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Abstract

While the concept of Padé approximant is essentially several centuries old,
its multivariate version dates only from the early seventies. In the last century
many univariate convergence results were proven, describing the approxima-
tion power for several function classes. It is not our aim to give a general
review of the univariate case, but to discuss only these theorems that have
a multivariate counterpart. The first section summarizes the theorems under

discussion, in a univariate framework. The second and third section discuss
the multivariate versions of these theorems, for different approaches to the
multivariate Padé approximation problem.

1 Convergence of univariate Pad é approximants.

Given a function f(z), through its series expansion at a certain point in the complex
plane, the Padé approximant [n/m]f of degree n in the numerator and m in the
denominator for f is defined by

f(z) =
∞∑
i=0

ciz
i

p(z) =
n∑
i=0

aiz
i
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q(z) =
m∑
i=0

biz
i

(fq − p)(z) =
∑

i≥n+m+1

diz
i

with [n/m]f equal to the irreducible form of p/q. Usually these Padé approximants
are ordered in a table with double entry, the numerator degree n indexing the rows
and the denominator degree m indexing the columns:

[0/0] [0/1] [0/2] [0/3] [0/4]

[1/0] [1/1] [1/2] [1/3] . . .

[2/0] [2/1] [2/2] [2/3] . . .

[3/0] [3/1] [3/2] [3/3] . . .

[4/0]
...

...
...

. . .

When discussing convergence results of Padé approximants, one compares a sequence
of approximants in the table with the given function f . The selection of an appro-
priate sequence is possible using information about f . If the given function has a
fixed number of poles in a certain region, it makes sense to consider a sequence of
Padé approximants with fixed denominator degree, in other words a column in the
table. If the function has a countable number of singularities, it is wiser to consider
a diagonal or ray in the table. We shall now list a number of famous theorems that
have also been generalized to the multivariate case. In comparing the results we

have to distinguish between ‘uniform’ convergence, which is an overall convergence
with the Chebyshev-norm of the error tending to zero, and convergence in ‘measure’
or ‘capacity’, where one has convergence except for an area of disruption of which
the location is usually unknown but of which the size can be made arbitrarily small.
In this text we restrict ourselves to the notion of measure, to avoid the discussion
of multivariate generalizations of the notion of capacity later on. If more general
results hold however, we shall refer the reader to the literature. We denote

B(0, r) = {z ∈ Z : |z| < r}
B(0, r) = {z ∈ Z : |z| ≤ r}

B((0, 0), r) = {(x, y) ∈ Z2 : ||(x, y)|| < r}
B((0, 0), r) = {(x, y) ∈ Z2 : ||(x, y)|| ≤ r}

B((0, 0); r1, r2) = {(x, y) ∈ Z2 : |x| < r1, |y| < r2}
B((0, 0); r1, r2) = {(x, y) ∈ Z2 : |x| ≤ r1, |y| ≤ r2}

and Λ2p for the Lesbesgue-measure in Zp.
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Montessus de Ballore [Mont05]. Let the function f(z) be meromorphic in
B(0, r) with poles zi in B(0, r) of total multiplicityM . Then the sequence {[n/M ]f}n∈N
converges uniformly to f on compact subsets of B(0, r)\{zi} with zi attracting zeros
of the Padé denominator according to its multiplicity:

lim
n→∞

||[n/M ]f − f ||K = 0 compact K ⊂ B(0, r) \ {z1, . . . , zM}

Zinn-Justin [Zinn71]. Let the function f(z) be meromorphic in B(0, r) with
poles zi in B(0, r) of total multiplicity M . Then the sequence {nk/mk}k∈N with
mk ≥M and limk→∞ nk/mk =∞, converges in B(0, r) in measure to f :

∀ε, δ, ∃κ : |f(z)− [nk/mk]
f(z)| < ε for k ≥ κ and z ∈ B(0, r) \ E with Λ2(E) < δ

Karlsson and Wallin [KaWa77]. Let the function f(z) be meromorphic in
B(0, r) with poles zi in B(0, r) of total multiplicity M . Then for m ≥ M there exist
points ζ1, . . . , ζm−M in Z and there exists a subsequence of {[n/m]f}n∈N that is uni-
formly convergent on compact subsets of B(0, r) \ ({z1, . . . , zM} ∪ {ζ1, . . . , ζm−M}).

In short, when one is approximating a meromorphic function and one chooses the
denominator degree of the approximant equal to the total number of poles within
a distance of at most r, then one can expect uniform convergence of the Padé
approximants in that region. If one chooses the denominator degree slightly too
large, then one can only expect convergence in measure (and capacity [BaGr81]) or
one can only expect a subsequence to converge uniformly. How information on the
correct denominator degree can be obtained, is described in [GlKa94].

