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Abstra
tSpheri
ally symmetri
 metri
s in the Finslerian setting are studied. Takinga di�erent aproa
h from that of G.S. Asanov [3℄, the main geometri
al obje
tsasso
iated to su
h a metri
 are found. The Einstein equations in va
uum arewritten.Mathemati
s Subje
t Classi�
ation: 53C60, 83C20Key words: spheri
ally symmetri
 metri
s, Finslerian metri
s, Einstein equationsIntrodu
tionIn the last de
ade a revision and a generalization of the methods of general relativitieswere done by repla
ing the Riemannian metri
s with more general ones.As a �rst step a Finslerian theory of relativity was proposed and a

ordingly theFinslerian-Einstein equations were derived. Su
h equations were proposed on threequite distin
t ways. The �rst one is a subtle 
ombination between physi
al intuitionand formal aspe
ts and has its roots in the Yukawa bilo
al theory, see [9℄,[6℄,[5℄. These
ond one is provided by variational prin
iples and extends the Palatini method, see[2℄,[3℄. The third, of geometri
al nature, was suggested by the involvement of tangentbundle in the Finsler geometry (see [8℄ and referen
es therein).These ways have advantages and disadvantages but only if they are put togethera 
omplete pi
ture of the whole theory is obtained.Our 
ontribution in this paper is on the third line mentioned in the above. First,we have to stress that though this line of development is more geometri
, there existmany physi
al arguments whi
h support it, see [5℄. Besides, its generality produ
es ari
hness of physi
al interpretations and su
h as its usefulness in
reases.In a syntheti
 and rather vague way it 
an be des
ribed as follows. One 
onsidersa smooth manifold M of �nite dimension and the tangent manifold TM �bered overM by the usual proje
tion � : TM ! M: A symmetri
 and nondegenerate tensor�eld on TM , whose lo
al 
omponents (gij(x; y)) behave like the 
omponents of asimilar tensor �eld on M is 
alled a generalized Lagrange metri
, brie
y a GL-metri
.Assuming that the verti
al distribution on TM , i.e. the kernel of the tangent map �T ,has a supplementary distribution (horizontal), usually 
alled a nonlinear 
onne
tion,Balkan Journal of Geometry and Its Appli
ations, Vol.2, No.2, 1997, pp. 51-62

Balkan So
iety of Geometers, Geometry Balkan Press



52 V.G�̂rt�u and M.G�̂rt�ua pseudo{Riemannian metri
 G on TM is derived from gij(x; y): Then it is shownthat a linear 
onne
tion D whi
h is metri
al with respe
t to G and preserve bothdistributions exists. The generalized Einstein equations are just the usual Einsteinequations written for the pair (G;D) and an arbitrary energy{momentum tensor�eld. A similar 
onstru
tion 
an be done for a ve
tor bundle. For the details, we referto [8℄.As it is well{known, in the general theory of relativity and in 
osmologies several
ategories of pseudo{Riemannian metri
s are used. Among them of great interest arethe so{
alled (stati
) spheri
ally symmetri
 metri
s. A generalization of these metri
sto the Finslerian setting was proposed and studied by G.S. Asanov [2℄,[3℄. In spiteof the various assumptions on homogeneity he made, the metri
 he proposed is notFinslerian but a GL-metri
. This fa
t, re
ognized by Asanov himself, produ
es adiÆ
ulty sin
e, in general, it is not possible to determine a nonlinear 
onne
tionfrom a GL-metri
 as it happens for Finslerian metri
s. G.S. Asanov over
omes thisdiÆ
ulty by assuming the vanishing of the h-de
e
tion tensor of D. Thus he su

