polynomial applications (with coeffi-
cients in the rings) and the characteristic function of the ordering (χ(x) = 1, 0,−1
according to x > 0, x = 0 or x < 0 ; primitive recursion and minimalization are on
variables the domain of which is included in Z.
In her thesis Saint Jones proves that analogues of Kleene’s s-m-n Theorem and of
Rice’s Theorem still hold in the BSS-context. She also builds operators similar to
the classical JUMP and studies hierarchies generated by these operators in the case
of the subrings of R.
In this direction of hierarchies we have to mention earlier work by Cucker [23] (see
also [77]); namely he gives a syntactical characterization of the arithmetical hierar-
chy over the reals, in terms of alternations of countable connectives (conjunctions
and disjunctions) applied to multiindexed sets of quantifier-free formulas of the lan-
guage of ordered rings. He also describes complete problems for each level of the
hierarchy.
Let us end this section by mentioning several other papers. In [32] a subclass of
the class of decidable sets over the reals is defined and investigated : the class TB
of subsets of R∞ accepted by BSS-machines whose running time is a well defined
function in the input size. Closedness of the class TB is shown under topological
operators; a precision to Theorem 5.3 is brought for sets in the class TB; time hier-
archies are introduced inside the class.
In [130] a relation between computability in the BSS-model and a notion of com-
putability in category theory is shown.
In [12] [section 9] there is an attempt to give a pseudo-diophantine characterization
of recursively enumerable sets over the reals. Open questions related to this are
solved in [112].
Recently Gakwaya in [45] extended Grzegorczyk Hierarchy from the classical setting
to the BSS model.

We will come back to recursion in the case of BSS-theory of computation over a
general structure (next section).

There is a different approach to equip the reals with a recursive structure which
leads into the so-called area of recursive analysis. It is based on the representation
of real numbers as limits of infinite sequences of bits. We just refer to [61],[132] and
the literature cited there.

6 General structures

It should be clear that the questions treated so far not at all are necessarily restricted
to the real numbers as a field. In paragraph 3 we have already seen that changing
the model - by restricting the kind of operations - can be fruitful. In this section we
want to outline results for more general approaches, namely considering arbitrary
domains.
Obviously, as soon as we define on any domain a set of allowed operations as well as
a size- and cost-measure, complexity issues can be dealt with. (Notions of paragraph
2 transform in a straightforward manner; any element of the domain is considered
as entity). This was already done in [12] for the complex numbers and for arbitrary
ordered rings. In fact, the proof of Theorem 2.9 also establishes the central meaning
of Hilbert-Nullstellensatz over C or any other algebraically closed field.
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Theorem 6.1 Over the complex numbers the ”Effective Hilbert-Nullstellensatz”
is NPC-complete :

(EHN) :
given f1, . . . , fs ∈ C[z1, . . . , zn] deg(fi) ≤ 2

does there exist a joint zero of all fi ?

The same holds true for any other algebraically closed field.

Note that because of the lack of an ordering the allowed test instructions over C are
of form : is z = 0?

Remark 6.2
1) It’s well known that in (EHN) no common zero exists iff there is a decomposition
1 =

∑
fi · gi gi ∈ C[z1, . . . , zn] . This is interesting w.r.t. the question how to verify,

whether fi = 0, 1 ≤ i ≤ n is not solvable, i.e. whether the classes co − NPC and
NPC coincide or not. However, a result by Brownawell ([14], see also [52], [114])
says that in general the gi can have an exponential degree, thus just guessing the
gi and checking the above identity won’t proof (EHN) to belong to co−NPC. The
relation between classes NPC and co−NPC is still open (similar as over the reals).
2) In the very interesting paper [65] Koiran shows that the Hilbert-Nullstellensatz
problem, when restricted to integer coefficients, belongs to the second level of the
polynomial hierarchy within the Turing model (assuming the Generalized Riemann
Hypothesis to hold true). There he also relates the (still open) question, whether
this problem belongs to NP over the integers with the already mentioned notion of
ultimately hard computable sequences (cf. Theorem 4.9).

