Compact Einstein Kaehler submanifolds of a complex projective space

Yoshio Matsuyama

Abstract. In the present paper we show that if M_n is a compact irreducible (resp. reducible) Einstein Kaehler submanifold of a complex projective space, then M is parallel and totally geodesic in $CP_{n+p}(c)$, $CP_n(\frac{c}{r}), p = {}_{n+r}C_r - 1 - n$, the complex quadric $Q_n(c)$ in the totally geodesic submanifold $CP_{n+1}(c)$ of $CP_{n+p}(c), SU(\frac{n}{2}+2)/SU(\frac{n}{2}) \times U(2), n > 6, p = {}_{n(n-6)}{}_{8}; SU(10)/U(5), n = 10, p = 5 \text{ or } E_6/Spin(10) \times S^1, n = 16, p = 10$ (resp. $P_{n_1}(c) \times P_{n_1}(c), n = 2n_1$).

M.S.C. 2000: 53C40, 53B25

Key words: complex projective space, Einstein Kaehler submanifold, second fundamental form, parallel submanifold.

1 Introduction

Let $P_{n+p}(c)$ (resp. D_{n+p}) be an (n+p)-dimensional complex projective space with the Fubini-Study metric (resp. Bergman metric) of constant holomorphic sectional curvature c. Let C_{n+p} be an (n+p)-dimensional complex Euclidean space. Let $M_{n+p}(c)$ be an (n+p)-dimensional complex space form with constant holomorphic sectional curvature c. We remark that if c > 0 (resp. c < 0, c = 0), then $M_{n+p}(c) = P_{n+p}(C)$ (resp. D_{n+p}, C_{n+p}). Let M_n be an n-dimensional complex Kaehler submanifold of $M_{n+p}(c)$. There are a number of conjecture for Kaehler submanifolds in $P_{n+p}(c)$ suggested by K. Ogiue ([5]); some have been resolved under a suitable topological restriction (e.g. M_n is complete) (cf. [1], [5], [6] and [7]). In this direction, one of the open problems so far is as follows.

Conjecture (K. Ogiue). Let M_n be an *n*-dimensional Kaehler submanifold immersed in $M_{n+p}(c), c > 0$. If M is irreducible (or Einstein) and if the second fundamental form is parallel, is M one of the following ? $M_n(c), M_n(\frac{c}{2})$ or locally the complex quadric $Q_n(c)$.

In the case that M_n is an Einstein Kaehler submanifold of the codimension two immersed in $P_{n+2}(c)$, it was proved in [1] and [6] that such a submanifold M_n is totally geodesic in $P_{n+2}(c)$ or the complex quadric $Q_n(c)$ in the totally geodesic hypersurface

Balkan Journal of Geometry and Its Applications, Vol.14, No.1, 2009, pp. 40-45.

[©] Balkan Society of Geometers, Geometry Balkan Press 2009.

 $P_{n+1}(c)$ of $P_{n+2}(c)$. Moreover, if M_n is an Einstein Kaehler submanifolds immersed in a complex linear or hyperbolic space, then M_n is totally geodesic ([7]).

In the present paper we would like to consider that M_n is compact and Einstein, so that the above conjucture is resolved partially. The main result is the following: **Theorem** Let M_n be an n-dimensional compact irreducible (resp. reducible) Einstein Kaehler submanifold immersed in $P_{n+p}(c)$. Then M_n is parallel and totally geodesic in $P_{n+p}(c)$, $CP_n(\frac{c}{r})$, $p = {}_{n+r}C_r - 1 - n$, the complex quadric $Q_n(c)$ in the totally geodesic submanifold $CP_{n+1}(c)$ of $CP_{n+p}(c)$, $SU(\frac{n}{2}+2)/SU(\frac{n}{2}) \times U(2)$, n > 6, $p = \frac{n(n-6)}{8}$; SU(10)/U(5), n = 10, p = 5 or $E_6/Spin(10) \times S^1$, n = 16, p = 10 (resp. $P_{n_1}(c) \times P_{n_1}(c)$, $n = 2n_1$).

2 Preliminaries

Let M_n be an *n*-dimensional compact Riemannian manifold. We denote by UM the unit tangent bundle over M and by UM_x its fibre over $x \in M$. If dx, dv and dv_x denote the canonical measures on M, UM and UM_x , respectively, then for any continuous function $f: UM \to R$, we have:

$$\int_{UM} f dv = \int_M \{ \int_{UM_x} f dv_x \} dx.$$

If T is a k-covariant tensor on M and ∇T is its covariant derivative, then we have:

$$\int_{UM} \{\sum_{i=1}^n (\nabla T)(e_i, e_i, v, \cdots, v)\} dv = 0,$$

where e_1, \dots, e_n is an orthonormal basis of $T_x M, x \in M$. Now, we suppose that M_n is an *n*-dimensional compact Kaehler submanifold of complex dimension *n*, immersed in the complex projective space $P_{n+p}(c)$. We denote by J and <,> the complex structure and the Fubini-Study metric. Let ∇ and *h* be the Riemannian connection and the second fundamental form of the immersion, respectively. A and ∇^{\perp} are the Weingarten endomorphism and the normal connection. The first and the second covariant derivatives of the normal valued tensor *h* are given by