ededto determine the lo
al 
oeÆ
ients of D ingeniously solving a 
ompli
ated equationinvolving these 
oeÆ
ients.In the following we shall adopt a di�erent point of view in order to developthe geometry of a GL-metri
 whi
h is a slight generalization of Asanov's metri
. Asthis GL-metri
 is 
onstru
ted using a pseudo{Riemannian metri
 (rij(x)) on M , weuse (rij(x)) for determining a nonlinear 
onne
tion and so the �nding of the lo
al
oeÆ
ients of D is merely a problem of 
al
ulation.The paper is organized as follows. In x1 we state the GL-metri
 to be studiedand we �nd the nonlinear 
onne
tion to be used later. In x1 the linear 
onne
tion D isdetermined by its lo
al 
oeÆ
ients. Its torsions and de
e
tion tensors are 
omputed.In x3 the 
urvatures of D are 
omputed and the generalized Einstein equations inva
uum are written. Some 
on
luding remarks end the paper.1 A stati
 spheri
ally symmetri
 GL-metri
Let M be a smooth n-dimensional manifold and (xi); i; j; ::: = 1; :::; n its lo
al 
oordi-nates. We shall denote by (xi; yi) the lo
al 
oordinates on the tangent manifold TMsu
h that � : (xi; yi)! xi:A 
hange of 
oordinates (xi; yi)! (~xi; ~yi) on TM has the form(1:1) ~xi = ~xi(x1; :::; xn); rank � �~xi�xj� = n;~yi = �~xi�xk (x)yk :The lo
al 
omponents (gij(x; y)) of a GL-metri
 satisfy(1:2) gij(x; y) = �~xk�xi �~xh�xj ~gkh(~x(x); ~y(x; y));gij(x; y) = gji(x; y); det(gij(x; y)) 6= 0:The smoothness of 
lass C4 will be assumed.



Spheri
ally Symmetri
 Generalized Lagrange Metri
s 53Assume that a symmetri
 nondegenerate tensor rij(x) is given on M . It is stati
spheri
ally symmetri
 (see (13.22) in [7℄) if the 
oordinates (x0; x�); �; �; 
 = 1; :::; n�1 
an be introdu
ed on M , su
h that(1:3) r00 = r00(r); r�� = �W (r)Æ�� ; r�0 = 0;where Æ�� stand for the Krone
ker symbols, r00 > 0;W 6= 0; r = (�� (x�)2) 12: These
oordinates are 
alled isotropi
. The tensor rij(x) may be thought of as a parti
ularGL-metri
. From now on we take n = 4:One 
onsiders four positive s
alars Ai; i = 0; 1; 2; 3 on TM and one 
onstru
tsa GL-metri
 (gij(x; y)) putting(1:4) gii(x; y) = �i(x; y); gij = 0 for i 6= j; with(1:5) �0(x; y) = A1(x; y)r00(r); ��(x; y) = �A�(x; y)W (r):Later we shall assume that the fun
tions Ai depend only on r and q where(1:6) q = �X�;� r��y�y�=[r00(y0)2℄�1:The GL-metri
 obtained in su
h a way will be 
alled stati
 spheri
ally symmetri
.The metri
 
onsidered by G.S. Asanov in [3℄ is obtained from (1.4) with A0 6= A1 =A2 = A3 depending on r and q only.We noti
e that "=Xi;j rijyiyj is the so{
alled absolute energy of the GL{metri
(rij (x)): It is 
lear that the fun
tion q was 
hoosen su
h that to be homogeneous ofdegree zero. As in our 
onsiderations the homogeneity has no any role, it is morereasonable to assume that Ai depend only on r and ".It is obvious that (gij(x; y)) given by (1.4) and (1.5) is a GL-metri
. In general,a GL-metri
 (gij) is said to be redu
ible to a Lagrange metri
, shortly an L-metri
 ifthere exists a fun
tion L : TM ! R su
h that gij(x; y) = 12 �2L(x; y)�yi�yj � If L is homoge-neous of degree 2 with respe
t to y, (gij(x; y)) be
omes a Finslerian metri
. It is ourGL-metri
 (1.4)-(1.5) redu
ible to an L-metri
 or to a Finslerian one? For answeringthis question one asso
iates to (gij(x; y)) a d-tensor �eld of 
omponents Cijk(x; y) == 12 �gij�yk and by the Proposition 1.1, Ch.X in [8℄, the GL-metri
 gij(x; y) is redu
ibleto an L-metri
 if Cijk(x; y) 6= 0 is totally symmetri
. We have(1:7) Cijk(x; y) = 0 for i 6= j; Cijk(x; y) = 12 ��i�yk �It results that Cijk 6= 0 when �i depend on y: If this tensor �eld would be totallysymmetri
, then ��i�yk = ��k�yi a equality whi
h is not true for arbitrary Ai: Thus, theGL-metri
 (gij) given by (1.4)-(1.5) is not a Lagrange metri
 nor a Finslerian one.Let VuTM = ker �Tu ; u 2 TM , be the verti
al subspa
e of TuTM: The verti
aldistribution u ! VuTM; u 2 TM is integrable and is lo
ally spanned by � �yi�� Anonlinear 
onne
tion N is a distribution u!HuTM , 
alled horizontal distribution,whi
h is supplementary to the verti
al distribution, i.e.,