An extremely interesting connection among algebraically closed fields with re-
spect to P 6= NP? question is given in [10]. Here it is shown that there basically is
only one P 6= NP? problem for all these fields. The main step in the proof is the
following transfer theorem about “elimination of constants”:

Theorem 6.3 ([10]) Let (Y, Y0) be a decision problem solved by a BSS-machine M
over C. Let (YQ̄, Y0Q̄) be its restriction to Q̄, the algebraic closure of Q in C (i.e.
YQ̄ := Y ∩ Q̄∞ and Y0Q̄ := Y0 ∩ Q̄∞). Then there exist a constant c ∈ N as well as a
BSS-machine M ′ over Q̄ solving (YQ̄, Y0Q̄) such that the running time TM ′(y) of M ′

for all y ∈ YQ̄ is bounded from above by TM(y)c .

This result allows to conclude P = NP over Q̄ if P = NP over C. Together with the
inverse implication, which was shown in [94] by model-theoretic means, this results
in

Theorem 6.4 ([10], [94]) Let K ⊂ L be algebraically closed fields. Then

P = NP over K ⇔ P = NP over L.

A different proof of this theorem later on was given in [66]. Note that the above
transfer principle can also be applied to show the existence of non-complete problems
in NPC \ PC, if PC 6= NPC is assumed ([74]).

We have mentioned above a few P 6= NP theorems for restricted BSS-models.
There are further results of that type for some different kind of structures and size-
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resp. cost-measures. We refer to [13], [81], [106], [107].
More general completeness results - namely for structures of finite type - have been
studied independently in [48], [55] and [86]. The assumption of finite type structures
ensures the existence of complete problems. The flavor of the established complete
problems is that of a generalized satisfiability problem.

In the remaining of this section we will discuss these generalizations.

Definition 6.5 A structure is a set R equipped with a set of operations, a set of
relations and a set of constants. We say that such a structure is of finite type if the
set of operations and the set of relations are finite.

An example is the set of real numbers equipped with rings operations, the relation
of order and constants 0 and 1. On a structure of finite type we can define BSS-
machine where the basic computation instructions are given by the operations and
the branching instructions are ruled by the set of relations; moreover one can extend
all the definitions of subsection 2.1. BSS-recursion theory for structures of finite
type is introduced in [48], but the first aim of that paper is to discuss a general
“P = NP?” problem. There it is shown that the natural NP-complete problem
over such a structure A is the satisfiability problem for circuits with parameters in
A. This problem is undecidable in general; it is proved in [48] that :

Theorem 6.6 NP-problems over a structure A are decidable (in the sense of BSS-
computability over A) if and only if the structure admits effective quantifier elimi-
nation for first- order formulae in the natural language of the structure.

In fact it is shown that P = NP over A is true iff A admits a polynomial time BSS-
algorithm which performs elimination of one block of existential quantifiers (see also
[81] where trigonometric functions are added to the reals, [6] which deals with the
case of BSS-theory over p-adic fields). The class DNP is also defined in this broad
context. All these results are fully discussed in Poizat’s book [100]. One namely
finds :

Theorem 6.7 Call structure M “standard” if it satisfies the following conditions
(cf. definition 3.2) :

• BP (PM ) = P

• NPM = DNPM

• there exists a boolean problem which is NPM -complete.

Then in a standard structure the question PM = NPM is equivalent to the classical
question P = NP .

In this context Portier [101] extends a structural criterion (first proved in [1] for
the classical case) to decide whether a problem is NP -complete.

