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Abstract

Spherically symmetric metrics in the Finslerian setting are studied. Taking
a different aproach from that of G.S. Asanov [3], the main geometrical objects
associated to such a metric are found. The Einstein equations in vacuum are
written.
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Introduction

In the last decade a revision and a generalization of the methods of general relativities
were done by replacing the Riemannian metrics with more general ones.

As afirst step a Finslerian theory of relativity was proposed and accordingly the
Finslerian-Einstein equations were derived. Such equations were proposed on three
quite distinct ways. The first one is a subtle combination between physical intuition
and formal aspects and has its roots in the Yukawa bilocal theory, see [9],[6],[5]. The
second one is provided by variational principles and extends the Palatini method, see
[2],13]. The third, of geometrical nature, was suggested by the involvement of tangent
bundle in the Finsler geometry (see [8] and references therein).

These ways have advantages and disadvantages but only if they are put together
a complete picture of the whole theory is obtained.

Our contribution in this paper is on the third line mentioned in the above. First,
we have to stress that though this line of development is more geometric, there exist
many physical arguments which support it, see [5]. Besides, its generality produces a
richness of physical interpretations and such as its usefulness increases.

In a synthetic and rather vague way it can be described as follows. One considers
a smooth manifold M of finite dimension and the tangent manifold T M fibered over
M by the usual projection 7 : TM — M. A symmetric and nondegenerate tensor
field on T'M, whose local components (g;;(z,y)) behave like the components of a
similar tensor field on M is called a generalized Lagrange metric, briefly a G L-metric.
Assuming that the vertical distribution on 7'M, i.e. the kernel of the tangent map 77,
has a supplementary distribution (horizontal), usually called a nonlinear connection,
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a pseudo-Riemannian metric G on TM is derived from g;;(x,y). Then it is shown
that a linear connection D which is metrical with respect to G and preserve both
distributions exists. The generalized Einstein equations are just the usual Einstein
equations written for the pair (G, D) and an arbitrary energy momentum tensor
field. A similar construction can be done for a vector bundle. For the details, we refer
to [8].

As it is well-known, in the general theory of relativity and in cosmologies several
categories of pseudo—Riemannian metrics are used. Among them of great interest are
the so—called (static) spherically symmetric metrics. A generalization of these metrics
to the Finslerian setting was proposed and studied by G.S. Asanov [2],[3]. In spite
of the various assumptions on homogeneity he made, the metric he proposed is not
Finslerian but a GL-metric. This fact, recognized by Asanov himself, produces a
difficulty since, in general, it is not possible to determine a nonlinear connection
from a G L-metric as it happens for Finslerian metrics. G.S. Asanov overcomes this
difficulty by assuming the vanishing of the h-deflection tensor of D. Thus he succeded
to determine the local coefficients of D ingeniously solving a complicated equation
involving these coefficients.

In the following we shall adopt a different point of view in order to develop
the geometry of a G L-metric which is a slight generalization of Asanov’s metric. As
this G L-metric is constructed using a pseudo-Riemannian metric (r;;(z)) on M, we
use (ri;(z)) for determining a nonlinear connection and so the finding of the local
coefficients of D is merely a problem of calculation.

The paper is organized as follows. In §1 we state the GL-metric to be studied
and we find the nonlinear connection to be used later. In §1 the linear connection D is
determined by its local coefficients. Its torsions and deflection tensors are computed.
In §3 the curvatures of D are computed and the generalized Einstein equations in
vacuum are written. Some concluding remarks end the paper.

1 A static spherically symmetric GL-metric

Let M be a smooth n-dimensional manifold and (z?), 4, j, ... = 1, ..., n its local coordi-
nates. We shall denote by (z?,y¢) the local coordinates on the tangent manifold 7'M
such that 7 : (2%, y?) — 2.

A change of coordinates (z¢,y?) — (&%, 4') on TM has the form

= Fi(z',...,2"), rank (833) =n,
oxJ

(1.1) |

j = oo

The local components (g;;(z,y)) of a GL-metric satisfy

* ozl
. 9i(.) = I O G0 @), . 0).

gz’j(m=y) = g]'i(m=y)7 det(gij(m=y)) 7é 0.

