
Biot-Savart-Laplace Dynamical Systems

C.Udrişte and S.Udrişte

Abstract. §1 recalls known facts about the magnetic field ~H produced
by the Biot-Savart-Laplace law for a massive conductor D̄. §2 proves that
generally the part in extD̄ of a magnetic line is a trajectory of a poten-
tial dynamical system of order two (a geodesic of the Riemann-Jacobi
structure) and the part in intD̄ is a trajectory of a nonpotential dynam-
ical system of order two (new Lorentz world– force laws) describing new
magnetic dynamics. This paragraph presents also some properties of mag-
netic traps, two significant examples and formulates an open problem. §3
describes the magnetic dynamical systems which can be reduced to 2-
dimensional Hamiltonian systems. §4 analyses the magnetic fields which
are symmetric or antisymmetric with respect to some symmetries.

M.S.C. 2000: 34A26, 35F10, 53C21, 78A25.
Key words: magnetic dynamical systems, potential and non-potential dynamical
systems, geodesics, Lorentz laws, symmetries.

1 Biot-Savart-Laplace vector field

Let D be an open connected set of R3, with a piecewise smooth boundary ∂D. Denote
by ~J a C∞ vector field on D̄ = D

⋃
∂D.

The vector field

~H(M) =
1
4π

∫

D

~J(P )× ~PM

PM3
dvP , M ∈ R3

is called the Biot–Savart–Laplace vector field. The name comes from the fact that in
case D̄ is a domain in which there exists a current density ~J(P ), P ∈ D̄, then the
magnetic field ~H generated on R3 by the electrical current is approximated by the
preceding formula due to J.B.Biot, F.Savart, P.S.Laplace [2].
Remarks. 1) Since the measure (volume) of ∂D is zero, the preceding integral can
be considered on D̄ = D ∪ ∂D.

2) The integral defining ~H(M),M ∈ D̄ is an improper integral of the first type
(both of the first and of the second type) if the domain D is bounded (unbounded).
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3) The Biot-Savart-Laplace vector field ~H is of class C∞ on R3 \ ∂D and of class
Co on ∂D.

4) The vector field ~J can have zeros on D̄.
The vector field ~H is solenoidal. Hence it admits a vector potential

~A(M) =
1
4π

∫

D

~J(P )
PM

dvP .

Indeed,

rot ~A(M) = ∇M × ~A(M) = ∇M × 1
4π

∫

D

~J(P )
PM

dvP =

=
1
4π

∫

D

∇M ×
~J(P )
PM

dvP = − 1
4π

∫

D

~J(P )×∇M
1

PM
dvP =

=
1
4π

∫

D

~J(P )× ~PM

PM3
dvP = ~H(M).

On the other hand,

div ~A(M) =
(
∇M , ~A(M)

)
=

1
4π

∫

D

(∇M ,
~J(P )
PM

)dvP =

=
1
4π

∫

D

( ~J(P ),∇M
1

PM
)dvP = − 1

4π

∫

D

( ~J(P ),∇P
1

PM
)dvP =

= − 1
4π

∫

D

(∇P ,
~J(P )
PM

)dvP +
1
4π

∫

D

1
PM

(∇P , ~J(P ))dvP =

= − 1
4π

∫

∂D

(~n(P ), ~J(P ))
PM

dvP +
1
4π

∫

D

div ~J(P )
PM

dvP ,

where ~n(P ) is the unit normal vector field of the surface ∂D. If ~J is a solenoidal
vector field (a stationary electrokinetic field), and ∂D is a field surface of ~J , i.e.,
(~n(P ), ~J(P )) = 0, then div ~A(M) = 0, and so ~A is a solenoidal vector field.

Under the hypothesis div ~A(M) = 0, we compute

rot ~H(M) = ∇M × (∇M × ~A(M)) = ∇M (∇M , ~A(M))− (∇M ,∇M ) ~A(M) =

= ∇Mdiv ~A(M)−∇2
M

~A(M) = −∇2
M

~A(M) = −∆M
~A(M),

so that rot ~H(M) = 0 for M ∈ R3 \ D̄, and rot ~H(M) = ~J(M) for M ∈ D̄; also, we
have

div ~H(M) = div rot ~A = 0.

