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Abstract

There are a number of important substructures associated with sets of
points of antiregular quadrangles. Inspired by a construction of P. Wild, we
associate with any four distinct collinear points p, q, r and s of an antiregular
quadrangle an incidence structure which is the union of the two biaffine planes
associated with {p, r} and {q, s}. We investigate when this incidence structure
is a semi-biplane.

1 Introduction

The definitions of both semi-biplanes and antiregular generalized quadrangles in-
volve 0-2 conditions. That this is more than just a coincidence is shown in [4], where
we investigate a first construction of semi-biplanes from anti-regular quadrangles.

It turns out that associated with any pair of non-collinear points in an antiregular
generalized quadrangle is an incidence structure which is the union of semi-biplanes.
All these semi-biplanes look very much like homology semi-biplanes, that is, projec-
tive planes that have been folded up using a homology involution. In [6] we prove
that in the classical case and the topological case the resulting semi-biplanes are all
homology semi-biplanes.

The definition of the semi-biplane associated with two non-collinear points still
makes sense if we use a pair of collinear points instead. The resulting incidence
structure is a biaffine plane, that is, a projective plane minus an incident point-line
pair.
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The next step, which we are concentrating on in this paper, is to split up the
pair of collinear points into two pairs of collinear points. The resulting incidence
structure is, of course, the union of two biaffine planes, but not only that. In many
instances it turns out that in this incidence structure the two biaffine planes are
meshed together in just the right way to form a new kind of semi-biplane.

The paper is organized as follows. Section 2 gives a brief introduction to gen-
eralized quadrangles and the notation and conventions that we will be using in the
following. In Section 3 we give an overview over the different kinds of incidence
structures associated with sets of points of an antiregular generalized quadrangle.
In Section 4 we define an incidence structure associated with four collinear points
and give necessary and sufficient conditions for this incidence structure to be a semi-
biplane, a divisible semi-biplanes or not a semi-biplane at all. In Sections 5 and 6
we apply the results of the previous section in a detailed discussion of the classical
and the topolocial case, respectively.

2 Generalized quadrangles

We begin by reviewing some well-known facts about the incidence structures we will
be dealing with. For proofs and more details the reader is referred to [2], [4] and [9].

The incidence structures we are interested in are of the form I = (V1,V2, I). The
elements of V1 are always called points . The elements of V2 are called lines if I is a
generalized quadrangle, a biaffine, affine or projective plane. They are called circles
if I is a Laguerre plane and blocks if I is a semi-biplane. The relation I specifies
when a point and an element of V2 are incident. As usual, we will often consider
a point as the set of elements in V2 incident with it and an element of V2 as the
set of points incident with it. Let {i, j} = {1, 2}. Two elements x and y of Vi are
called parallel if x = y or if there is no element of Vj incident with both x and y.
If one of the two parallelisms is an equivalence relation, then its equivalence classes
are called parallel classes. The incidence structure I is divisible if parallelism is an
equivalence relation of both V1 and V2. A pair (v, w) ∈ V1 × V2 is called a flag, if v
is incident with w, that is, if v I w. The set of flags is denoted F . An element of
V1 × V2 \ F is called an anti-flag.

A generalized quadrangle is an incidence structure GQ = (P ,L, I) with point set
P and line set L satisfying the following axioms:

(Q1) Any two distinct points have at most one joining line.

(Q2) For every anti-flag (p, k) ∈ P ×L \ F there exists exactly one flag (q, l) ∈ F
such that (p, l) ∈ F and (q, k) ∈ F .

(Q3) Every point is incident with at least three lines, and every line is incident
with at least three points.