The smoothness of class C* will be assumed.
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Assume that a symmetric nondegenerate tensor r;; () is given on M. It is static
spherically symmetric (see (13.22) in [7]) if the coordinates (z°, 2%), a, 8,7 = 1,...,n—
1 can be introduced on M, such that

(1.3) r00 = roo(r), Tap = —W(r)das, Tao =0,

where 0,5 stand for the Kronecker symbols, ro9 > 0, W # 0,1 = (gz (z*)2)2. These
coordinates are called isotropic. The tensor r;;(x) may be thought of as a particular
G L-metric. From now on we take n = 4.

One considers four positive scalars A;, i = 0,1,2,3 on TM and one constructs
a G L-metric (g;;(z,y)) putting

(1.5) po(@,y) = Az, y)roeo(r), palz,y) =—Aa(z,y)W(r).
Later we shall assume that the functions A; depend only on r and g where
(1.6) g=— rasy™y’/lroo(y")’] "

a,3

The G L-metric obtained in such a way will be called static spherically symmetric.
The metric considered by G.S. Asanov in [3] is obtained from (1.4) with Ay # 4; =
Ay = A3 depending on r and ¢ only.

We notice that e :Z rijyiyj is the so—called absolute energy of the G L—metric

i

(rij (z)). It is clear that the function ¢ was choosen such that to be homogeneous of
degree zero. As in our considerations the homogeneity has no any role, it is more
reasonable to assume that A; depend only on r and .

It is obvious that (g;;(z,y)) given by (1.4) and (1.5) is a GL-metric. In general,
a G L-metric (g;;) is said to be reducible to a Lagrange metric, shortly an L-metric if

2
there exists a function L : TM — R such that g;;(z,y) = lw
2 Oytoyl

neous of degree 2 with respect to y, (g;;(,y)) becomes a Finslerian metric. It is our
G L-metric (1.4)-(1.5) reducible to an L-metric or to a Finslerian one? For answering
this question one associates to (gi;(z,y)) a d-tensor field of components Cjjx(z,y) =
_ 19y
20yk
to an L-metric if Cyjx(z,y) # 0 is totally symmetric. We have

- If L is homoge-

and by the Proposition 1.1, Ch.X in [8], the G L-metric g;;(x,y) is reducible

(1.7) Cinlz,y) =0fori#j,  Cirle.y) = %SPZ‘
Y
It results that Cjjr # 0 when p; depend on y. If this tensor field would be totally
Opi _ Opi
oyt oy’
G L-metric (g;;) given by (1.4)-(1.5) is not a Lagrange metric nor a Finslerian one.
Let V,TM =kert!, u € TM, be the vertical subspace of T,,T M. The vertical

0
distribution v — V,,TM, u € TM is integrable and is locally spanned by <—Z> A

Yy
nonlinear connection N is a distribution u — H,T M, called horizontal distribution,

which is supplementary to the vertical distribution, i.e.,

symmetric, then a equality which is not true for arbitrary A;. Thus, the
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(1.8) H,M @& V,TM = T,TN holds.

The horizontal distribution is spanned by n local vector fields

) 0

o O

0
7Nik Z,Y)—>
( )yk

where the functions (N (z,y)) have to satisfy

L0F  0F ,  oF
i 9r  oxzF T fmigxk?

(1.9)

when a change of coordinates (1.1) on T'M is performed. These functions are called
the local coefficients of the nonlinear connection V.
Coming back to (r;;(z)), let p;k(a:) be the Christoffel symbols

i _1 ih aTjk Orkn 57“jk
(1.10) Pik = 3" <8:Ek * Ori  Jzh

Proposition 1.1. The functions
(1.11) Ni(z,y) =Y pir(x)y"
k

are the local coefficients of a nonlinear connection N.
Proof. By using the usual law of transformation for pj.k (x) one easily checks (1.9) for
the given functions.

Now we shall seek for an explicit form of (N;(z,y)). The tensor field (rj;(z)) is
of the form

(112) Ty = T4, Trij = 0 for 4 75 j,
(1.12) ro =7o0(r), T =19 =735 =—-W(r).