Consequently, the vector field ~H is not irrotational, but the restriction of ~H to R3 \ D̄
is an irrotational vector field. This restriction admits a local scalar potential.
Remarks.

1) We notice that

∇MF (PM) = F ′(PM)
~PM

PM
= −∇P F (PM),∀F : R → R, derivable.
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2) If the point M has the coordinates (x, y, z) and the point P has the coordinates
(ξ, η, ζ), then

∂

∂x
~A(M) = −

∫

D

∂

∂ξ
(

~J(P )
PM

)dvP +
∫

D

1
PM

∂

∂ξ
~J(P )dvP , etc.

3) If ~J is a constant vector field on D̄ , then the magnetic field ~H generated on
R3 by ~J is a biscalar field, i.e., ( ~H, hboxrot ~H) = 0.

4) The domain D can be replaced by a surface or a curve. In case of a curve, the
current density ~J must be nonzero everywhere along the curve.

2 Magnetic lines and surfaces. Magnetic traps

Let ~H = Hx
~i+Hy~+Hz

~k be a magnetic field defined on R3. Denote by ~r = x~i+y~+z~k
the position vector of the point M(x, y, z).

The magnetic line α starting of M0(x0, y0, z0) at moment t = 0 is the oriented
curve ~r = ~r(t), t ∈ (−ε, ε), which satisfies the Cauchy problem

d~r

dt
= ~H(~r), ~r(0) = ~r0.

The magnetic surface
∑

: h(x, y, z) = c relying on a curve β : (a, b) → R3 is the
solution of the Cauchy problem

( ~H,∇h) = 0, h(β(u)) = h(β(0)),∀u ∈ (a, b).

A magnetic surface is generated by magnetic lines, and, in the absence of symmetries,
a magnetic line is an open curve, and sometimes its image is densely in the magnetic
surface.

Let U be an open connected set of R3 with a piecewise smooth boundary ∂U and
Tt the flow generated by the magnetic vector field ~H. The flow Tt conserves the spaces
volume since div ~H = 0. The set U or its closedness Ū is called a trap region of the
magnetic field ~H (magnetic trap) if Tt(Ū) ⊂ Ū , ∀t ≥ 0. Particularly, any Tt-invariant
set is a trap region. A magnetic trap is characterized by the fact that a magnetic line
starting inside cannot leave it (because such a line cannot attend the boundary ∂U).
The magnetic line starting in the exterior of the magnetic trap can enter or not inside
the trap.

Suppose that the unit normal vector field ~n of the surface ∂D is oriented towards
extU . If U is a magnetic trap, then on the boundary ∂U we have (~n, ~H) ≤ 0. Con-
versely, if (~n, ~H) = 0 on ∂U , then ∂U is a magnetic surface; if (~n, ~H) > 0 on ∂U , then
R3 \ U is a trap region of the magnetic field ~H, and if (~n, ~H) < 0 on ∂U , then U is a
trap region of the magnetic field ~H .

Suppose there exist two magnetic traps U1 and U2 such that their boundaries
∂U1, ∂U2 have a common part which is a surface Σ or a curve γ. Then Σ is a magnetic
surface, and γ is a magnetic line, respectively.
2.1. Theorem. Let U be an open connected set of R3 with a piecewise smooth bound-
ary ∂U . If U is a magnetic trap and Ū = U

⋃
∂U is compact, then the closed surface

∂U is a magnetic surface and Tt(Ū) = Ū .
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Proof. Suppose that the unit normal vector field ~n of the surface ∂U is oriented
towards ext U . Since div ~H = 0, by Gauss Theorem we obtain

∫
∂U

(~n, ~H)dσ = 0. If
∂U is not a magnetic surface, i.e., (~n, ~H) 6= 0, then (~n, ~H) must change sign on the
closed surface ∂U and consequently U is not a magnetic trap.