One of the classical examples of a generalized quadrangle is constructed as fol-
lows: Let Q be a non-singular quadric of projective index 1 in PG(4,K), where
K is a field. If P and L are the sets points and lines of Q, respectively, then
Q(4,K) := (P ,L,∈) is a generalized quadrangle (cf. [2]).
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Axiom Q2 yields two mappings π : P × L \ F → P and λ : P × L \ F → L
with π(p, k) = q and λ(p, k) = l. Two points p and q are said to be collinear ,
denoted p ∼ q, if they can be joined by a line. For two distinct collinear points p
and q the unique joining line is denoted p∨q. The set of points collinear with a given
point p is denoted p⊥. For three points p, q and r the intersection p⊥ ∩ q⊥ ∩ r⊥ is
called the centre of p, q and r. A generalized quadrangle where no centre is empty is
called a centric generalized quadrangle. A set of three pairwise non-collinear points
is called a triad. If (p, l) ∈ F , let lp be the punctured line l \{p}. The set of all lines
through p that have all been punctured in p is denoted ||p.

In this note we will be dealing exclusively with antiregular quadrangles, that is,
generalized quadrangles in which the centre of every triad of points contains either
0 or 2 points. A classical example of an antiregular quadrangle is the generalized
quadrangle Q(4,K), where K is a field not of characteristic 2.

3 Some substructures of antiregular quadrangles

A multitude of other important incidence structures, such as circle planes, projec-
tive planes, biaffine planes and semi-biplanes, occur as subgeometries of generalized
quadrangles. Generalized quadrangles can therefore be regarded as especially tightly
packed bundles of such geometries. This is one of the most attractive features of
generalized quadrangles. It gives rise to many characterizations of the different kinds
of generalized quadrangles in terms of special properties of these subgeometries. See
[2], [7] and [8] for examples of such characterizations. Our main aim is to describe
and investigate a new way in which semi-biplanes, which are defined below, are
embedded as subgeometries in antiregular quadrangles.

We start with a description of the known subgeometries of an antiregular quad-
rangle GQ = (P ,L, I) associated with points.

Let p ∈ P and let

GQp := (Pp,Lp,∼) := (p⊥ \ {p},P \ p⊥,∼).

Parallelism is an equivalence relation on the point set Pp with the elements of ||p as
parallel classes. The incidence structure GQp, called the derivation of GQ at p, is
a Laguerre plane (cf. [9, 3.1]), and as such satisfies the following axioms:

(L1) Three pairwise non-parallel points are contained in a unique circle (remember
that in the Laguerre plane setting elements of Lp are usually referred to as
circles rather than lines).

(L2) Given a circle c, and two point p and q, such that p ∈ c and q is not parallel
to p, then there is a unique circle that contains both points and touches c
at p, that is, coincides with c or intersects c only in p.

(L3) Given a circle c and a point p there is precisely one point parallel to p and
contained in c.

(L4) There is a circle with at least three points and not all points are on the same
circle.
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We remark that for finite Laguerre planes of odd order and for locally com-
pact finite-dimensional connected Laguerre planes this construction can be reversed
(cf. [9]). For general information on Laguerre planes we refer to [1] and [10].

The Laguerre plane GQp is a substructure of GQ in a broader sense since Lp 6⊂ L
and incidence in GQp is only indirectly inherited from incidence in GQ. In the case
of GQ = Q(4,K), where K is a field not of characteristic 2, the Laguerre plane GQp

is isomorphic to the geometry of plane sections of a quadratic cone with its vertex v
removed in PG(3,K). The parallel classes of points are the projective lines through
v contained in the cone that have all been punctured in the point p. The four axioms
are easily checked in this case. We note that even if K is of characteristic 2, such a
geometry of plane sections in PG(3,K) is a Laguerre plane, although Q(4,K) is no
longer an antiregular quadrangle.

Let p, q ∈ P be distinct and let

GQp,q := (Pp,q,Lp,q,∼) :=
(
p⊥ \ (p⊥ ∩ q⊥), q⊥ \ (p⊥ ∩ q⊥),∼

)
.

