Compact Einstein Kaehler submanifolds of a complex projective space

Yoshio Matsuyama

Abstract

In the present paper we show that if M_{n} is a compact irreducible (resp. reducible) Einstein Kaehler submanifold of a complex projective space, then M is parallel and totally geodesic in $C P_{n+p}(c)$, $C P_{n}\left(\frac{c}{r}\right), p={ }_{n+r} \mathrm{C}_{r}-1-n$, the complex quadric $Q_{n}(c)$ in the totally geodesic submanifold $C P_{n+1}(c)$ of $C P_{n+p}(c), S U\left(\frac{n}{2}+2\right) / S U\left(\frac{n}{2}\right) \times$ $U(2), n>6, p=\frac{n(n-6)}{8} ; S U(10) / U(5), n=10, p=5$ or $E_{6} / \operatorname{Spin}(10) \times$ $S^{1}, n=16, p=10\left(\right.$ resp. $\left.P_{n_{1}}(c) \times P_{n_{1}}(c), n=2 n_{1}\right)$.

M.S.C. 2000: 53C40, 53B25

Key words: complex projective space, Einstein Kaehler submanifold, second fundamental form, parallel submanifold.

1 Introduction

Let $P_{n+p}(c)$ (resp. D_{n+p}) be an $(n+p)$-dimensional complex projective space with the Fubini-Study metric (resp. Bergman metric) of constant holomorphic sectional curvature c. Let C_{n+p} be an $(n+p)$-dimensional complex Euclidean space. Let $M_{n+p}(c)$ be an $(n+p)$-dimensional complex space form with constant holomorphic sectional curvature c. We remark that if $c>0$ (resp. $c<0, c=0$), then $M_{n+p}(c)=P_{n+p}(C)$ (resp. D_{n+p}, C_{n+p}). Let M_{n} be an n-dimensional complex Kaehler submanifold of $M_{n+p}(c)$. There are a number of conjecture for Kaehler submanifolds in $P_{n+p}(c)$ suggested by K. Ogiue ([5]); some have been resolved under a suitable topological restriction (e.g. M_{n} is complete) (cf. [1], [5], [6] and [7]). In this direction, one of the open problems so far is as follows.
Conjecture (K. Ogiue). Let M_{n} be an n-dimensional Kaehler submanifold immersed in $M_{n+p}(c), c>0$. If M is irreducible (or Einstein) and if the second fundamental form is parallel, is M one of the following ? $M_{n}(c), M_{n}\left(\frac{c}{2}\right)$ or locally the complex quadric $Q_{n}(c)$.

In the case that M_{n} is an Einstein Kaehler submanifold of the codimension two immersed in $P_{n+2}(c)$, it was proved in [1] and [6] that such a submanifold M_{n} is totally geodesic in $P_{n+2}(c)$ or the complex quadric $Q_{n}(c)$ in the totally geodesic hypersurface
$P_{n+1}(c)$ of $P_{n+2}(c)$. Moreover, if M_{n} is an Einstein Kaehler submanifolds immersed in a complex linear or hyperbolic space, then M_{n} is totally geodesic ([7]).

In the present paper we would like to consider that M_{n} is compact and Einstein, so that the above conjucture is resolved partially. The main result is the following:
Theorem Let M_{n} be an n-dimensional compact irreducible (resp. reducible) Einstein Kaehler submanifold immersed in $P_{n+p}(c)$. Then M_{n} is parallel and totally geodesic in $P_{n+p}(c), C P_{n}\left(\frac{c}{r}\right), p={ }_{n+r} \mathrm{C}_{r}-1-n$, the complex quadric $Q_{n}(c)$ in the totally geodesic submanifold $C P_{n+1}(c)$ of $C P_{n+p}(c)$, $S U\left(\frac{n}{2}+2\right) / S U\left(\frac{n}{2}\right) \times U(2), n>6, p=$ $\frac{n(n-6)}{8} ; S U(10) / U(5), n=10, p=5$ or $E_{6} / \operatorname{Spin}(10) \times S^{1}, n=16, p=10$ (resp. $\left.P_{n_{1}}(c) \times P_{n_{1}}(c), n=2 n_{1}\right)$.