The last assertion of the Theorem is a consequence of the conservation of the
volume.
Remark. If ~H is a magnetic field and Ū is not a compact set, then it is possible
that U is a magnetic trap for ~H without ∂U be a magnetic surface. For example,
the magnetic field ~H(x, y, z) = ~i, the region U : x + y + z + 1 > 0, the boundary

∂U : x + y + z + 1 = 0, the unit normal ~n = −~i−~−~k√
3

imply (~n, ~H) < 0; hence U is a
magnetic trap. Also, this example shows that in the preceding context the Tt-invariant
set ∩t≥0Tt(Ū) can be the void set.

In the following part of this paragraph we refer only to the Biot-Savart-Laplace
vector field. Is the region D in the Biot-Savart-Laplace formula a magnetic trap or not
? A possible answer was given in the preceding theorem. The next theorem presents
another alternative.
2.2. Theorem. Suppose that the unit normal vector field ~n of the surface ∂D is
oriented towards extD. Let

ϕ : D̄ × ∂D → R, ϕ(P,M) = (~n(M), ~J(P )× ~PM).

1) If ϕ(P, M) = 0, ∀P ∈ D̄, ∀M ∈ ∂D, i.e., the vector fields ~n(M), ~J(P ), ~PM are
coplanar on D̄× ∂D, then ∂D is a magnetic surface, and R3 \D and D are magnetic
traps.

2) If ϕ(P,M) > 0, ∀P ∈ D̄,∀M ∈ ∂D, then R3 \D is a magnetic trap.
3) If ϕ(P,M) < 0, ∀P ∈ D̄,∀M ∈ ∂D, then D is a magnetic trap.

Proof. Consequences of the relation

(~n(M), ~H(M)) =
∫

D

(~n(M), ~J(P )× ~PM)
PM3

dvP , ∀M ∈ ∂D.

Remark. In the case 1) the vector fields ~J and ~H are tangent to ∂D. In the cases
2)-3), the vector field ~J is tangent to ∂D and the vector field ~H is transversal to ∂D.

Let
f : R3 → R, f =

µ0

2
(H2

x + H2
y + H2

z )

be the energy of ~H, where µ0 is the absolute magnetic permeability of the medium.
2.3. Theorem. Any magnetic line in int(R3 \ D) is a trajectory of a potential dy-
namical system with three degrees of freedom associated to the potential −fµ−1

0 on
int(R3 \D).
Proof. Let α be a magnetic line included in int(R3 \D). Deriving d~r

dt = ~H along α
we find the prolongation

d2~r

dt2
= µ−1

0 ∇f.

which is a potential dynamical systems of order two.
Remark. If α contains at least one point of ∂D, then the previous assertion fails.

Denoting
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d~r

dt
= −~v,

the differential system of order two

d2~r

dt2
= µ−1

0 ∇f

can be transcribed as a Hamiltonian system

d~r

dt
= −~v,

d~v

dt
= −µ−1

0 ∇f,

on the phase space R6, with the Hamiltonian

H(~r,~v) =
1
2
‖ ~v ‖2 −µ−1

0 f(~r).

The Hamiltonian flow conserves the phase space volume. The Hamiltonian H is a first
integral of the Hamiltonian dynamical system. The theory of Hamiltonian systems
shows that
2.4. Theorem. The trajectory of the dynamical system

d2~r

dt2
= µ−1

0 ∇f, ~r(0) = ~r0 ∈ R3 \ D̄,

having H > −µ−∞′ { as constant total energy and staying in R3\D̄ is a reparametrized
geodesic of the Riemann–Jacobi metric

gij = (H+ µ−1
0 f)δij , i, j = 1, 2, 3.

Remarks. 1) If the domain D is reduced to a curve γ, then the theorems 2.3 and 2.4
hold true on R3 \ γ.

2) Theorem 2.4 shows that the preceding prolongation is a new Lotentz law based
on a geometrical structure which incorporates the magnetic field.
2.5. Theorem. Any magnetic line included in D is a trajectory of a nonpotential
dynamical system with three degrees of freedom for which the energy

H(~r,~v) =
1
2
‖ ~v ‖2 −µ−1

0 f(~r)

is conserved.
Proof. If ~r(0) = ~r0 ∈ D and α rests in D, then deriving d~r

dt = ~H along α we get a
prolongation

d2~r

dt2
= µ−1

0 ∇f + ~J × d~r

dt
,

which is a nonpotential dynamical system of order two. If we take the scalar product
with d~r

dt , we find d
dtH = ′, i.e., the energy H is conserved.