In the same model-theoretic flavor a result by Michaux [94] shows that the equal-
ity P = NP is preserved by elementary extensions. The idea of relating complexity
issues in a structure with those in an elementary extension is already present in [40]
and [71].
Issues in recursion theory over structures of finite type are covered by Friedman and
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Mansfield in [44]: semi-algebraic characterization of halting sets, existence of a uni-
versal machine and of pairing systems,. . . In [2] and [4] general BSS recursion theory
is also developed (s-m-n theorem is proved in full generality) but the presentation
differs from [44] and [48]. In [4] the arithmetical hierarchy is investigated for general
structures of finite type : this hierarchy splits into two hierarchies, one based on
the halting sets, the other over the output sets5. Hemmerling (in [55]) also looks to
general BSS-recursion for structures of finite type and reproved results with great
care.
Equivalence between computability of complex functions and decidability of their
graphs is shown in [19] (note that this result is trivial in the classical case and fails
over the reals because taking the square root is not computable here). In [104]
BSS-theory over the reals is discussed in relation with the Baire class 1 functions.

An interesting generalization of BSS-machines is given by Hotz, Vierke and Schi-
effer. Here analytic functions are included by allowing to take limits. Even though
the addition of such operations may destroy decidability properties (because of the
lack of quantifier elimination), interesting other features appear. One example are
the relations of such machines with stability questions of dynamical systems. For
this approach consider [58]. In the same spirit the work of Moore considers a notion
of recursiveness over R using a “continuous state” model of computation by allow-
ing integration. Instead of the unbounded minimization used in classical recursion
theory Moore admits a zero-finding operator. This implies the presence of different
properties with respect to the BSS model in that for example the exponentiation is
easily definable. We recommend the reader to take a look into [96].

7 Descriptive complexity theory

We have seen in the last section that model theoretic aspects come into play very
naturally by analyzing different operations or structures. However model theory is
related to complexity theory also from a very different point of view, namely that
of “descriptive complexity theory”. This branch of model theory considers the logi-
cal complexity of defining a property and combines computational complexity with
logical definability. It thus provides a machine-independent approach to complexity
issues.
For the Turing-model this direction was taken up in the 70th by Fagin’s character-
ization of NP as follows : a class L of finite structures is in NP iff there exists an
existential second-order sentence Ψ such that L is precisely the class of finite models
for Ψ (see [42], and [51] for a survey on this field). In [49] so called R-structures are
introduced which allow to built up the basic ingredients for a logical approach to
complexity in the BSS-model. Let’s consider the following example, which provides
a “logical description” of the fact that (F 4, F 4

zero) belongs to NPR.

Example 7.1 Let f be a real polynomial of degree four in n unknowns (n ∈ N).
Consider the discrete set A := {0, 1, . . . , n} (A builts up the “universe” of the R-
structure to be defined) as well as the following functions :

• the unary predaccessor function pred : A→ A, defined by

pred(i) := i− 1, pred(0) := 0

5See also [104] which deals with these hierarchies in the case of the subrings of the reals.
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• the constant nullary functions o and end, defined by

o() := 0 ∈ A and end() := n ∈ A

• a function C : A4 → R which naturally defines a homogeneous degree four
polynomial in R[x0, x1, . . . , xn], namely

g =
∑
i,j,k,l

C(i, j, k, l) · xi · xj · xk · xl

The arbitrary polynomial f can be obtained by setting x0 = 1 in the appro-
priate polynomial g.

The above is a typical example of an R-structure. It consists of

• the primary partA : a (for our purposes) generally ordered universe A together
with a finite set Ψa of functions and relations on it (this means that the primary
part is a “finite structure”, cf. [51])

• the secondary part R : the set R of real numbers together with its basic
arithmetic operations (R,+,−, ∗, :,≤, (cr)r∈R) (where every element r ∈ R is
assumed to be named by a constant cr)

• a finite set W of functions Ψw : Ak → R

The triple D := (A,R,W) is called an R-structure of vocabulary (Ψa,Ψw). The
interpretation of the relations and functions generally varies with the universe A
(which makes it possible to relate decision problems with R-structures). The basic
feature of such R-structures is given by the possibility to strictly separate the
“discrete” part of BSS-machines (like indices of tuples, time, indices of registers and
the finite control of a machine) from its real-arithmetic part (as machine-constants,
computation).