2 Preliminaries

Let M_{n} be an n-dimensional compact Riemannian manifold. We denote by $U M$ the unit tangent bundle over M and by $U M_{x}$ its fibre over $x \in M$. If $d x, d v$ and $d v_{x}$ denote the canonical measures on $M, U M$ and $U M_{x}$, respectively, then for any continuous function $f: U M \rightarrow R$, we have:

$$
\int_{U M} f d v=\int_{M}\left\{\int_{U M_{x}} f d v_{x}\right\} d x .
$$

If T is a k-covariant tensor on M and ∇T is its covariant derivative, then we have:

$$
\int_{U M}\left\{\sum_{i=1}^{n}(\nabla T)\left(e_{i}, e_{i}, v, \cdots, v\right)\right\} d v=0
$$

where e_{1}, \cdots, e_{n} is an orthonormal basis of $T_{x} M, x \in M$.
Now, we suppose that M_{n} is an n-dimensional compact Kaehler submanifold of complex dimension n, immersed in the complex projective space $P_{n+p}(c)$. We denote by J and $<,>$ the complex structure and the Fubini-Study metric. Let ∇ and h be the Riemannian connection and the second fundamental form of the immersion, respectively. A and ∇^{\perp} are the Weingarten endomorphism and the normal connection. The first and the second covariant derivatives of the normal valued tensor h are given by

$$
(\nabla h)(X, Y, Z)=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

and

$$
\begin{aligned}
\left(\nabla^{2} h\right)(X, Y, Z, W) & =\nabla_{X}^{\perp}((\nabla h)(Y, Z, W))-(\nabla h)\left(\nabla_{X} Y, Z, W\right) \\
& -(\nabla h)\left(Y, \nabla_{X} Z, W\right)-(\nabla h)\left(Y, Z, \nabla_{X} W\right)
\end{aligned}
$$

respectively, for any vector fields X, Y, Z and W tangent to M.
Let R and R^{\perp} denote the curvature tensor associated with ∇ and ∇^{\perp}, respectively. Then h and ∇h are symmetric and for $\nabla^{2} h$ we have the Ricci-identity

$$
\begin{align*}
& \left(\nabla^{2} h\right)(X, Y, Z, W)-\left(\nabla^{2} h\right)(Y, X, Z, W) \tag{2.1}\\
= & R^{\perp}(X, Y) h(Z, W)-h(R(X, Y) Z, W)-h(Z, R(X, Y) W)
\end{align*}
$$

We also consider the relations

$$
h(J X, Y)=J h(X, Y) \text { and } A_{J \xi}=J A_{\xi}=-A_{\xi} J
$$

where ξ is a normal vector to M_{n}.
Now, let $v \in U M_{x}, x \in M$. If $e_{2}, \ldots, e_{2 n}$ are orthonormal vectors in $U M_{x}$ orthogonal to v, then we can consider $\left\{e_{2}, \ldots, e_{2 n}\right\}$ as an orthonormal basis of $T_{v}\left(U M_{x}\right)$. We remark that $\left\{v=e_{1}, e_{2}, \ldots, e_{2 n}\right\}$ is an orthonormal basis of $T_{x} M$. We denote the Laplacian of $U M_{x} \cong S^{2 n-1}$ by Δ.
If S and ρ is the Ricci tensor of M and the scalar curvature of M, respectively, and since M is a complex Kaehler submanifold in in $P_{n+p}(c)$, then from the Gauss equation we have

$$
\begin{align*}
S(v, w) & =\frac{n+1}{2} c<v, w>-\sum_{i=1}^{2 n}<A_{h\left(v, e_{i}\right)} e_{i}, w> \tag{2.2}\\
\rho & =n(n+1) c-|h|^{2} . \tag{2.3}
\end{align*}
$$

Define a function f_{1} on $U M_{x}, x \in M$, by

$$
\begin{gathered}
f_{1}(v)=|h(v, v)|^{2} \\
f_{2}(v)=\sum_{i=1}^{2 n}<A_{h\left(v, e_{i}\right)} e_{i}, v>
\end{gathered}
$$