54 V.G�̂rt�u and M.G�̂rt�u(1:8) HuTM � VuTM = TuTN holds:The horizontal distribution is spanned by n lo
al ve
tor �eldsÆÆxi = ��xi �Nki (x; y) �yk ,where the fun
tions (Nki (x; y)) have to satisfy(1:9) ~Nhj �~xj�xi = �~xj�xkNki � �2~xj�xi�xk yk;when a 
hange of 
oordinates (1.1) on TM is performed. These fun
tions are 
alledthe lo
al 
oeÆ
ients of the nonlinear 
onne
tion N .Coming ba
k to (rij(x)), let �ijk(x) be the Christo�el symbols(1:10) �ijk = 12rih ��rjk�xk + �rkh�xj � �rjk�xh � �Proposition 1.1. The fun
tions(1:11) N ij (x; y) =Xk �ijk(x)ykare the lo
al 
oeÆ
ients of a nonlinear 
onne
tion N .Proof. By using the usual law of transformation for �ijk(x) one easily 
he
ks (1.9) forthe given fun
tions.Now we shall seek for an expli
it form of (N ij (x; y)). The tensor �eld (rij (x)) isof the form(1:12) rii = ri; rij = 0 for i 6= j;(1:12)0 r0 = r00(r); r1 = r2 = r3 = �W (r):Its re
ipro
al (rij ) has the form(1:13) rii = 1ri , rij = 0 for i 6= j:Inserting (1.12){(1.13) in (1.10), one gets
(1:14) �ijk(x) = 0 for i 6=j 6=k 6= i;�ijk(x) = 12ri �ri�xk for k 6= i;�ijj(x) = � 12ri �rj�xi for i 6=j;�iii(x) = 12ri �ri�xi �Then (1.11) leads to the following



Spheri
ally Symmetri
 Generalized Lagrange Metri
s 55(1:15) N ij (x; y) = 12ri � �ri�xj yi � �rj�xi yj� for i 6= j;N ii (x; y) = 12ri Xk �ri�xk yk:The d-tensor �eld � ijk = �N ik�yj � �N ij�yk is 
alled the torsion of the nonlinear 
onne
tionN(N ij ): In our 
ase, �N ij�yk = �ijkx and so we haveProposition 1.2. The nonlinear 
onne
tion of lo
al 
oeÆ
ients (1.11) has no torsion.The 
urvature of the nonlinear 
onne
tion N(N ij) is given by the d tensor �eld of
omponents(1:16) Rijk = ÆN ijÆxk � ÆN ikÆxj �Owing to (1.11), it follows dire
tly that(1:17) Rijk(x; y) =Xk �hijk(x)yh;where �hijk is the 
urvature of the metri
 (rij(x)): Thus, in order to 
ompute Rijk(x; y)we need to 
ompute the 
urvature �hijk(x): We noti
e that Rijk = 0 if and only if themetri
 (rij(x)) has no 
urvature.As it is well-known, the 
urvature tensor of (rij(x)) is(1:18) �j ikh(x) = ��ijk�xh � ��ijh�xk +Xs �sjk�ish �Xs �ijh�isk:Inserting �ijk(x) from (1.14) in (1.18), after a long 
al
ulation, one gets
(1:19)