Now in order to deal with complexity issues different logics on R-structures
are considered in [49]. These logics again strongly reflect the above mentioned
distinction of discrete and continuous aspects.

Example 7.1 (continued) We again consider the description of a degree four poly-
nomial f given as a R-structure D. Those polynomials belonging to F 4

zero can be
characterized by the following sentence :

Ψ : (∃X : A→ R)(∃Y : A4 → R) (X(0) = 1 ∧ Y (0) = C(0)∧

Y (n) = 0 ∧ ∀ u ∈ A4(u 6= 0→ Y (u) = Y (pred∗(u)) + C(u)
4∏
i=1

X(ui))
)
.

Here the function X represents a zero of f ;Y sums up the values of all monomials
of f when X is plugged in. The function pred∗ : A4 → A4 defines the predecessor of
any 4-tuple in A if the ordering on A is extended in an obvious way (i.e. lexicograph-
ically) to A4. It can be easily seen that such an extension on Ak is FO-definable for
any arity k. Obviously the R-structure D satisfies Ψ if and only if f ∈ F 4

zero.
The example includes the basic ingredients which built up first and second order

sentences over R-structures : In order to maintain the difference of discrete and
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continuous aspects, first order logics allows all real arithmetic operations included
in the second part of the R-structure, but quantifying only variables taking values
in the first part. Similarly, second-order logic quantifies functions and relations
within the universe as well as from the universe into R (but not functions over real
variables).
In fact this is the right model theoretic approach to capture real complexity classes.
The given example is just a special case of the following

Theorem 7.2 ([49]) Let (F, Fyes) be a decision problem of R-structures. Then
(F, Fyes) ∈ NPR iff there exists an existential second-order structure Ψ such that
Fyes is the set of all models D for Ψ.

Beside the above theorem further characterizations can be obtained. Hence
for example the class PR can be captured by introducing a fixed-point logic on
R-structures. Also stronger completeness results for classes NPR and PR can be
established by consideration of so called first-order reductions. Another interesting
remark refers to the meaning of space resources : even though Michaux showed
the use of space alone does not provide reasonable complexity classes over R, it
turnes out that space- and time-restrictions together capture important classes. For
example polynomial time together with constant space is captured by a special class
of functions overR-structures, which in the according discrete setting exactly defines
logspace computations. Thus descriptive complexity theory can be used to define
analogues of (at least some) space-classes also in the BSS-approach. For more details
see [49]. Some further real complexity classes are dealt with under the above point
of view in [31].

8 Concluding remarks

In this final section we want to stress on directions which are already outlined in
[12] but have not been mentioned so far.
In order to use the above theory also for a structural analyzation of numerical algo-
rithms, ideas like round-off errors and approximate solutions should be incorporated.
Similarly, probabilistic features could be considered by taking into account either
input spaces equipped with a probability measure or probabilistic BSS-machines.
Steps into the latter direction are worked out in [34] and [27]. Real analogues of well
known discrete probabilistic complexity classes are introduced. In [34] this is done
by changing the accepting conditions of a nondeterministic BSS-machine according
to a probability measure on the space of guesses. Some very interesting results are
proved in [27] (see also [62]). Here real analogues of the classes ZPP,R, PP and
BPP are defined over DNPR (i.e. the guessing space is reduced to {0, 1}∗ and
equipped with a finite distribution for every dimension n.) In this framework the
inclusions

ZPPR ⊂ RR ⊂ DNPR ⊂ PPR ⊂ PARR

hold. Furthermore the authors show

PR = BPPR
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i.e. randomization with bounded probability error doesn’t increase the power of
polynomial time decision machines. The proof relies on a simulation result of prob-
abilistic circuits by deterministic ones heavily using the ability to code an arbitrary
subset of integers as a single real. Also lower bounds on the sizes of such simulating
circuits are given. Finally for equational probabilistic machines the boolean parts
of all above mentioned classes capture their discrete counterparts.