$$(\nabla h)(X,Y,Z) = \nabla_X^{\perp}(h(Y,Z)) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$$

and

$$\begin{aligned} (\nabla^2 h)(X, Y, Z, W) &= \nabla_X^{\perp}((\nabla h)(Y, Z, W)) - (\nabla h)(\nabla_X Y, Z, W) \\ &- (\nabla h)(Y, \nabla_X Z, W) - (\nabla h)(Y, Z, \nabla_X W), \end{aligned}$$

respectively, for any vector fields X, Y, Z and W tangent to M. Let R and R^{\perp} denote the curvature tensor associated with ∇ and ∇^{\perp} , respectively. Then h and ∇h are symmetric and for $\nabla^2 h$ we have the Ricci-identity

(2.1)
$$(\nabla^2 h)(X, Y, Z, W) - (\nabla^2 h)(Y, X, Z, W)$$
$$= R^{\perp}(X, Y)h(Z, W) - h(R(X, Y)Z, W) - h(Z, R(X, Y)W).$$

We also consider the relations

$$h(JX,Y) = Jh(X,Y)$$
 and $A_{J\xi} = JA_{\xi} = -A_{\xi}J$,

where ξ is a normal vector to M_n .

Now, let $v \in UM_x, x \in M$. If e_2, \ldots, e_{2n} are orthonormal vectors in UM_x orthogonal to v, then we can consider $\{e_2, \ldots, e_{2n}\}$ as an orthonormal basis of $T_v(UM_x)$. We remark that $\{v = e_1, e_2, \ldots, e_{2n}\}$ is an orthonormal basis of T_xM . We denote the Laplacian of $UM_x \cong S^{2n-1}$ by Δ .

If S and ρ is the Ricci tensor of M and the scalar curvature of M, respectively, and since M is a complex Kaehler submanifold in in $P_{n+p}(c)$, then from the Gauss equation we have

(2.2)
$$S(v,w) = \frac{n+1}{2}c < v, w > -\sum_{i=1}^{2n} < A_{h(v,e_i)}e_i, w >,$$

(2.3)
$$\rho = n(n+1)c - |h|^2.$$

Define a function f_1 on $UM_x, x \in M$, by

$$f_1(v) = |h(v, v)|^2,$$

$$f_2(v) = \sum_{i=1}^{2n} \langle A_{h(v,e_i)}e_i, v \rangle,$$

Using the minimality of M we can prove that

(2.4)
$$(\Delta f_1)(v) = -4(2n+2)f_1(v)^2 + 8\sum_{i=1}^{2n} \langle A_{h(v,e_i)}e_i, v \rangle$$

(2.5)
$$(\Delta f_2)(v) = -4nf_2(v) + 2|h|^2$$

Since

$$\begin{aligned} \frac{1}{2}\sum_{i=1}^{2n} (\nabla^2 f_1)(e_i, e_i, v) &= \sum_{i=1}^{2n} < (\nabla^2 h)(e_i, e_i, v, v), h(v, v) > \\ &+ \sum_{i=1}^{2n} < (\nabla h)(e_i, v, v), (\nabla h)(e_i, v, v) >, \end{aligned}$$

we have the following (See [2] and [3]):

Lemma Let M be an n-dimensional complex Kaehler submanifold of $P_{n+p}(c)$. Then for $v \in UM_x$ we have Compact Einstein Kaehler submanifolds

$$(2.6) \qquad \frac{1}{2} \sum_{i=1}^{2n} (\nabla^2 f_1)(e_i, e_i, v) = \sum_{i=1}^{2n} |(\nabla h)(e_i, v, v)|^2 + \frac{n+2}{2} c |h(v, v)|^2 + 2 \sum_{i=1}^{2n} < A_{h(v,v)} e_i, A_{h(e_i,v)} v > - 2 \sum_{i=1}^{2n} < A_{h(v,e_i)} e_i, A_{h(v,v)} v > - \sum_{i=1}^{2n} < A_{h(v,v)} e_i, A_{h(v,v)} e_i > .$$

3 Proof of Theorem

Since M is Einstein, we have

(3.1)
$$S = \frac{n+1}{2}cI - \sum_{i=1}^{2n} A_{h(v,e_i)}e_i = \frac{\rho}{2n}I,$$

where I denotes the identity transformation. From (2.2) and (2.3) the equation (3.1) yields

(3.2)
$$\sum_{i=1}^{2n} A_{h(v,e_i)} e_i = \frac{|h|^2}{2n} v.$$

We see the following equation holds for $v \in UM_x, x \in M$.