Its reciprocal (%) has the form

(1.13) r' = —;r =0for i # j.

ri
Inserting (1.12)—(1.13) in (1.10), one gets

piilw) = 0 for i £ £k,

. 1 a’l“z' .
p;k(‘r) = 2_7'18,’Ek fOF k#la
(1.14) ) 1 Or; L.
/);j(fﬂ) = o 8;1» for i# j,
i 1 ari
pii(r) = 2_m8mi

Then (1.11) leads to the following
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) 1 [(Or; , Or;
i _ i J g . .
Ny =5 ((’3ny Bzt ) fori 7 j,
(115 S
N? = Lyt
L@, y) 2 2 5k Y
. 0N} ONj . : .
The d-tensor field 7}, = v is called the torsion of the nonlinear connection
Jk dyJ 5yk
i
N(N]l) In our case, le = pékm and so we have

Proposition 1.2. The nonlinear connection of local coefficients (1.11) has no torsion.
The curvature of the monlinear connection N(N;) is given by the d tensor field of
components

. SNi  §Ni
i J k.
(1.16) ik Sak b

Owing to (1.11), it follows directly that

(1.17) Riy(x,y) =Y pr'ju(z)y",
k

where pp,ji, is the curvature of the metric (r;;(z)). Thus, in order to compute R;k (z,9)
we need to compute the curvature p,’jx (x). We notice that R;k = 0 if and only if the
metric (r;;(x)) has no curvature.

As it is well-known, the curvature tensor of (r;;(z)) is

i Opji O s i i
(1.18) pi'kn(@) = S = S H D kbl = D PinPik-
Inserting p; (+) from (1.14) in (1.18), after a long calculation, one gets

pi'kn=0for i#j#k#h#i;pi'he =0 for k#i, h#i; pi'in =0 for i#h;
i 1 9%r; 1 Or; Or; 1 0r; Or; 1 Ory, Or;
Pitih = e T e T AR BT n B Auk
4r; | Oxi0x r; Ozl Ox r; Oz Oxd 7y Ox Oz

for i£h#i,

Pitki = 4r; [26.2:"613’“ r; Oxk da' rj Ozh azi} forizj# k71,

i 1 827‘i 1 67‘2' 2 B 1 67‘2' 67‘]‘ 1 627']' B
Pitii = 5 (0z3)2  2r? \ O/ 2r? Ozt Ozt 2r; (Ox)?

L (Nt (o on oy
drir; \ Oz 4r? \ Ozd dr;r; OxJ Oxl

1 a’l'j ari Z 1 67‘]‘ ari

4r? Ozt Oz’ r;rs Oz Oz’

827“]' 2 a’l“z' 87“]‘ 1 Brj Brj

(1.19)

for i #£ 3.
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Now, owing to (1.17), from (1.19), it results

827“)1 2 Bri 87“h 1 Brh 87“h>

h
ZU
Bl = priny" + o'y (Qarzark T OnF B dak owi)

y* (2 9%y, 2 Or; Ory, 1 Ory, 6rk>

74_73» - =

- - | for iZk#£h#1
(1.20) Ozxidzh  r; Ozh Ozt 1y Oxh Ozt righ#hi

i 1 9%r; 1 Or; Or; 1 Or; Or; 1 ory Or;\
R, :Z 4_m< — J ) 7.
£i

0xidzh  r; Oxd Ozl r; Ozt dzd 1y Bz oz )?

Concluding, we have found a natural nonlinear connection (1.11) without torsion
and with the curvature (1.20).

2 Metrical linear connection of a static spherically
symmetric G L-metric

In [8, ch.X], one associates to a GL-metric (g;;) a metrical linear connection CT (V)
of local coefficients (N]’f(m,y)7L]k(m Y), C « (@, ), where

Loin(Ognk , 095 09ik\ i _ 1 in(O9nk  O9in  Ogir)
2 oxd dxk oxh ik = 39 oxI oxk Oxh
(

The connection CT'(N) preserves the decomposition (1.8) and is metrical, i.e.

