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Abstract. In the present paper we show that if Mn is a compact ir-
reducible (resp. reducible) Einstein Kaehler submanifold of a complex
projective space, then M is parallel and totally geodesic in CPn+p(c),
CPn( c

r ), p = n+rCr − 1 − n, the complex quadric Qn(c) in the to-
tally geodesic submanifold CPn+1(c) of CPn+p(c), SU(n

2 + 2)/SU(n
2 ) ×

U(2), n > 6, p = n(n−6)
8 ; SU(10)/U(5), n = 10, p = 5 or E6/Spin(10) ×

S1, n = 16, p = 10 (resp. Pn1(c)× Pn1(c), n = 2n1).
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1 Introduction

Let Pn+p(c) (resp. Dn+p) be an (n+p)-dimensional complex projective space with the
Fubini-Study metric (resp. Bergman metric) of constant holomorphic sectional curva-
ture c. Let Cn+p be an (n+p)-dimensional complex Euclidean space. Let Mn+p(c) be
an (n + p)-dimensional complex space form with constant holomorphic sectional cur-
vature c. We remark that if c > 0 (resp. c < 0, c = 0), then Mn+p(c) = Pn+p(C) (resp.
Dn+p, Cn+p). Let Mn be an n-dimensional complex Kaehler submanifold of Mn+p(c).
There are a number of conjecture for Kaehler submanifolds in Pn+p(c) suggested by
K. Ogiue ([5]); some have been resolved under a suitable topological restriction (e.g.
Mn is complete) (cf. [1], [5], [6] and [7]). In this direction, one of the open problems
so far is as follows.
Conjecture (K. Ogiue). Let Mn be an n-dimensional Kaehler submanifold immersed
in Mn+p(c), c > 0. If M is irreducible (or Einstein) and if the second fundamental
form is parallel, is M one of the following ? Mn(c),Mn( c

2 ) or locally the complex
quadric Qn(c).

In the case that Mn is an Einstein Kaehler submanifold of the codimension two
immersed in Pn+2(c), it was proved in [1] and [6] that such a submanifold Mn is totally
geodesic in Pn+2(c) or the complex quadric Qn(c) in the totally geodesic hypersurface
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Pn+1(c) of Pn+2(c). Moreover, if Mn is an Einstein Kaehler submanifolds immersed
in a complex linear or hyperbolic space, then Mn is totally geodesic ([7]).

In the present paper we would like to consider that Mn is compact and Einstein,
so that the above conjucture is resolved partially. The main result is the following:
Theorem Let Mn be an n-dimensional compact irreducible (resp. reducible) Einstein
Kaehler submanifold immersed in Pn+p(c). Then Mn is parallel and totally geodesic
in Pn+p(c), CPn( c

r ), p = n+rCr − 1 − n, the complex quadric Qn(c) in the totally
geodesic submanifold CPn+1(c) of CPn+p(c), SU(n

2 + 2)/SU(n
2 ) × U(2), n > 6, p =

n(n−6)
8 ; SU(10)/U(5), n = 10, p = 5 or E6/Spin(10) × S1, n = 16, p = 10 (resp.

Pn1(c)× Pn1(c), n = 2n1).

2 Preliminaries

Let Mn be an n-dimensional compact Riemannian manifold. We denote by UM the
unit tangent bundle over M and by UMx its fibre over x ∈ M . If dx, dv and dvx denote
the canonical measures on M, UM and UMx, respectively, then for any continuous
function f : UM → R, we have:

∫

UM

fdv =
∫

M

{
∫

UMx

fdvx}dx.

If T is a k-covariant tensor on M and ∇T is its covariant derivative, then we have:

∫

UM

{
n∑

i=1

(∇T )(ei, ei, v, · · · , v)}dv = 0,

where e1, · · · , en is an orthonormal basis of TxM, x ∈ M.
Now, we suppose that Mn is an n-dimensional compact Kaehler submanifold of com-
plex dimension n, immersed in the complex projective space Pn+p(c). We denote by
J and <,> the complex structure and the Fubini-Study metric. Let ∇ and h be the
Riemannian connection and the second fundamental form of the immersion, respec-
tively. A and ∇⊥ are the Weingarten endomorphism and the normal connection. The
first and the second covariant derivatives of the normal valued tensor h are given by

(∇h)(X,Y, Z) = ∇⊥X(h(Y, Z))− h(∇XY,Z)− h(Y,∇XZ)

and

(∇2h)(X,Y, Z,W ) = ∇⊥X((∇h)(Y, Z,W ))− (∇h)(∇XY,Z, W )
− (∇h)(Y,∇XZ, W )− (∇h)(Y,Z,∇XW ),

respectively, for any vector fields X, Y, Z and W tangent to M .
Let R and R⊥ denote the curvature tensor associated with ∇ and ∇⊥, respectively.
Then h and ∇h are symmetric and for ∇2h we have the Ricci-identity

(∇2h)(X,Y, Z, W )− (∇2h)(Y,X, Z, W )(2.1)
= R⊥(X, Y )h(Z, W )− h(R(X,Y )Z, W )− h(Z,R(X, Y )W ).
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We also consider the relations

h(JX, Y ) = Jh(X, Y ) and AJξ = JAξ = −AξJ,

where ξ is a normal vector to Mn.
Now, let v ∈ UMx, x ∈ M . If e2, . . . , e2n are orthonormal vectors in UMx orthogonal
to v, then we can consider {e2, . . . , e2n} as an orthonormal basis of Tv(UMx). We
remark that {v = e1, e2, . . . , e2n} is an orthonormal basis of TxM . We denote the
Laplacian of UMx