(3.3)
$$\sum_{i=1}^{2n} \langle A_{h(Jv,Jv)}e_i, A_{h(e_i,Jv)}Jv \rangle = -\sum_{i=1}^{2n} \langle A_{h(v,v)}e_i, A_{h(e_i,v)}v \rangle.$$

From (3.3) we have

$$(3.4) \qquad \frac{1}{4} \sum_{i=1}^{2n} (\nabla^2 f_1)(e_i, e_i, v) + \frac{1}{4} \sum_{i=1}^{2n} (\nabla^2 f_1)(e_i, e_i, Jv) \\ = \sum_{i=1}^{2n} |(\nabla h)(e_i, v, v)|^2 + \frac{n+2}{2} c |h(v, v)|^2 \\ -2 \sum_{i=1}^{2n} < A_{h(v, e_i)} e_i, A_{h(v, v)} v > -\sum_{i=1}^{2n} < A_{h(v, v)} e_i, A_{h(v, v)} e_i > .$$

Integrating over UM_x and using (3.2) , we have

(3.5)
$$\int_{UM_x} \sum_{i=1}^{2n} |(\nabla h)(e_i, v, v)|^2 dv_x + \frac{n+2}{2} c \int_{UM_x} |h(v, v)|^2 dv_x$$
$$-\frac{1}{n} \int_{UM_x} |h|^2 |h(v, v)|^2 dv_x - \int_{UM_x} \sum_{i=1}^{2n} \langle A_{h(v,v)}e_i, A_{h(v,v)}e_i \rangle dv_x = 0.$$

On the other hand, we get

$$\int_{UM_x} |h(v,v)|^2 dv_x = \frac{2}{2n(2n+2)} \int_{UM_x} |h|^2 dv_x,$$
$$\int_{UM_x} \sum_{i=1}^{2n} \langle A_{h(v,v)}e_i, A_{h(v,v)}e_i \rangle dv_x = \frac{2}{2n(2n+2)} \int_{UM_x} \sum (\operatorname{trace} A_{\xi_i} A_{\xi_j})^2 dv_x.$$

Hence we obtain

$$\begin{array}{lcl} 0 & \geq & \displaystyle \int_{UM_x} \sum_{i=1}^{2n} |(\nabla h)(e_i,v,v)|^2 dv_x \\ & + & \displaystyle \int_{UM_x} \{ \frac{n+2}{4n(n+1)} c |h|^2 - \frac{2}{4n^2(n+1)} |h|^4 - \frac{1}{4n(n+1)} |h|^4 \} dv_x \\ & = & \displaystyle \int_{UM_x} \sum_{i=1}^{2n} |(\nabla h)(e_i,v,v)|^2 dv_x \\ & + & \displaystyle \frac{n+2}{2n(n+1)} \int_{UM_x} (S(v,v) - \frac{n}{2}c) |h|^2 dv_x, \end{array}$$

noting that $\sum (\operatorname{trace} A_{\xi_i} A_{\xi_j})^2 \leq \frac{1}{2} |h|^4$. Put

$$S'(v,v) = S(v,v) - \frac{n}{2}c$$

Let α be the 1-form on UM_x given by

$$\alpha_v(e) = S'(e, v)|h|^2$$

with $v \in UM_x$ and $e \in T_v UM_x$, we get

$$(\delta \alpha)(v) = -S'(v, v)|h|^2 + \sum_{i=1}^{2n} S'(e_i, e_i)|h|^2 = (2n-1)S'(v, v)|h|^2$$

Integrating this equation over UM_x , we have

$$0 = \int_{UM_x} S'(v,v) |h|^2 dv_x.$$

Hence we obtain

$$0 \ge \int_{UM_x} \sum_{i=1}^{2n} |(\nabla h)(e_i, v, v)|^2 dv_x.$$

Thus M is parallel.

44

References

- Y. Matsuyama, On a 2-dimensional Einstein Kaehler submanifolds of a complex space form, Proc. Amer. Math. Soc. 95 (1985), 595-603.
- [2] Y. Matsuyama, On totally real submanifolds of a complex projective space, Nihonkai Math. J. 13 (2002), 153-157.
- [3] S. Montiel, A. Ros and F. Urbano, Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z. 191 (1986), 537-548.
- [4] H. Naitoh, Totally real parallel submanifolds of $P^n(C)$, Tokyo J. Math. 4 (1981), 279-306.
- [5] K. Ogiue, Differential geometry of Kaehler submanifolds, Adv. Math. 13 (1974), 73-114.
- [6] K. Tsukada, Parallel Kaehler submanifolds of Hermitian symmetric spaces, Math. Z. 190 (1985), 129-150.
- [7] M. Umehara, Kaehler submanifolds of complex space forms, Tokyo J. Math. 10 (1987), 203-214.

Author's address:

Yoshio Matsuyama Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku,Tokyo 112-8551, Japan. E-mail address: matuyama@math.chuo-u.ac.jp