Using the minimality of M we can prove that

$$
\begin{align*}
& \left(\Delta f_{1}\right)(v)=-4(2 n+2) f_{1}(v)^{2}+8 \sum_{i=1}^{2 n}<A_{h\left(v, e_{i}\right)} e_{i}, v> \tag{2.4}\\
& \left(\Delta f_{2}\right)(v)=-4 n f_{2}(v)+2|h|^{2} \tag{2.5}
\end{align*}
$$

Since

$$
\begin{aligned}
\frac{1}{2} \sum_{i=1}^{2 n}\left(\nabla^{2} f_{1}\right)\left(e_{i}, e_{i}, v\right)= & \sum_{i=1}^{2 n}<\left(\nabla^{2} h\right)\left(e_{i}, e_{i}, v, v\right), h(v, v)> \\
& +\sum_{i=1}^{2 n}<(\nabla h)\left(e_{i}, v, v\right),(\nabla h)\left(e_{i}, v, v\right)>
\end{aligned}
$$

we have the following (See [2] and [3]):
Lemma Let M be an n-dimensional complex Kaehler submanifold of $P_{n+p}(c)$. Then for $v \in U M_{x}$ we have

$$
\begin{align*}
\frac{1}{2} \sum_{i=1}^{2 n}\left(\nabla^{2} f_{1}\right)\left(e_{i}, e_{i}, v\right)= & \sum_{i=1}^{2 n}\left|(\nabla h)\left(e_{i}, v, v\right)\right|^{2}+\frac{n+2}{2} c|h(v, v)|^{2} \tag{2.6}\\
& +2 \sum_{i=1}^{2 n}<A_{h(v, v)} e_{i}, A_{h\left(e_{i}, v\right)} v> \\
& -2 \sum_{i=1}^{2 n}<A_{h\left(v, e_{i}\right)} e_{i}, A_{h(v, v)} v> \\
& -\sum_{i=1}^{2 n}<A_{h(v, v)} e_{i}, A_{h(v, v)} e_{i}>
\end{align*}
$$

3 Proof of Theorem

Since M is Einstein, we have

$$
\begin{equation*}
S=\frac{n+1}{2} c I-\sum_{i=1}^{2 n} A_{h\left(v, e_{i}\right)} e_{i}=\frac{\rho}{2 n} I, \tag{3.1}
\end{equation*}
$$

where I denotes the identity transformation. From (2.2) and (2.3) the equation (3.1) yields

$$
\begin{equation*}
\sum_{i=1}^{2 n} A_{h\left(v, e_{i}\right)} e_{i}=\frac{|h|^{2}}{2 n} v \tag{3.2}
\end{equation*}
$$

We see the following equation holds for $v \in U M_{x}, x \in M$.

$$
\begin{equation*}
\sum_{i=1}^{2 n}<A_{h(J v, J v)} e_{i}, A_{h\left(e_{i}, J v\right)} J v>=-\sum_{i=1}^{2 n}<A_{h(v, v)} e_{i}, A_{h\left(e_{i}, v\right)} v> \tag{3.3}
\end{equation*}
$$

From (3.3) we have

$$
\begin{align*}
& \frac{1}{4} \sum_{i=1}^{2 n}\left(\nabla^{2} f_{1}\right)\left(e_{i}, e_{i}, v\right)+\frac{1}{4} \sum_{i=1}^{2 n}\left(\nabla^{2} f_{1}\right)\left(e_{i}, e_{i}, J v\right) \tag{3.4}\\
= & \sum_{i=1}^{2 n}\left|(\nabla h)\left(e_{i}, v, v\right)\right|^{2}+\frac{n+2}{2} c|h(v, v)|^{2} \\
& -2 \sum_{i=1}^{2 n}\left\langle A_{h\left(v, e_{i}\right)} e_{i}, A_{h(v, v)} v>-\sum_{i=1}^{2 n}<A_{h(v, v)} e_{i}, A_{h(v, v)} e_{i}>.\right.
\end{align*}
$$

Integrating over $U M_{x}$ and using (3.2), we have

$$
\begin{align*}
& \int_{U M_{x}} \sum_{i=1}^{2 n}\left|(\nabla h)\left(e_{i}, v, v\right)\right|^{2} d v_{x}+\frac{n+2}{2} c \int_{U M_{x}}|h(v, v)|^{2} d v_{x} \tag{3.5}\\
& -\frac{1}{n} \int_{U M_{x}}|h|^{2}|h(v, v)|^{2} d v_{x}-\int_{U M_{x}} \sum_{i=1}^{2 n}<A_{h(v, v)} e_{i}, A_{h(v, v)} e_{i}>d v_{x}=0 .
\end{align*}
$$