Often decision problems are also closely connected to search problems. That
is beside deciding a problem one is also interested in finding a solution. However,
since solutions cannot be expected to be computable in general one is forced to study
approximate algorithms. As a typical example zeros of polynomials in general are
not given as rational functions of the coefficients (see [108]).
A formal notion of real algorithms solving problems approximately is given in [12]
and [114]. Then naturally also terms like conditioning come into play. This leads
directly into the scope of numerical analysis. We thus only cite very briefly some
work connected with the BSS model. Of course classical problems and algorithms
in the field of numerical analysis can be revisited in that context.
For the problem of computing polynomial zeros within a certain accuracy the above
ideas are worked out by Shub and Smale in a series of papers (up to now five,
see [109] for the first of it and also [106]). Regarding polynomial systems over C
generically having roots they perform an extensive analysis on the real complexity
of following a homotopy by a (projective) Newton method. This analysis includes
dependency on the approximation rate, the conditioning of the system as well as
probabilistic results.
Lower bounds on the zero-approximation problem have already been mentioned in
section 4.
Incorporation of round-off errors for Newton’s method using the BSS model was also
studied. Because these topics leave the scope of our paper we just refer to [73] (see
also [75] for a general discussion). The same holds true for the important problem of
practically implementable algorithms solving polynomial equations. We once again
refer to [105].

We have tried to present the main research streams which appeared so far in
the area of real structural complexity theory. Depending on the questions one is en-
gaged in this leads to problems in many different disciplines - one of the especially
interesting features of the BSS-theory.
Let’s close with the following list of papers which also provide introductory exposi-
tions and remarks concerning real complexity theory : [7], [25], [63], [80], [84], [93],
[97], [98], [107], [108], [114], [115], [123].

A current bibliography is collected in [55]. Finally we want again to stress on
the forthcoming book by Blum, Cucker, Shub, and Smale [8], which will give an
extensive treatment of the area. Its first chapter provides an introduction into the
ideas of real number complexity theory and already appeared separately ([9]).
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und Universität Tübingen, Habilitationsschrift (1990).

[69] T. Lickteig, Semi-algebraic Decision Complexity, the Real Spectrum and De-
gree, Journal of pure and applied algebra 110, 2 (1996) 131–184.

[70] T. Lickteig, K. Meer, A note on testing the resultant, Journal of Complexity
11, 3 (1995) 344–351.

[71] W. Maass, On the use of inaccessible numbers and order indiscernibles in
lower bound arguments for random access machines, Jour. of Symb. Logic 53,
4 (1988) 1098–1109.

[72] W. Maass, Computing on Analog Neural Nets with Arbitrary Real
Weights, in : Theoretical Advances in Neural Computation and Learning,
V.P.Roychowdhury, K.Y.Siu, A.Orlitsky, editors, Kluwer Academic Publishers
(Boston) (1994) 153–172.

[73] G. Malajovich, On generalized Newton algorithms : quadratic convergence,
path-following and error analysis, Theoretical Computer Science 133 (1994)
65–84.

[74] G. Malajovich, K. Meer, On the structure of NPC, to appear in: SIAM Journal
on Computing.

[75] R. Mansfield, A complete axiomatization of computer arithmetic, Math.
Comp. 42 (1984) 623–635.

[76] R. Mansfield, The irrationals are not recursively enumerable, Proc. Amer.
Math. Soc. 110 (1990) 495–497.

[77] A.R. Mathias, Comparison of the projective and non-deterministic hierarchies,
preprint (1994).

[78] K. Meer, Computations over Z and R : a comparison, Journal of Complexity
6 (1990) 256–263.

[79] K. Meer, A note on a P 6= NP− result for a restricted class of real machines,
Journal of Complexity 8 (1991) 451–453.



A survey on real structural complexity theory 145
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