Nuttall–Pommerenke [Nutt70], [Pomm73]. Let the function f be analytic in
Z except for a countable number of isolated poles and essential singularities. Then
the sequence {[nk/mk]

f}k∈N with λ < nk/mk < 1/λ for 0 < λ < 1, converges to f
in measure on compact sets:

∀ε, r > 0 : Λ2

({
z ∈ B(0, r) : |f(z)− [nk/mk]

f(z)| ≥ ε
})
−→k→∞ 0

This last theorem is a simpler version of the original one which proves convergence
in capacity. Since the number of singularities of f is now countable, one has to let
the denominator degree increase unboundedly, and hence column sequences make
an inappropriate choice. The exceptional set that is excluded from the region of
convergence is for instance caused by unwanted pole-zero combinations in the Padé
approximant.
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2 Homogeneous multivariate Pad é approximants.

In order to discuss the multivariate case, we describe the bivariate situation because
the higher-dimensional situation is only notationally more difficult. A first possi-
bility to deal with functions f(x, y) known by their bivariate series expansion at a
certain point, is to group the terms in homogeneous expressions. For such series
homogeneous Padé approximants [n/m]fH were defined in [Cuyt79] by

f(x, y) =
∞∑
k=0

 ∑
i+j=k

cijx
iyj


p(x, y) =

nm+n∑
i+j=nm

aijx
iyj

q(x, y) =
nm+m∑
i+j=nm

bijx
iyj

(fq − p)(x, y) =
∑

k≥nm+n+m+1

 ∑
i+j=k

dijx
iyj


with [n/m]fH given by the unique irreducible form of all p/q satisfying the above con-
ditions. What these approximants look like can be seen from the following example.
Consider

f(x, y) = 1 +
x

0.1− y
+ sin(xy)

and choose respectively n = 1, m = 1 and n = 1, m = 2. Then the numerator and
denominator polynomials p(x, y) and q(x, y) respectively start with a homogeneous
expression of degree 1 and 2. Fortunately if we compute the irreducible form

[1/1]H =
1 + 10x − 10.1y

1− 10.1y

[1/2]H =
x− 1.01y + 10x2 − 20.2xy + 10y2

x− 1.01y − 10.1xy + 10y2 + 2.01xy2

then the degree of the numerator and denominator polynomial and the introduced
shift in those degrees are maximally reduced. The necessity of this ‘shift’ in the
degrees in order to enjoy a number of nice properties among which the unicity of
the irreducible form, is explained in detail in [Cuyt84]. Furthermore, a projection
property that will play an important role in the sequel, was pointed out indepen-
dently by Karlsson [Karl84] and by Chaffy [Chaff84]. We introduce for (u, v) in Z2

with uv 6= 0:

B(u,v)(0, r) ={z ∈ Z : ||(uz, vz)|| < r}
f(u,v)(z) =f(uz, vz)
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Then for any fixed (u, v) in Z2, projecting onto the set {(x, y) ∈ Z2 : x = uz, y = vz}
yields

[n/m]f(u,v)(z) = [n/m]fH(uz, vz)

Thanks to this projection property the following convergence results were obtained.
We do not cite them in their most general form. Therefore the reader is referred to
the original reference.

Cuyt and Lubinsky [CuLu95]. Let the function f(x, y) be meromorphic in the
ball B((0, 0), r) in the sense that there exists a polynomial s(x, y) of homogeneous
degree M such that fs is holomorphic in B((0, 0), r). If we denote

W ={(u, v) : ||(u, v)|| = 1 and

f(u,v) less than M poles in B(u,v)(0, r)}
S ={(x, y) : s(x, y) = 0}
E ={(uz, vz) : (u, v) ∈W}

then the sequence {[n/M ]fH}n∈N converges uniformly on compact subsets of B((0, 0), r)
not intersecting E∪S. Outside W each zero of s(u,v)(z) attracts zeros of the projected
Padé denominator according to its multiplicity.

The set W denotes the set of exceptional directions, meaning that for (u, v)
in W the univariate convergence theorem of de Montessus de Ballore applies to a
column different from that for the vectors outside W : for all vectors (u, v) outside
W one has to consider the M-th column. Note than one does not have convergence
in (0, 0), the point at which the series development for f was given, because it is
always contained in E ∪ S!

Cuyt and Lubinsky [CuLu95]. Let the function f(x, y) be meromorphic in the
ball B((0, 0), r) in the sense that there exists a polynomial s(x, y) of homogeneous
degree M such that fs is holomorphic in B((0, 0), r). Then for m ≥ M the sequence
{[n/m]fH}n∈N converges in B((0, 0), r) in measure to f .