Let p and q be collinear points with connecting line l. Then p⊥ ∩ q⊥ is the
connecting line of the two points and GQp,q is a biaffine plane, that is, a projective
plane with one incident point-line pair removed, or equivalently, an affine plane with
one parallel class of lines removed (this parallel class of lines is the set of parallel
classes of points in the biaffine plane). As a subgeometry of the Laguerre plane
GQp, this affine plane is usually referred to as the derived affine plane of GQp at
the point q. If GQ = Q(4,K), this affine plane is isomorphic to the Desarguesian
affine plane over K. Of course, the biaffine plane GQp,q is divisible with the elements
of ||p \ {lp} being the parallel classes of Pp,q and the elements of ||q \ {lq} being the
parallel classes of Lp,q.

Let p and q be non-collinear points. It has been noticed only recently (cf. [4]
and [6]) that in this case GQp,q is the union of semi-biplanes. See also [3] and [5]
for plane models of such semi-biplanes.

A semi-biplane S = (P ,B) is an incidence structure satisfying the following
axioms:

(S1) Any two distinct points are incident with 0 or 2 blocks.

(S2) Any two distinct blocks are incident with 0 or 2 points.

(S3) The incidence graph of S is connected.

(S4) Every point is incident with at least three blocks and every block is incident
with at least three points.

In the following we describe a second way in which semi-biplanes occur as sub-
structures of antiregular quadrangles.

4 Semi-biplanes associated with four collinear points

Let p, q, r and s be distinct collinear points of GQ with connecting line l and let
P lp := p⊥ \ l. Furthermore, let

GQp,q,r,s := (Pp,q,r,s,Lp,q,r,s,∼) := (P lp ∪ P lq,P lr ∪ P ls,∼).
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We are going to show that in many antiregular quadrangles the four points can be
chosen such that GQp,q,r,s is a semi-biplane. This construction of semi-biplanes was
inspired by one of P. Wild’s constructions (cf. [11], [12] and [13]). The odd order
part of his main result [13, Theorem 11], interpreted in the quadrangle setting, is
Corollary 5.3 below.

Notice that for x ∈ {p, q} and y ∈ {r, s} the biaffine plane GQx,y = (P lx,P ly,∼)
is a subgeometry of GQp,q,r,s. Given x ∈ {p, q}, the point sets of GQx,r and GQx,s

coincide and points are parallel in GQx,r if and only if they are parallel in GQx,s.
The dual statement is true for lines. Notice also that the four sets P lp, P lq, P lr and
P ls are mutually disjoint. This means that GQp,q,r,s is the ‘disjoint union’ of the two
biaffine planes GQv,w and GQx,y whenever {v, x} = {p, q} and {w, y} = {r, s} and
that it can be represented as such a union in two different ways. This observation
suggests to call a semi-biplane isomorphic to some GQp,q,r,s a split semi-biplane.

Theorem 4.1 Let GQ be an antiregular quadrangle and let p, q, r and s be four
distinct collinear points with connecting line l. Then GQp,q,r,s is a semi-biplane if
and only if the following two conditions are satisfied.

(C1) If x ∈ P lp and y ∈ P lq are such that x and y are not collinear as points of
GQ, then |x⊥ ∩ y⊥ ∩ r⊥|+ |x⊥ ∩ y⊥ ∩ s⊥| ≤ 2.

(C2) If x ∈ P lr and y ∈ P ls are such that x and y are not collinear as points of
GQ, then |x⊥ ∩ y⊥ ∩ p⊥|+ |x⊥ ∩ y⊥ ∩ q⊥| ≤ 2.

Proof. We first consider Axiom S1, that is, we have to show that any two points
can be joined by exactly two or by no blocks. Let x, y ∈ Pp,q,r,s be distinct points.
We distinguish four cases.

Let x, y ∈ P lp. Then the number of blocks containing the two points equals the
sum of the number of lines in the biaffine plane GQp,r and the number of lines in
the biaffine plane GQp,s connecting the two points. From the remark preceding the
theorem it follows that these two numbers are either both equal to 0 or both equal
to 1. Hence the number of blocks containing both points is either 0 or 2.