∼= S2n−1 by ∆.
If S and ρ is the Ricci tensor of M and the scalar curvature of M , respectively,
and since M is a complex Kaehler submanifold in in Pn+p(c), then from the Gauss
equation we have

S(v, w) =
n + 1

2
c < v, w > −

2n∑

i=1

< Ah(v,ei)ei, w >,(2.2)

ρ = n(n + 1)c− |h|2.(2.3)

Define a function f1 on UMx, x ∈ M , by

f1(v) = |h(v, v)|2,

f2(v) =
2n∑

i=1

< Ah(v,ei)ei, v >,

Using the minimality of M we can prove that

(∆f1)(v) = −4(2n + 2)f1(v)2 + 8
2n∑

i=1

< Ah(v,ei)ei, v >(2.4)

(∆f2)(v) = −4nf2(v) + 2|h|2(2.5)

Since

1
2

2n∑

i=1

(∇2f1)(ei, ei, v) =
2n∑

i=1

< (∇2h)(ei, ei, v, v), h(v, v) >

+
2n∑

i=1

< (∇h)(ei, v, v), (∇h)(ei, v, v) >,

we have the following (See [2] and [3]):
Lemma Let M be an n-dimensional complex Kaehler submanifold of Pn+p(c). Then
for v ∈ UMx we have
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1
2

2n∑

i=1

(∇2f1)(ei, ei, v) =
2n∑

i=1

|(∇h)(ei, v, v)|2 +
n + 2

2
c|h(v, v)|2(2.6)

+2
2n∑

i=1

< Ah(v,v)ei, Ah(ei,v)v >

−2
2n∑

i=1

< Ah(v,ei)ei, Ah(v,v)v >

−
2n∑

i=1

< Ah(v,v)ei, Ah(v,v)ei > .

3 Proof of Theorem

Since M is Einstein, we have

(3.1) S =
n + 1

2
cI −

2n∑

i=1

Ah(v,ei)ei =
ρ

2n
I,

where I denotes the identity transformation. From (2.2) and (2.3) the equation
(3.1) yields

(3.2)
2n∑

i=1

Ah(v,ei)ei =
|h|2
2n

v.

We see the following equation holds for v ∈ UMx, x ∈ M.

(3.3)
2n∑

i=1

< Ah(Jv,Jv)ei, Ah(ei,Jv)Jv >= −
2n∑

i=1

< Ah(v,v)ei, Ah(ei,v)v > .

From (3.3) we have

1
4

2n∑

i=1

(∇2f1)(ei, ei, v) +
1
4

2n∑

i=1

(∇2f1)(ei, ei, Jv)(3.4)

=
2n∑

i=1

|(∇h)(ei, v, v)|2 +
n + 2

2
c|h(v, v)|2

−2
2n∑

i=1

< Ah(v,ei)ei, Ah(v,v)v > −
2n∑

i=1

< Ah(v,v)ei, Ah(v,v)ei > .

Integrating over UMx and using (3.2) , we have

∫

UMx

2n∑

i=1

|(∇h)(ei, v, v)|2dvx +
n + 2

2
c

∫

UMx

|h(v, v)|2dvx(3.5)

− 1
n

∫

UMx

|h|2|h(v, v)|2dvx −
∫

UMx

2n∑

i=1

< Ah(v,v)ei, Ah(v,v)ei > dvx = 0.
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On the other hand, we get
∫

UMx

|h(v, v)|2dvx =
2

2n(2n + 2)

∫

UMx

|h|2dvx,

∫

UMx

2n∑

i=1

< Ah(v,v)ei, Ah(v,v)ei > dvx =
2

2n(2n + 2)

∫

UMx

∑
(traceAξi

Aξj
)2dvx.

Hence we obtain

0 ≥
∫

UMx

2n∑

i=1

|(∇h)(ei, v, v)|2dvx

+
∫

UMx

{ n + 2
4n(n + 1)

c|h|2 − 2
4n2(n + 1)

|h|4 − 1
4n(n + 1)

|h|4}dvx

=
∫

UMx

2n∑

i=1

|(∇h)(ei, v, v)|2dvx

+
n + 2

2n(n + 1)

∫

UMx

(S(v, v)− n

2
c)|h|2dvx,

noting that
∑

(traceAξiAξj )
2 ≤ 1

2 |h|4. Put

S′(v, v) = S(v, v)− n

2
c

Let α be the 1-form on UMx given by

αv(e) = S′(e, v)|h|2

with v ∈ UMx and e ∈ TvUMx, we get

(δα)(v) = −S′(v, v)|h|2

+
2n∑

i=1

S′(ei, ei)|h|2

= (2n− 1)S′(v, v)|h|2

Integrating this equation over UMx, we have

0 =
∫

UMx

S′(v, v)|h|2dvx.

Hence we obtain

0 ≥
∫

UMx

2n∑

i=1

|(∇h)(ei, v, v)|2dvx.

Thus M is parallel.
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