This theorem nicely generalizes the univariate result obtained by Zinn-Justin
while the next theorem generalizes the univariate result of Karlsson and Wallin.
Both deal with a denominator choice that is again slightly too large. For the next
convergence result we assume that the sequence {[n/m]fH}n∈N with fixed m ≥ M
has an infinite number of elements [nh/m]fH for which [nh/m]fH is holomorphic at
the origin. We denote this subsequence of holomorphic entries by {[nh/m]fH}h∈N.
Cuyt [Cuyt85]. Let the function f(x, y) be meromorphic in the ball B((0, 0), r)
in the sense that there exists a polynomial s(x, y) of homogeneous degree M such
that fs is holomorphic in that ball. Then for m ≥ M there exists an analytic set
T ⊃ S and there exists a subsequence of {[nh/m]fH}h∈N that converges uniformly to
f on compact subsets of B((0, 0), r) \ T .

Let us now turn to a generalization of the Nuttall–Pommerenke result, for ho-
mogeneous Padé approximants.
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Cuyt, Driver and Lubinsky [CuDL94b]. Let the function f(x, y) be analytic
in Z2 \ G where the analytic set G = {(x, y) ∈ Z2 : g(x, y) = 0, g entire }. Then
the sequence {[nk/mk]

f
H}k∈N with λ < nk/mk < 1/λ for 0 < λ < 1, converges on

compact sets in measure to f .

In [Gonc74] another kind of homogeneous approximants, which we shall denote
by [n/m]f

H̃
, was defined where the so-called ‘shift’ in the numerator and denominator

polynomial degrees is not introduced. For f(x, y) given by the series development
above, one computes

p(x, y) =
n∑

i+j=0

aijx
iyj

q(x, y) =
m∑

i+j=0

bijx
iyj

(fq − p)(x, y) =
∑

k≥b
√

2nc+1

 ∑
i+j=k

dijx
iyj


For these approximants the following result holds but convergence in capacity has
not been obtained.

Gonchar [Gonc74]. Let the function f(x, y) be analytic in Z2 \G where the ana-
lytic set G = {(x, y) ∈ Z2 : g(x, y) = 0, g entire }. Then the sequence {[n/n]f

H̃
}n∈N

converges on compact sets in measure to f .

3 General order multivariate Pad é approximants.

Several authors have followed a different approach for the definition of multivari-
ate Padé approximants [Lutt74, KaWa77, Chis73, Levi76, CuVe83], in which the
multivariate series development for f is also rewritten as a series indexed by only
one index, but now in a different way. Instead of grouping terms in subexpressions
one agrees on an order in which the terms are added to the series one by one. A
multivariate Padé approximant is then defined as follows. For a given f and chosen
N ⊂ N2 and D ⊂ N2, one computes

f(x, y) =
∑

(i,j)∈N2

cijx
iyj

p(x, y) =
∑

(i,j)∈N
aijx

iyj #N = n + 1

q(x, y) =
∑

(i,j)∈D
bijx

iyj #D = m + 1

(fq − p)(x, y) =
∑

(i,j)∈N2\E
dijx

iyj N ⊂ E #E = n + m + 1
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An irreducible form of p/q is again called a Padé approximant for f and it is denoted
by [N/D]fE . Note that it need not be unique, as was already the case for the definition
given in [Gonc74]. In order to compare these general order solutions to the one from
the previous paragraph, we compute some approximants for the same function

f(x, y) = 1 +
x

0.1− y
+ sin(xy)

For

N1 ={(0, 0), (1, 0), (0, 1)}
D1 ={(0, 0), (0, 1)}
E1 =N1 ∪ {(1, 1)}

one obtains

[N1/D1]E1 =
1 + 10x− 10.1y

1− 10.1y

and for

N2 ={(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}
D1 ={(0, 0), (1, 0), (0, 1)}
E2 =N2 ∪ {(2, 1), (1, 2)}

the solution is given by

[N2/D1]E2 =
1 + 10x− 1000

101
y + 201

101
xy

1 + 1000
101

y

It is useful to compare these approximants respectively to the homogeneous ap-
proximants [1/1]fH and [2/1]fH . Let us now turn to a discussion of the convergence
results.

Cuyt [Cuyt90, Cuyt92]. Let the function f(x, y) be meromorphic in the poly-
disc B((0, 0); r1, r2) in the sense that there exists a multivariate polynomial

s(x, y) =
∑

(i,j)∈M
sijx

iyj

such that fs is holomorphic in that polydisc. Under suitable conditions for N and
E which are detailed in [Cuyt90] and with

S = {(x, y) : s(x, y) = 0}

the sequence {[N/M ]E}#N→∞,N⊂E converges to f uniformly on compact subsets of
B((0, 0); r1, r2) \ S with the general order Padé denominator q(x, y) converging to
s(x, y).