Remarks.
1) The vector field ~J × d~r

dt does not produce a dissipation of energy along the
solution α since it is orthogonal to the curve α.
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2) Recently [8], [9] we have discovered a new geometrical structure showing that
the preceding conservative nonpotential dynamical system of order two describes a
new Lorentz world–force law (new magnetic dynamics).

3) The trajectories of the preceding conservative (potential or nonpotential) dy-
namical system of order two divide into three classes:

– the set of original magnetic lines with the energy H = ′;
– a set of trajectories with the energy H = const. < ′,
– a set of trajectories with the energy H = const. > ′.
4) Another prolongation is the nonpotential nonconservative dynamical system

d2~r

dt2
= µ−1

0 ∇f + ~J × ~H.

Since rot( ~J × ~H) 6= 0, the vector field ~J × ~H corresponds to a dissipation of energy
along the solutions α which are not orthogonal to ~J × ~H.

5) In both cases the projection of the acceleration d2~r
dt2 on ~J depends only of the

projection of ∇f on ~J .
Open problem. What is the physical signification for trajectories of the preceding
conservative differential systems, with positive or negative constant energy ?

If the magnetic line α traverses ∂D, then its part contained in D is a trajectory of
a nonpotential dynamical system of order two, and its part in R3 \ D̄ is a trajectory
of a potential dynamical system of order two. Obviously, α can be or not smooth at
the traversing point of ∂D, being a field line of the vector field ~H which is of class
C∞ on R3 \ ∂D and of class Co on ∂D.
Examples.

1) Suppose that D̄ = D
⋃

∂D is a circular cylinder of radius a carrying a steady
current I. We fix the Cartesian frame Oxyz such that Oz is the axis of the cylinder
and ~J = I

πa2
~k is the current density. The electrical current generates the magnetic

field [2] (Fig.1) given by

~H(M) =
−y~i + x~

2πa2
I, for M(x, y, z) ∈ D̄,

and

~H(M) =
−y~i + x~

2π(x2 + y2)
I, forM(x, y, z) ∈ R3 \ D̄.

The Oz-axis consists of zeros of ~H. The nonconstant magnetic lines are circles
with the centers on Oz and situated in planes orthogonal to Oz. The boundary ∂D
is a magnetic surface, though ~H is only continuous on ∂D. The regions D and R3 \ D̄
are magnetic traps. Even in this simple case we have no answer for the preceding open
problem.
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2) Suppose that D̄ = D ∪ ∂D is an infinite prism of rectangular section [−a, a]×
[−b, b] carrying a steady current I. We choose a Cartesian frame Oxyz such that Oz

is the axis of the prism and ~J = I
4ab

~k is the current density (Fig.2). The magnetic
field generated by ~J on R3 has the components (Hx,Hy, 0), where [2]

Hx = − I

2ab
[(y − b)(arctan

x− a

y − b
− arctan

x + a

y − b
)− (y + b)(arctan

x− a

y + b
−

− arctan
x + a

y + b
)− x + a

2
ln

(x + a)2 + (y − b)2

(x + a)2 + (y + b)2
+

x− a

2
ln

(x− a)2 + (y − b)2

(x− a)2 + (y + b)2
],

Hy = − I

2ab
[(x− a)(arctan

y + b

x− a
− arctan

y − b

x− a
)− (x + a)(arctan

y + b

x + a
−

arctan
y − b

x + a
)− y − b

2
ln

(x− a)2 + (y − b)2

(x + a)2 + (y − b)2
+

y + b

2
ln

(x− a)2 + (y + b)2

(x + a)2 + (y + b)2
].

The field ~H is defined on D and R3 \D by the same formulas and can be extended
by continuity on ∂D. The boundary ∂D is piecewise smooth, and is not a magnetic
surface. The field ~H is continuous on ∂D. If S : R3 → R3 is the symmetry with respect
to Oz and ~H is regarded as ~H : R3 → R3 , then ~H ◦ S = S ◦ ~H .