If both points are contained in P lq, a similar argument yields the same conclusion.
Let x ∈ P lp and y ∈ P lq. Assume that x and y are collinear points in GQ and

that k is the connecting line. Then k does not intersect l. By Axiom Q2, there is
exactly one element of P lr contained in k. This element is distinct from x and y
and is the only element in this set collinear with both x and y. Similarly, there is
exactly one element in P ls collinear with both points. This gives a total of 2 blocks
containing the two points.

Let x ∈ P lp and y ∈ P lq. Assume that x and y are points in GQ that are not
collinear. Then both {x, y, r} and {x, y, s} are triads. Hence, by antiregularity,
their centres contain either 0 or 2 points, which means that the sum |x⊥∩y⊥∩ r⊥|+
|x⊥∩y⊥∩s⊥| is equal to 0, 2 or 4. Thus Axiom S1 is satisfied if and only if Condition
C1 holds. Note that Condition C1 was only needed in this last case. With almost
the same arguments one verifies that Axiom S2, which is the dual of Axiom S1, is
satisfied if and only if Condition C2 holds.

The biaffine planes GQx,y, x ∈ {p, q}, y ∈ {r, s} are subgeometries of GQp,q,r,s.
The incidence graphs of biaffine planes are automatically connected. This means
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that in the incidence graph of GQp,q,r,s every element of Pp,q,r,s is connected with
every element of Lp,q,r,s. We conclude that axiom S3 is satisfied.

Every point of a biaffine plane is contained in at least two lines. This means
that every point in GQp,q,r,s is contained in at least 4 blocks. Similarly, every block
in GQp,q,r,s contains at least 4 points, which shows that Axiom S4 is satisfied. We
conclude that GQp,q,r,s is a semi-biplane if and only if the two conditions in the
theorem are satisfied. �

Notice that the sums in Conditions C1 and C2 give an idea of how closely the two
biaffine plane GQp,r and GQq,s are meshed together to form the incidence structure
GQp,q,r,s. As we just pointed out in the proof, the possible values for all the sums
are 0, 2 and 4. We call GQp,q,r,s k-mixed , k ∈ {0, 2, 4}, if all the sums in the theorem
are equal to k. It seems natural to pay special attention to these three special kinds
of incidence structures.

Theorem 4.2 Let GQ be an antiregular quadrangle and let p, q, r and s be four
distinct collinear points with connecting line l.

The incidence structure GQp,q,r,s is never 0-mixed.
The incidence structure GQp,q,r,s is 2-mixed if and only if it is a divisible semi-

biplane. If it is a divisible semi-biplane, then the set of parallel classes of points is
(||p ∪ ||q) \ {lp, lq} and the set of parallel classes of blocks is (||r ∪ ||s) \ {lr, ls}.

If GQp,q,r,s is 4-mixed, then it is not a semi-biplane.

Proof. We show that GQp,q,r,s is never 0-mixed. Let u ∈ P lr, and let m and n be
distinct lines through u that do not intersect l. Set x = π(p,m) and y = π(q, n).
Then x and y are not collinear, x ∈ P lp and y ∈ P lq. Furthermore, the point u is
contained in x⊥ ∩ y⊥ ∩ r⊥. Hence GQp,q,r,s is not 0-mixed.

Let x ∈ P lp and y ∈ P lq. Suppose GQp,q,r,s is a semi-biplane. If x and y are
collinear in GQ, then x is not parallel to y. If x and y are not collinear in GQ,
then x is parallel to y if and only if |x⊥ ∩ y⊥ ∩ r⊥| + |x⊥ ∩ y⊥ ∩ s⊥| = 0. Let z
denote the unique point on the line q ∨ y collinear with x. Then z ∈ P lq and z
is parallel to y but not parallel to x. Thus, if there are points x and y such that
|x⊥ ∩ y⊥ ∩ r⊥| + |x⊥ ∩ y⊥ ∩ s⊥| = 0, then GQp,q,r,s is not divisible. Conversely, if
|x⊥ ∩ y⊥ ∩ r⊥| + |x⊥ ∩ y⊥ ∩ s⊥| = 2 for all possible x and y, then no point in P lp
is parallel to a point in P lq. But then the punctured lines through p or q are the
parallel classes of points in GQp,q,r,s. The dual arguments work for blocks.