We now respectively state generalizations of the Zinn-Justin convergence theo-
rem and the Nuttall–Pommerenke convergence in capacity. After each theorem we
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translate the conditions to the univariate case, so that it becomes clear why those
conditions are natural generalizations of the ones in the univariate theorems. For
index sets Nk, Dk, Ek and M we denote by

Nk ∗M ={(i, j) : i = i1 + i2, j = j1 + j2, (i1, j1) ∈ Nk, (i2, j2) ∈M}
iDk = max{i : (i, j) ∈ Dk}
jDk = max{j : (i, j) ∈ Dk}

∂Dk = max{iDk , jDk}
ωEk = min{i + j : (i, j) ∈ N2 \ Ek}

Cuyt, Driver and Lubinsky [CuDL94a]. Let the function f(x, y) be mero-
morphic in the polydisc B((0, 0); r1, r2) in the sense that there exists a multivariate
polynomial

s(x, y) =
∑

(i,j)∈M
sijx

iyj

such that fs is holomorphic in that polydisc. For Nk, Dk and Ek satisfying

Nk ∗M ⊂ Ek

lim
k→∞

ωEk/∂Dk =∞

the sequence of approximants {[Nk/Dk ]Ek}k∈N converges in B((0, 0); r1, r2) in mea-
sure to f .

In the univariate case the sets Nk, Dk and Ek equal

Nk ={0, . . . , nk}
Dk ={0, . . . , mk}
Ek ={0, . . . , nk + mk}

Hence

∂Dk =mk

ωEk =nk + mk + 1

and the conditions in the above theorem amount to

Nk ∗M ⊂ Ek ⇐⇒ nk + M ≤ nk + mk ⇐⇒ mk ≥M

lim
k→∞

ωEk

∂Dk
=∞⇐⇒ lim

k→∞

nk
mk

=∞

which are the standard univariate conditions.
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Cuyt, Driver and Lubinsky [CuDL94a]. Let f(x, y) be such that for each ρ
there exists a polynomial sρ(x, y) such that (fsρ)(x, y) is analytic in the polydisc
B((0, 0); ρ, ρ). Let `k = max{∂Nk, ∂Dk} and

Cbkc = {(i, j) ∈ N2 : 0 ≤ i ≤ bkc, 0 ≤ j ≤ bkc}

For Nk, Dk and Ek satisfying

lim
k→∞

`k =∞

Nk ∗ Cbλ`kc ⊂ Ek

Dk ∗ Cbλ`kc ⊂ Ek

with 0 < λ < 1, the sequence of approximants {[Nk/Dk]Ek}k∈N converges on compact
sets in measure to f .

In the univariate case these conditions translate to the following:

`k = max{nk, mk}
Nk ∗ Cbλ`kc ⊂ Ek ⇐⇒ nk + λ`k ≤ nk + mk =⇒ λnk ≤ mk

Dk ∗ Cbλ`kc ⊂ Ek ⇐⇒ mk + λ`k ≤ nk + mk =⇒ λmk ≤ nk

These last conditions amount to

λ ≤ nk/mk ≤ 1/λ

These last two theorems also hold if we replace the notion of measure by capacity as
detailed in [CuDL94a]. Summary. We have reviewed these convergence results that

exist both in a univariate and multivariate context. In order to compare the results
we have not stated them in their full generality. Readers interested in a particular
theorem are referred to the original reference to obtain the most general formulation.
Where appropriate we have indicated whether the resulting convergence in measure
essentially also holds in capacity.
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variables complexes, Thèse Inst. Polytech. Grenoble, 1984;

[Chis73] Chisholm, J.S., Rational approximants defined from double power series,
Math. Comp. 27 (1973), 841-848;
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[Cuyt84] Cuyt, A., Padé approximants for operators: Theory and Applications,
LNM 1065, Springer Verlag, Berlin, 1984;

[Cuyt90] Cuyt, A., A multivariate convergence theorem of “de Montessus de Bal-
lore” type, J. Comput. Appl. Math 32 (1990), 47–57;

[Cuyt92] Cuyt, A., Extension of “A multivariate convergence theorem of de
Montessus de Ballore type, J. Comput. Appl. Math 41 (1992), 323–330;

[CuDL94b] Cuyt, Annie and Driver, K. and Lubinsky, D., Nuttall-Pommerenke the-
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