(2.1) L=<

where short (resp. long) vertical bar stands for covariant derivative with respect to L;k
(resp. C]’:k). Tyvo torsions of CT'(N) vanish, and this fact corresponds to the symmetry
of L} and C’;k in j and k.
We seek for an explicit form of CT(NNV) for our GL-metric (1.4)-(1.5). First, we
0

notice that L, and Cj; have the same form as p%, but only the operators —- are
T

0 0 .
replaced by e and — o —;» respectively. Accordingly, LY, and C” will be obtained from

) 0
(1.14) by replacing r; by p; and the operators by —- and —, respectively. Thus,
Y

zk xk
we get
; oy . ; 1 dp;
LYy =0 fori#j#k#i, L““_Q_(S for i £k,
(23) 1 dp; 146
i i 0pi
Ly = 2p Sai 7 for i#j, L = 2pz 5o
Similarly, one obtains:
, . . , 1 Op; )
C, =0fori#£j#k#i, C}, = for i#k
(2.4) ’ 2p: 0y*
' ) 1 8p‘ . 1 Bpi
77 2p a i for Z7é'7’ i 2pz 6yz
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The other torsions of CT'(NNV) are C;k (z,y) R;k and P]?k, where

(2.5) Pl = N} _ L}
) Jk = Ay jk:

In our case, Pj, = pi, — L}, hence it is symmetric in j and k. An explicit form
of it can be infered from (2.3) and (1.14). From such a form one easily concludes that
(P]’k) vanishes if p; do not depend on y.

The h-deflection tensor of CT'(N) is the d-tensor field

and the v-deflection tensor is
(2.7) di = yi|j =0 + Ci;(w,9)y"
Remark 2.1. For the GL-metric (1.4)-(1.5) we have D} = —y*P}..
The deflection tensor field are involved in the theory of electromagnetism pro-

posed in [8, ch.X].
A first form of these tensor fields is as follows

. y Op; Y s Opi L
D, = ZN - Z]\f y; for i #7,

2p; Loyt 2p 79
(2-8) Di B yi NP 891’ 1 Z ZNS 891’ k
L2, Loyt 2p; k oys v
s k#i s
) 1 Op; - 0pi ..
di = — [yl i %P g, .
! 2p; (y oyl Y 81/’) or i3
(2.9)

) 1 api
. 14+ — s )
! - 2pi ;y dy*

&
I

where (N]’) is given by (1.15).
In the theory of electromagnetism mentioned in the above, the h-electromagnetic
field is defined as the skewsymmetric part of D;; = Z Gik Df while the v-electromag-
k
netic field is defined as the skewsymmetric part of d;; = Z gikdf.

k
In our case, (2.8) leads to

1] . dpi ; Opi
o= = e § — ! S
(2.10) Fij 1 [y (ES N; 5ys> Y (ES:NJ ays>] )

_ 1/ 0pi  0p;
(2.11) fiu=1 <y 9 Vo)

where again the functions N;f are given by (1.15).
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3 Curvatures of CI'(N). The Einstein equations in
vacuum

The connection CT'(N) has three curvatures

SLy, , ,
6wh 5wk Z LykLih Z L}?hL;k + Z C;SRZI’IJ

Rjikh('ra y)

. 8Li
Pj'kn(z,y) = 2y h ~ Ciupi Z is Pkns

aci,

Sj'kn(z,y) = Byh - Z ﬁh*ZCh

The following notation will be used

Ry, = ZRjiki: P;k: ZPjikia Fi’k: ZPjiik:

Sik = Zsjiki: R=g"*Rj, S=g"*Sj.

The Einstein equations associated to CT(N) are as follows (see §3,[8, ch.V])

1 H 1 1
Rij = 5Rgij = £ Tij, Pix=rTjk
(3.2)
1 v 2 >
Sij = 5591 =6 Tij,  Pip=r T

In the right hand of (3.2) the components of the energy—momentum tensor field ap-
pear.

In vacuum (k = 0) the equations (3.2) reduce to
1 2
(3.3) R;; =0, S;; =0, P;=0, P;;=0.

Now we shall seek for the explicit forms of the equations (3.3). We deal with the
first two only as most important. The second is easier. We shall begin with it. Noticing

0
that S] kn has the same form as p;* e but —- is replaced with —, the following form
y

of it is directly infered from (1.19):
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Sjikhzo for Z#];ﬁk#h;ﬁl, Siikhzo for k#llhyél, Siiih:O for Z;éh,

i~ L [y @i 10piOpi 1 Op; Opi 1 Dpu Opi
T 4p [Toyioyt  pi0yi Oyt p; Oyt Oyi  py Oyl Oy"
for i £j#h#1,
, _ 1 [, 0%;  20pidp; 1 0p;0p;
Si'ki 4p; { dyidyt  p; OyF By’ p; OyF Dy’ } or i£jAk#i,