The last part is an immediate consequence of Theorem 4.1. �

The following result shows that some antiregular quadrangles do not contain the
kind of semi-biplanes under discussion.

Corollary 4.3 Let GQ be a centric antiregular quadrangle and let p, q, r and s be
four distinct collinear points with connecting line l. Then GQp,q,r,s is 4-mixed and
therefore not a semi-biplane.

Proof. Let x ∈ P lp and y ∈ P lq such that x is not collinear with y. Then both
{x, y, r} and {x, y, s} are triads. Therefore, the centres of both triads contain two
points each and |x⊥ ∩ y⊥ ∩ r⊥|+ |x⊥ ∩ y⊥ ∩ s⊥| = 4. By Theorem 4.1, the derived
structure GQp,q,r,s is not a semi-biplane. �
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The antiregular quadrangle Q(4,C) is an example of a centric antiregular quad-
rangle. In fact Q(4,K), with K a field not of characteristic 2, is centric if and only
if K is a quadratically closed field. We will see later on that all semi-biplanes of the
form GQp,q,r,s in GQ = Q(4,R) are 2-mixed.

Next we consider a special situation which we will come across frequently in the
following. Let x and y be two non-collinear points and let l be a line that is not
incident with any point of x⊥ ∩ y⊥. In particular, this implies that neither x nor y is
incident with l. The square-projection µx,y,l : x⊥ ∩ y⊥ → l : t 7→ π(t, l) is one of the
most important tools in the study of antiregular quadrangles (cf. [4] and [9]). A pair
{p, q} of collinear points with joining line l is called splitting if l\{p, q} is the disjoint
union of two sets A and B such that for all x ∈ P lp, y ∈ P lq, with x � y, the image
of the square-projection µx,y,l is either A ∪ {p, q} or B ∪ {p, q}. This means that if
A ∪ {p, q} is the image, then the preimage of every point in A contains two points,
the preimages of p and q contain one point each and the preimage of every point in
B is empty. If {p, q} is a splitting pair, then A and B are called the components of
{p, q}. If only one of the components occurs in the image for all possible choices of
x and y, then we call {p, q} one-sided .

The first part of the following theorem shows that one of the components of a
one-sided splitting pair is necessarily empty, that is, the whole of l is the image of all
square-projection under consideration. For example, if GQ is a centric antiregular
quadrangle, then all relevant pairs {p, q} are one-sided splitting with A = l \ {p, q}
and B = ∅. We call {p, q} two-sided if both A and B are non-empty. Let {p, q}
and {r, s} be two splitting pairs of points such that all four points are contained in
the same line l. We say that the two pairs are intertwined if p and q are contained
in different components of {r, s} and r and s are contained in different components
of {p, q}. As we shall see later, in an ‘ideal world’ like Q(4,R) all pairs of collinear
points are two-sided splitting and, given four distinct collinear points, they can be
divided up into two intertwined pairs. In a situation like this the following result
applies.

Theorem 4.4 Let GQ be an antiregular quadrangle and let p, q, r and s be four
distinct collinear points with connecting line l.

Let {p, q} be a one-sided splitting pair. Then one of its components is l \ {p, q}
and the other component is empty.

Let both {p, q} and {r, s} be two-sided splitting pairs. Then GQp,q,r,s is a semi-
biplane if and only if the two pairs are intertwined. If GQp,q,r,s is a semi-biplane,
then it is divisible, or equivalently, 2-mixed.