The Oz–axis consists of zeros of ~H. The field lines are closed curves (symmetrical
with respect to Oz) included in the family of curves

∫ x

xo

Hy(x, y)dx−
∫ y

yo

Hx(xo, y)dy = bk, z = c.

Computing the integrals, the first equation becomes

(x− a)2 + (y + b)2

2
arctan

y + b

x− a
+ (y + b)2 arctan

x− a

y + b
−

− (x− a)2 + (y − b)2

2
arctan

y − b

x− a
− (y − b)2 arctan

x− a

y − b
+
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+
(x + a)2 + (y − b)2

2
arctan

y − b

x + a
+ (y − b)2 arctan

x + a

y − b
−

− (x + a)2 + (y + b)2

2
arctan

y + b

x + a
− (y + b)2 arctan

x + a

y + b
−

− (x− a)(y − b)
2

ln((x− a)2 + (y − b)2) +
(x + a)(y − b)

2
ln((x + a)2 + (y − b)2)+

+
(x− a)(y + b)

2
ln((x− a)2 + (y + b)2)− (x + a)(y + b)

2
ln((x + a)2 + (y + b)2)+

+
(y + b)2

2
(arctan

y + b

xo + a
+ arctan

xo + a

y + b
− arctan

y + b

xo − a
− arctan

xo − a

y + b
)+

(y − b)2

2
(arctan

y − b

xo − a
+ arctan

xo − a

y − b
− arctan

y − b

xo + a
− arctan

xo + a

y − b
) = ck.

The parameters bk, ck are constants depending on the regions k = 1, 2, . . . , 9 in the
Fig.2, containing the fixed point (x0, y0). Also, we must have in mind that

arctanu + arctan
1
u

= (sign u)
π

2
.

Some of these field lines traverse the boundary of the rectangle [−a, a]× [−b, b].

Let us consider Runge-Kutta approximations of Cauchy problems

dx

dt
= Hx,

dy

dt
= Hy,

dz

dt
= 0,

x(0) = x0, y(0) = 0, z(0) = 0,

obtained by us using a personal computer, refering to the case a = 1, b = 2, the step
p = 0, 02 and the following table

Initial points x0 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | 2.00 | 2.5
Number of Iterations | 220 | 220 | 220 | 275 | 350 | 520 | 900

We remark that Runge–Kutta approximations of magnetic lines through points corre-
sponding to x0 ∈ (0; 0.9) have a shape similar to those of an ellipse, and the curvature
of the magnetic lines corresponding to x0 ∈ (1.2; 2.5) has non-constant sign (Fig.3).
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Generally, the sign of the curvature of a magnetic line α coincides with the sign
of the function

H2
x

∂Hy

∂x
+ HxHy(

∂Hy

∂y
− ∂Hx

∂x
)−H2

y

∂Hx

∂y
= H2

x

∂Hy

∂x
+ 2HxHy

∂Hy

∂y
−H2

y

∂Hx

∂y

along α(I), but this sign cannot be constant throughout the plane xOy.
The shape of the preceding magnetic lines around the points on xOz(yOz) becomes

obvious if we take into account that component Hx(x, y) vanishes for y = 0 (the
component Hy(x, y) vanishes for x = 0).

In fact, if α(t) = (x(t), y(t), 0), t ∈ R is the maximal solution of the preceding
Cauchy problem, then x0 6= 0 is an extremum value of the function x(t), t ∈ R.

3 Magnetic dynamical systems which are bidimen-
sional Hamiltonian systems

In this paragraph we shall generalize an idea of [4]. Let ~H = Hx
~i + Hy~ + Hz

~k be the
magnetic field of Biot-Savart-Laplace and

dx

dt
= Hx,

dy

dt
= Hy,

dz

dt
= Hz

the associated magnetic dynamical system. Suppose Hz = 0,Hx = Hx(x, y),Hy =
Hy(x, y). Since

0 = div ~H =
∂Hx

∂x
+

∂Hy

∂y
,

there exists a function H : R2 → R such that

∂H
∂y

= Hx,
∂H
∂x

= −Hy

and hence the magnetic dynamical system reduces to the bidimensional Hamiltonian
system

dx

dt
=

∂H
∂y

,
dy

dt
= −∂H

∂x
.