�j ikh=0 for i 6=j 6=k 6=h 6= i; �iihk=0 for k 6= i; h 6= i; �iiih=0 for i 6=h;�j iih = 14ri �2 �2ri�xj�xh � 1ri �ri�xj �ri�xh � 1rj �rj�xh �ri�xj � 1rh �rh�xj �ri�xh �for i 6=h 6= i;�j ikj = 14ri �2 �2rj�xi�xk � 2ri �ri�xk �rj�xi � 1rj �rj�xh �rj�xi � for i 6=j 6=k 6= i;�j iij = 12ri �2ri(�xj)2 � 12r2i � �ri�xj�2 � 12r2i �ri�xi �rj�xi + 12ri �2rj(�xi)2�� 14rirj ��rj�xi�2 + 14r2i � �ri�xj�2 � 14rirj �ri�xj �rj�xj++ 14r2i �rj�xi �ri�xi +Xs6=j 1rirs �rj�xs �ri�xs for i 6=j:



56 V.G�̂rt�u and M.G�̂rt�uNow, owing to (1.17), from (1.19), it results
(1:20) Rikh=�kikhyk+�hikhyh= yh4ri�2 �2rh�xi�xk � 2ri �ri�xk �rh�xi � 1rh �rh�xk �rh�xi��� yk4ri�2 �2rk�xi�xh � 2ri �ri�xh �rh�xi � 1rk �rk�xh �rk�xi� for i 6=k 6=h 6= iRiih=Xj 6=i 14ri�2 �2ri�xj�xh � 1ri �ri�xj �ri�xh � 1rj �rj�xh �ri�xj � 1rh �rh�xj �ri�xh�yj :Con
luding, we have found a natural nonlinear 
onne
tion (1.11) without torsionand with the 
urvature (1.20).2 Metri
al linear 
onne
tion of a stati
 spheri
allysymmetri
 GL-metri
In [8, 
h.X℄, one asso
iates to a GL-metri
 (gij) a metri
al linear 
onne
tion C�(N)of lo
al 
oeÆ
ients (N ij(x; y); Lijk(x; y); Cijk(x; y)), where(2:1) Lijk= 12gih�ÆghkÆxj + ÆgjhÆxk � ÆgjkÆxh�, Cijk= 12gih��ghk�xj + �gjh�xk � �gjk�xh��The 
onne
tion C�(N) preserves the de
omposition (1.8) and is metri
al, i.e.(2:2) gijjk = 0; gij��k = 0;where short (resp. long) verti
al bar stands for 
ovariant derivative with respe
t to Lijk(resp. Cijk). Two torsions of C�(N) vanish, and this fa
t 
orresponds to the symmetryof Lijk and Cijk in j and k.We seek for an expli
it form of C�(N) for our GL-metri
 (1.4)-(1.5). First, wenoti
e that Lijk and Cijk have the same form as �ijk but only the operators �xk arerepla
ed by Æxk and �yk , respe
tively. A

ordingly, Lijk and Cijk will be obtained from(1.14) by repla
ing ri by �i and the operators �xk by Æxk and �yk , respe
tively. Thus,we get(2:3) Lijk = 0 for i 6=j 6=k 6= i; Liik = 12�i Æ�iÆxk for i 6=k;Lijj = � 12�i Æ�jÆxi for i 6=j; Liii = 12�i Æ�iÆxi �Similarly, one obtains:(2:4) Cijk = 0 for i 6=j 6=k 6= i; Ciik = 12�i ��i�yk for i 6=kCijj = � 12�i ��j�yi for i 6=j; Ciii = 12�i ��i�yi �



Spheri
ally Symmetri
 Generalized Lagrange Metri
s 57The other torsions of C�(N) are Cijk(x; y), Rijk and P ijk , where(2:5) P ijk = �N ij�yk � Lijk:In our 
ase, P ijk = �ijk �Lijk; hen
e it is symmetri
 in j and k. An expli
it formof it 
an be infered from (2.3) and (1.14). From su
h a form one easily 
on
ludes that(P ijk) vanishes if �i do not depend on y.The h-de
e
tion tensor of C�(N) is the d-tensor �eld(2:6) Dij = yijj = Likj(x; y)yk �N ij(x; y)and the v-de
e
tion tensor is(2:7) dij = yi��j = Æij + Cikj(x; y)yk:Remark 2.1. For the GL-metri
 (1.4)-(1.5) we have Dij = �ykP ikj :The de
e
tion tensor �eld are involved in the theory of ele
tromagnetism pro-posed in [8, 
h.X℄.A �rst form of these tensor �elds is as follows(2:8) Dij = yj2�i Xs Nsi ��j�ys � yi2�i Xs Nsj ��i�ys for i 6=j;Dii = yi2�i Xs Nsi ��i�ys � 12�i Xk 6=i Xs Nsk ��i�ys! yk:
(2:9) dij = 12�i �yi ��i�yj � yj ��i�yi� for i 6=j;dii = 1 + 12�i Xs ys ��i�ys ,where (N ij ) is given by (1.15).In the theory of ele
tromagnetism mentioned in the above, the h-ele
tromagneti
�eld is de�ned as the skewsymmetri
 part of Dij =Xk gikDkj while the v-ele
tromag-neti
 �eld is de�ned as the skewsymmetri
 part of dij =Xk gikdkj :In our 
ase, (2.8) leads to(2:10) Fij = 14 "yj  Xs Nsi ��i�ys!� yi Xs Nsj ��i�ys!# ;(2:11) fij = 14 �yi ��i�ys � yj ��j�yi� ;where again the fun
tions N ij are given by (1.15).



58 V.G�̂rt�u and M.G�̂rt�u3 Curvatures of C�(N). The Einstein equations inva
uumThe 
onne
tion C�(N) has three 
urvaturesRj ikh(x; y) = ÆLijkÆxh � ÆLijhÆxk +Xs LsjkLish �Xs LsjhLisk +Xs CijsRskh;Pj ikh(x; y) = �Lijk�yh � Cijhjk +Xs CijsP skh;Sj ikh(x; y) = �Cijk�yh � �Cijh�yk +Xs CsjkCish �Xs CsjhCisk :The following notation will be used(3:1) Rjk =Xi Rj iki; 1Pjk=Xi Pj iki; 2Pjk=Xi Pj iik;Sjk =Xi Sj iki; R = gjkRjk ; S = gjkSjk :The Einstein equations asso
iated to C�(N) are as follows (see x3,[8, 
h.V℄)(3:2) Rij � 12Rgij = � HT ij ; 1Pjk= � 1T jkSij � 12Sgij = � VT ij ; 2Pjk= � 2T jk :In the right hand of (3.2) the 
omponents of the energy{momentum tensor �eld ap-pear.In va
uum (k = 0) the equations (3.2) redu
e to(3:3) Rij = 0; Sij = 0; 1Pij= 0; 2Pij= 0:Now we shall seek for the expli
it forms of the equations (3.3). We deal with the�rst two only as most important. The se
ond is easier. We shall begin with it. Noti
ingthat Sj ikh has the same form as �j ikh but �xk is repla
ed with �yk , the following formof it is dire
tly infered from (1.19):



Spheri
ally Symmetri
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(3:4)

Sj ikh=0 for i 6=j 6=k 6=h 6= i; Siikh=0 for k 6= i; h 6= i; Siiih=0 for i 6=h;Sj iih= 14�i �2 �2�i�yj�yh � 1�i ��i�yj ��i�yh � 1�j ��j�yh ��i�yj � 1�h ��h�yj ��i�yh�for i 6=j 6=h 6= i;Sj ikj= 14�i �2 �2�j�yi�yk � 2�i ��i�yk ��j�yi � 1�j ��j�yk ��j�yi�� for i 6=j 6=k 6= i;Sj iij= 12�i �2�i(�yj)2 � 12�2i ���i�yj�2� 12�2i ��i�yi ��j�yi + 12�i �2�j(�yi)2�� 14�i�j���j�yi�2+ 14�2i ���i�yj�2� 14�i�j ��i�yj ��j�yj++ 14�2i ��j�yi ��i�yi +Xs6=j 14�i�s ��j�ys ��i�ys for i 6=j:Then we have(3:5) Sjk = � Xi6=j; i6=kSj iik for j 6=k; Sjj = �Xi6=j Sj iij :(3:6) S = �Xj Xi6=j �jSj iij :Now, if we set(3:7) ~Rj ikh = Rj ikj �Xs CijsRskh;it 
an be seen that ~Rj ikh is similar with Sj ikh but �yk is repla
ed by Æxk � Thus itsform is easily found from (3.4),
(3:8)