Proof. Let {p, q} be a one-sided splitting pair and letA and B be its two components.
Let A be in the image of any of the relevant square-projections. Assume that B is
non-empty and t ∈ B. Let u ∈ P lt, let m be a line distinct from l through p and let n
be a line distinct from l through q. Neither of the two lines contains u. If λ(u,m) 6=
λ(u, n), then π(u,m) ∈ P lp, π(u, n) ∈ P lq and π(u,m) � π(u, n). Moreover, u ∈
π(u,m)⊥ ∩ π(u, n)⊥ and µπ(u,m),π(u,n),l(u) = r. This is a contradiction. If λ(u,m) =
λ(u, n), let m′ be a line through p different from l and m. Then λ(u,m′) 6= λ(u, n)
and we arrive at a contradiction as before. Hence B is empty.
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Let both {p, q} and {r, s} be two-sided splitting pairs. If the two pairs are
intertwined, then all sums in Theorem 4.1 are equal to 2. Hence, by Theorem 4.2,
the derived structure GQp,q,r,s is a divisible semi-biplane.

If the two pairs are not intertwined, we may assume, without loss of generality,
that p and q are contained in the same component of l \ {r, s}. Since {p, q} is two-
sided splitting, its two components are non-empty. The above considerations show
that there exist x ∈ P lp and y ∈ P lq, x � y such that |x⊥∩y⊥∩r⊥|+|x⊥∩y⊥∩s⊥| = 4
and, by Theorem 4.1, the derived structure GQp,q,r,s is not a semi-biplane. �

It would be interesting to investigate whether some of the classical antiregular
quadrangles can be characterized by the fact that they contain ‘many’ splitting pairs
and whether the existence of ‘many’ splitting pairs in an antiregular quadrangle
implies that all relevant pairs are splitting.

5 The classical case

Let GQ = Q(4,K), where K is a field not of characteristic 2 and let p, q, r and s be
four collinear points with connecting line l. In the Laguerre plane GQp the three
points q, r and s are contained in the parallel class lp. As we already noted above,
GQp can be considered as the geometry of plane sections of a quadratic cone K
with its vertex v removed. Let c be the base of K (a non-degenerate conic) and let
K ′ := K \ {v}. We identify c with the projective line K ∪ {∞} in the natural way
such that the point of intersection of c with l gets identified with∞. Following this,
we can identify K ′ with (K ∪ {∞}) × K ‘=’ K2 ∪ ({∞} × K) via a stereographic
projection through the point q such that the following holds:

1. the parallel class lp gets identified with {∞} ×K;

2. all other parallel classes get identified with the verticals in K2;

3. the points q, r and s get identified with (∞, 0), (∞, ar) and (∞, as), respec-
tively;

4. the circles of the Laguerre plane get identified with the sets c̄a,b,c := ca,b,c ∪
{(∞, a)} where ca,b,c := {(x, ax2 + bx+ c) | x ∈ K}, a, b, c ∈ K.

More details about this identification can be found in [1].
Let C(a) := {ca,b,c | b, c ∈ K}, a ∈ K. Notice that C(0) consists of all non-vertical

lines in K2 and that C(a), a 6= 0 is the set of translates in K2 of the parabola ca,0,0.
Now GQp,q,r,s ‘=’ (K2 ∪ C(0), C(ar) ∪ C(as), I), where a point x is incident with a
block b, that is x I b, if and only if x ∈ b for x ∈ K2 and x touches b for x ∈ C(0),
that is, |x ∩ b| = 1.

Let K∗ := K \ {0} and let k ∈ K∗. Since charK 6= 2, there are either exactly
two or no solutions of the equation x2 = k. If there is a solution, then k is called
a square. A non-square is an element of K∗ that is not a square. Also remember
that the set S of squares is a subgroup of K∗ and that therefore the product of
two squares is a square, the product of a square and a non-square is a non-square
and that the inverse of a (non-)square is a (non-)square. Let NS denote the set of
non-squares.
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Theorem 5.1 Let GQ = Q(4,K), charK 6= 2, let p, q, r and s be distinct collinear
points with connecting line l and let (K2∪C(0), C(ar)∪C(as), I) be a representation
of GQp,q,r,s as above. Then:

1. GQp,q,r,s is a semi-biplane if and only if aras is a non-square.

2. GQp,q,r,s is a divisible semi-biplane if and only if aras is a non-square and S
is a subgroup of index 2 in K∗.

Proof. The following maps extend to automorphisms of the Laguerre plane GQp

that fix the parallel class lp point-wise:

K→ K : (x, y)→ (x, y + ax+ b),

K→ K : (x, y)→ (x+ a, y),

where a, b ∈ K.
We check when exactly Conditions C1 and C2 in Theorem 4.1 are satisfied. Let

x ∈ K2 and let y ∈ C(0) such that x /∈ y. With the above automorphisms, it suffices
to consider the cases where x = (0, k), k ∈ K∗ and y is the horizontal line c0,0,0. We
conclude that Condition C1 is satisfied if and only if for all k ∈ K∗ at most one of
the two values k/ar and k/as is a square. If this is the case, we can set k = 1/ar
to conclude that aras is a non-square. On the other hand, let aras be a non-square
and let k ∈ K∗. If both k/ar and k/as were squares, then their product k2/(aras)
and therefore also aras would be squares, which is a contradiction. This shows that
Condition C1 and the condition that aras is a non-square are equivalent.

Let x ∈ C(ar) and y ∈ C(as) such that |x ∩ y| 6= 1. With the above automor-
phisms, it suffices to consider the cases where x = car,0,0 and y = cas,0,k, k ∈ K∗.
Clearly, x intersects y in (necessarily two) points of K2 if and only if k/(ar − as) is
a square. The elements of C(0) incident with ca,0,k, a ∈ K∗ are c0,2at,−at2+k, t ∈ K
(these are just the tangents of the parabola ca,0,k). Hence x and y intersect in (nec-
essarily two) blocks of C(0) if and only if the following system of equations in the
variables t and u has solutions:

2art = 2asu

−art2 = −asu2 + k.

This is the case if and only if (ar/as)(k/(ar − as)) is a square. So, Condition C2
is satisfied if and only if for all k ∈ K∗ at most one of the values k/(ar − as) and
(aras)(k/(ar − as)) is a square. As above it is easy to show that this condition is
equivalent to aras being a non-square. This completes the proof of the first part of
the theorem.

Let GQp,q,r,s be a divisible semi-biplane. Then, as a consequence of Theorem 4.2
and the above considerations, for all k ∈ K∗ either kar is a square and kas is a
non-square, or the other way around. Without loss of generality, let ar be a square,
let as be a non-square. We conclude that Sas ⊂ NS and NSas ⊂ S. Hence
Sa2

s = S ⊂ NSas and therefore S = NSas, which means that S is a subgroup of
index 2 in K∗.

Let GQp,q,r,s be a semi-biplane and let S be a subgroup of index 2 in K∗. Then
the product of two non-squares is a square and we may assume, without loss of
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generality, that ar is a square and that as is a non-square. Then it is clear that
for all k ∈ K∗ exactly one of the two values kar and kas is a square, which in
turn translates, via the above considerations, into the fact that all the sums in
Theorem 4.1 are equal to 2 and that as a consequence of this, GQp,q,r,s is a divisible
semi-biplane.

This completes the proof of the second part of the theorem. �

The squares in this result and the square-projections that we used to define
splitting pairs have more than just the word ‘square’ in common. In fact, let p, q
and l be as in Theorem 5.1, let x ∈ P lp and y ∈ P lq be non-collinear points and let K
be identified with lp = {∞}×K in the natural way. Then we can show with the same
arguments as in the above proof that the image of the square-projection µp,q,l is one
of the cosets Sa, a ∈ K∗ to which {p, q} has been joined and that all these cosets
occur in an image of one of these projections. This implies, in particular, that {p, q}
is a splitting pair if and only if S is a subgroup of index 2 in K∗. We summarize some
immediate consequences of this remark and the results of the previous sections.

Theorem 5.2 Let GQ = Q(4,K), charK 6= 2, let p, q, r and s be distinct collinear
points with connecting line l and let GQp,q,r,s be a semi-biplane. Then the following
are equivalent:

1. There exists a splitting pair of collinear points in GQ = Q(4,K).

2. The set of squares S is a subgroup of index 2 in K∗.

3. GQp,q,r,s is divisible.

If one of the above is satisfied, then all pairs of collinear points are two-sided splitting
and {p, q} and {r, s} are intertwined pairs.