On the other hand, we get

$$
\begin{gathered}
\int_{U M_{x}}|h(v, v)|^{2} d v_{x}=\frac{2}{2 n(2 n+2)} \int_{U M_{x}}|h|^{2} d v_{x} \\
\int_{U M_{x}} \sum_{i=1}^{2 n}<A_{h(v, v)} e_{i}, A_{h(v, v)} e_{i}>d v_{x}=\frac{2}{2 n(2 n+2)} \int_{U M_{x}} \sum\left(\operatorname{trace} A_{\xi_{i}} A_{\xi_{j}}\right)^{2} d v_{x} .
\end{gathered}
$$

Hence we obtain

$$
\begin{aligned}
0 & \geq \int_{U M_{x}} \sum_{i=1}^{2 n}\left|(\nabla h)\left(e_{i}, v, v\right)\right|^{2} d v_{x} \\
& +\int_{U M_{x}}\left\{\frac{n+2}{4 n(n+1)} c|h|^{2}-\frac{2}{4 n^{2}(n+1)}|h|^{4}-\frac{1}{4 n(n+1)}|h|^{4}\right\} d v_{x} \\
& =\int_{U M_{x}} \sum_{i=1}^{2 n}\left|(\nabla h)\left(e_{i}, v, v\right)\right|^{2} d v_{x} \\
& +\frac{n+2}{2 n(n+1)} \int_{U M_{x}}\left(S(v, v)-\frac{n}{2} c\right)|h|^{2} d v_{x}
\end{aligned}
$$

noting that $\sum\left(\operatorname{trace} A_{\xi_{i}} A_{\xi_{j}}\right)^{2} \leq \frac{1}{2}|h|^{4}$. Put

$$
S^{\prime}(v, v)=S(v, v)-\frac{n}{2} c
$$

Let α be the 1-form on $U M_{x}$ given by

$$
\alpha_{v}(e)=S^{\prime}(e, v)|h|^{2}
$$

with $v \in U M_{x}$ and $e \in T_{v} U M_{x}$, we get

$$
\begin{aligned}
(\delta \alpha)(v) & =-S^{\prime}(v, v)|h|^{2} \\
& +\sum_{i=1}^{2 n} S^{\prime}\left(e_{i}, e_{i}\right)|h|^{2} \\
& =(2 n-1) S^{\prime}(v, v)|h|^{2}
\end{aligned}
$$

Integrating this equation over $U M_{x}$, we have

$$
0=\int_{U M_{x}} S^{\prime}(v, v)|h|^{2} d v_{x}
$$

Hence we obtain

$$
0 \geq \int_{U M_{x}} \sum_{i=1}^{2 n}\left|(\nabla h)\left(e_{i}, v, v\right)\right|^{2} d v_{x}
$$

Thus M is parallel.

References

[1] Y. Matsuyama, On a 2-dimensional Einstein Kaehler submanifolds of a complex space form, Proc. Amer. Math. Soc. 95 (1985), 595-603.
[2] Y. Matsuyama, On totally real submanifolds of a complex projective space, Nihonkai Math. J. 13 (2002), 153-157.
[3] S. Montiel, A. Ros and F. Urbano, Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z. 191 (1986), 537-548.
[4] H. Naitoh, Totally real parallel submanifolds of $P^{n}(C)$, Tokyo J. Math. 4 (1981), 279-306.
[5] K. Ogiue, Differential geometry of Kaehler submanifolds, Adv. Math. 13 (1974), 73-114.
[6] K. Tsukada, Parallel Kaehler submanifolds of Hermitian symmetric spaces, Math. Z. 190 (1985), 129-150.
[7] M. Umehara, Kaehler submanifolds of complex space forms, Tokyo J. Math. 10 (1987), 203-214.

Author's address:
Yoshio Matsuyama
Department of Mathematics,
Chuo University, 1-13-27 Kasuga,
Bunkyo-ku,Tokyo 112-8551, Japan.
E-mail address: matuyama@math.chuo-u.ac.jp