~Rj ikh=0 for i 6=j 6=k 6=h 6= i; ~Riikh=0 for k 6= i; h 6= i; ~Riiih=0 for i 6=h;~Rj iih= 14�i �2 Æ2�jÆxjÆxh � 1�i Æ�iÆxj Æ�iÆxh � 1�j Æ�jÆxh Æ�iÆxj � 1�h Æ�hÆxj Æ�iÆxh � ;~Rj ikj= 14�i �2 Æ2�jÆxiÆxk � 2�i Æ�iÆxk Æ�jÆxi � 1�j Æ�jÆxk Æ�jÆxi � for i 6=j 6=k 6= i;~Rj iij= 12�i Æ2�i(Æxk)2 � 12�2i � Æ�iÆxj �2 � 12�2i Æ�iÆxi Æ�jÆxi + 12�i Æ2�j(Æxi)2�� 14�i�j �Æ�jÆxi�2 + 14�2i � Æ�iÆxj �2 � 14�i�j Æ�iÆxj Æ�jÆxj++ 14�2i Æ�jÆxi Æ�iÆxi +Xj 6=s 14�i�s Æ�jÆxs Æ�iÆxs for i 6=j:



60 V.G�̂rt�u and M.G�̂rt�uNext, in order to �nd Rj ikh it suÆ
es to �nd an expli
it form forXs CijsRskh denotedfor brevity by Aj ikh: We have a �rst form of it as follows
(3:9)

Aj ikh=CijiRikh+CijjRjkh for i 6=j 6=k 6=h 6= i;Aiikh= Xs6=k; s6=hs6=i CiisRskh+CiikRkkh�CiihRhhk+CiiiRikh for i 6=k 6=h 6= i;Aiiih= Xs6=i; s6=hCiisRsih+CiiiRiih�CiihRhhi;Aj iih=CijjRjih+CiijRiih;Aj ikj=�CiijRijk�CijjRjjk ;Aj iij=CiijRiij+CijjRjij :Sin
e we have(3:10) Rjk = �Rjiik � Xi6=j; i6=kRj iik for j 6=k;Rjj = �Xi6=j Rj iij ;by (3.7){(3.9) we obtain a �rst form of Rjk
(3:11) Rjk =Xs6=js6=k CjjsRsjk + CjjjRjjk � CjjkRkki��Xi6=ji6=k 14�i �2 Æ2�iÆxjÆxk � 1�i Æ�iÆxk � 1�j Æ�jÆxk Æ�iÆxj � 1�k xj Æ�iÆxk ���Xi6=ji6=k (CijjRjik + CiijRiik); for j 6= kRjj =Xi6=j (CiijRiij + CijjRjij)�Xi6=j ~Rj iij :4 Con
luding remarksOur 
onne
tion C�(N) does not 
oin
ide to that whi
h G.S. Asanov determined in [4℄.As we have seen, the former has de
e
tion, i.e., Dij 6= 0, while by the stipulation (21.3)in [4℄, the later is free of de
e
tion. For a dis
ussion at what extent the de
e
tion tensorin
uen
es the existen
e of 
anoni
al metri
al d-
onne
tion of a given GL-metri
, werefer to [1℄.The using of isotropi
 
oordinates in writting of the stati
 spheri
ally symmetri
metri
 (rij) allowed an easy extension of it to the Finslerian setting and simpli�ed a



Spheri
ally Symmetri
 Generalized Lagrange Metri
s 61little the 
al
ulation. We just 
an say that this fa
t made possible the 
omputationof 
urvatures.Our GL-metri
 (1.4){(1.5) 
ould be also 
onsidered as an extension of theRobertson{Walker metri
 to the Finslerian setting. It 
ould provide various Finsle-rian Universes. However, the notion of Finslerian Universe has not yet a 
lear physi
almeaning and the 
omputations seem hopeless. An algebrai
 manipulation programmewould be helpful. Our paper 
ould be a �rst step towards su
h a programme.A
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