The ‘finite’ part of the following result corresponds to that part of [13, Theo-
rem 11] that deals with the odd order case.

Corollary 5.3 Let GQ = Q(4,K), where K is a finite field of odd order or K = R
and let p, q, r and s be distinct collinear points with connecting line l. Then GQp,q,r,s

is a semi-biplane if and only if aras is a non-square. If GQp,q,r,s is a semi-biplane,
then it is divisible.

Proof. By the last theorem it suffices to remark that in all cases under discussion
the set of squares is a subgroup of index 2 in K∗. �

Many more interesting properties of the finite semi-biplanes constructed in this
manner are discussed in [11], [12] and [13]. We mention, in particular, that Condi-
tions C1 and C2 in Theorem 4.1 correspond to [13, Condition 4, p. 124]. Further-
more, the isomorphism problem in the finite case is dealt with in [12]. Among other
things it is shown that two semi-biplanes constructed as above from one of the finite
anti-regular quadrangles need not be isomorphic.

Let us have a closer look at the case GQ = Q(4,R). As a consequence of
Theorem 5.1, the incidence structure GQp,q,r,s is a semi-biplane if and only if ar and
as do have opposite signs. Let as = −ar = 1. The pictures below, which correspond
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to the different cases treated in Theorem 4.1, illustrate the various ways in which
two points in this semi-biplane are joined by blocks.

blocks

points

As in the finite case (see [12]), it is possible to prove in the real case that semi-
biplanes associated with different sets of four points may be non-isomorphic.

6 Compact antiregular quadrangles

A compact antiregular quadrangle GQ = (P ,L, I) is an antiregular quadrangle such
that P and L are compact topological spaces and such that the two maps π and λ are
continuous. We only mention a few properties of compact antiregular quadrangles.
For the proofs and more details the reader is referred to [9].

There are two different kinds of compact antiregular quadrangles: those whose
points and lines are homeomorphic to S1 and those whose points and lines are homeo-
morphic to S2. They are called the compact antiregular quadrangles with parameter
1 and 2, respectively. The antiregular quadrangles Q(4,R) and Q(4,C) are the two
classical examples of these two kinds of antiregular quadrangles. It helps to think
of a compact antiregular quadrangle with parameter i, i = 1, 2, as a distortion of
the classical geometry with the same parameter, since most corresponding geomet-
rical objects associated with the two antiregular quadrangles have been shown to be
homeomorphic topological spaces.

Theorem 6.1 Let GQ be a compact antiregular quadrangle and let p, q, r and s be
distinct collinear points with connecting line l.

If GQ has parameter 1, then GQp,q,r,s is a semi-biplane if and only if p and
q are contained in different connected components of l \ {r, s}. If GQp,q,r,s is a
semi-biplane, then it is divisible.

If GQ has parameter 2, then GQp,q,r,s is not a semi-biplane.

Proof. Let GQ have parameter 1. Then, by [4, Proposition 4.5], every pair of
collinear points {p, q} is splitting and the components of {p, q} are just the connected
components of l \ {p, q}. We apply Theorem 4.4 to wrap up the proof of the first
part of this result.
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Let GQ have parameter 2. Then, by [9, Proposition 2.14], GQ is a centric
antiregular quadrangle. We apply Corollary 4.3 to conclude that GQp,q,r,s is not a
semi-biplane. �

Notice that in a compact antiregular quadrangle with parameter 1 four distinct
points can always be divided up into two intertwined pairs of splitting points.

Also, in the parameter 1 case, both the point space and the block space of
GQp,q,r,s are disjoint unions of two topological spaces homeomorphic to R2, and
every point and block is the disjoint union of two topological spaces homeomorphic
to R. This follows from [9, 2.3].
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University of Adelaide Mathematisches Institut
Adelaide, South Australia 5005 Auf der Morgenstelle 10
Australia D-72076 Tübingen
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