(see the examples of §2).
Suppose that Hz is not zero function and that

Hx

Hz
,

Hy

Hz

are functions of x and y only. The magnetic dynamical system transcribes

dx

dz
=

Hx

Hz
,

dy

dz
=

Hy

Hz
.

If there exists H : R2 → R such that

∂H
∂y

=
Hx

Hz
,

∂H
∂x

= −Hy

Hz
,
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then

0 =
∂

∂x
(
Hx

Hz
) +

∂

∂y
(
Hy

Hz
) = div

~H

Hz
=

1
Hz

div ~H + ( ~H, grad
1

Hz
) =

= − ( ~H, grad Hz)
H2

z

and hence Hz is either a constant function or a first integral of the magnetic dynamical
system (i.e., Hz(x, y, z) = c are field surfaces of ~H).

Conversely, if Hz is either a first integral of the magnetic dynamical system or a
constant function and the ratios

Hx

Hz
,

Hy

Hz

are functions of x, y only, then the Hamiltonian H does exist. Consequently the fol-
lowing theorem is true.
3.1. Theorem. Suppose that none of the components (Hx,Hy, Hz) is the function
zero. The corresponding magnetic dynamical system is reducible to a bidimensional
Hamiltonian system if and only if at least one of the components (Hx,Hy, Hz) is either
a constant or a first integral of the magnetic dynamical system and the ratios of the
other two by this component depend effectively only of the variables who index them.
Remark. Suppose that the magnetic dynamical system reduces to a Hamiltonian sys-
tem on xOy. Then the magnetic lines are geodesics of a Riemannian-Jacobi structure
which is conformal to the Euclidean structure on R2.

4 Symmetric and antisymmetric magnetic fields

The examples in §2 suggest the following considerations.
Let S : R3 → R3 be a symmetry and ~H be the Biot–Savart–Laplace field regarded

as a function of the type ~H : R3 → R3.
If ~H ◦S = S ◦ ~H, then the magnetic field ~H is called symmetric. If ~H ◦S = −S ◦ ~H,

then the magnetic field ~H is called antisymmetric.
4.1. Theorem. Let D, ~J, ~H the mathematical entities from the formula of Biot-
Savart-Laplace, and S the symmetry of R3 with respect to the origin. Suppose
S(D) = D.

1) If ~J ◦ S = S ◦ ~J, then ~H ◦ S = −S ◦ ~H.

2) If ~J ◦ S = −S ◦ ~J, then ~H ◦ S = S ◦ ~H.
Proof. 1) We take into account the change of variables in the triple integral and the
action of an orthogonal transformation upon the vector product. Since S(x, y, z) =
(−x,−y,−z), succesively we have

~H ◦ S(M) =
∫

S(D)

~J ◦ S(P )× ~S(P )S(M)
S(P )S(M)3

dvS(P ) =
∫

D

S ◦ ~J(P )× S ◦ ~PM

PM3
dvP =

= (sign S)S ◦
∫

D

~J(P )× ~PM

PM3
dvP = −S ◦ ~H(M).
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4.2. Theorem. Let D, ~J, ~H the mathematical entities from the formula of Biot-
Savart-Laplace, and S be the symmetry of R3 with respect to Oz. Suppose S(D) =
D.

1) If ~J ◦ S = S ◦ ~J ,then ~H ◦ S = S ◦ ~H.
2) If ~J ◦ S = −S ◦ ~J ,then ~H ◦ S = −S ◦ ~H.

Proof.1) The symmetry with respect to Oz is S(x, y, z) = (−x,−y, z). It follows

~H ◦ S(M) =
∫

S(D)

~J ◦ S(P )× S ◦ ~PM

S(P )S(M)3
dvS(P ) =

∫

D

S ◦ ~J(P )× S ◦ ~PM

PM3
dvP =

=
∫

D

(signS)S ◦
~J(P )× ~PM

PM3
dvP = S ◦

∫

D

~J(P )× ~PM

PM3
dvP = S ◦ ~H(M).

Remark. The theory in this paragraph can be extended to any isometry.
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