S.i“_i 0%pi 1 (Opi\y 1 Op;i9p, 1 9%p;
Jj i Qpi (8yj)2 2012 ayj 2[)22 ayz ayi 201’ (ayl)2

1 <5Pj> 2, 1 <3Pz’> o 1 Opi %+
4pipj \9y') ~ 4p; \Oy7)  4pip; Oy’ Dy’
1 9p; Opi ) 1 9dp; Op; .y
4p7 Oy’ Oy 4pips Oy* Oy* '

7]
Then we have
(3.5) Sik = — Z Sjiik for j#£k, Sj;=— Zsjiij-
i£j, itk it
(3.6) S = Z ijsjiij-
joi#i
Now, if we set
(3.7) Rj'wn = Rj'sj = )_ CjRip.

99

. ) 0 )
it can be seen that R;'y, is similar with S;’x, but — is replaced by - Thus its
Y T

form is easily found from (3.4),

Ri'kn=0for i£j#k#h#i, R =0 for k#i,h#i, Ri'in =0 for i £h,

- 1 {2 8%p;  16p; 6pi 1 6p; dpi 1 bpy 5pzl

3 ih = 4p; |“xidah  p; b Sxh p_jtsm—h(sxj pn 0z dxh

R = Lo 0 2 0pidp; 1 0p; Op;
3 ki dp; | dxioxk  p; 0xk Szt pj oz da?

(3.8)

- 1 82p; 1 <5pi>2 lépi%_i_ 1 6%p;

70T 5, 02k 202 \owi ) 2p20ai oxi | 2p; (0212

U (N (e 1 pidp
4p;p; \ o' 4p? \ 7 4p;pj dxd dxi

1 6p; dp; 1 6p; 0p; .,
+ p]i-l-z Pi op for i #£ 3.
i#s

@W oxt 4p;ps 0 Oz

for i#j£ki,
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Next, in order to find R;’ it suffices to find an explicit form for Z C;sth denoted

for brevity by A;%x,. We have a first form of it as follows

Ajlen=CLRl, +CLR], for i#j#k#h#i,

Ai'gn = Z CisRiy+Ciy Ry, — Cly Ry +Ci Ry, for i £k #h#i,

s#k, s#h
s#i

(3.9) Aitin="Y_ CLR}+C}iRi,—Cl Ry,
si, s2h
Ajlin=CL R, +CLRY,
Aj'rj=—CliRy —C Ry,
Aj'ij=CL R +CRI.

Since we have

Rjy = —Rj'x — Y Ryl for j#k;
i£], itk
(3.10) e
Rjj =~ Rj'y,
i

by (3.7) (3.9) we obtain a first form of R,

. o .

Ry, :E Ci R + CJ; Ry — C5 Ry —
i

stk

2, , S0 S0
72 1 [2 8% p; 1 dp; 1 0pj dp; 12:] dpi

4p; |“ozidah  p;oxk  pjoxk dxi  p Sk

itj
(3.11) 2
_Z(CJZ:]'RZk + Cz'ij i) for j #k
iz
Rj; =) (Cj;Ri; + Cj;R) -y Rj'i;.
7 i#]

4 Concluding remarks

Our connection CT'(N) does not coincide to that which G.S. Asanov determined in [4].
As we have seen, the former has deflection, i.e., D;'- # 0, while by the stipulation (21.3)
in [4], the later is free of deflection. For a discussion at what extent the deflection tensor
influences the existence of canonical metrical d-connection of a given GG L-metric, we
refer to [1].

The using of isotropic coordinates in writting of the static spherically symmetric
metric (r;;) allowed an easy extension of it to the Finslerian setting and simplified a
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little the calculation. We just can say that this fact made possible the computation
of curvatures.

Our GL-metric (1.4)—(1.5) could be also considered as an extension of the
Robertson Walker metric to the Finslerian setting. It could provide various Finsle-
rian Universes. However, the notion of Finslerian Universe has not yet a clear physical
meaning and the computations seem hopeless. An algebraic manipulation programme
would be helpful. Our paper could be a first step towards such a programme.

Acknowledgements. A version of this paper was presented at the First Confer-
ence of Balkan Society of Geometers, Politehnica University of Bucharest, September
23-27, 1996.
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