
Identity theorem for ODEs,

auto-parallel graphs and geodesics
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Abstract. Looking for the geometrical structures that transform the so-
lutions of a second order ODE into auto-parallel graphs, we need an Iden-
tity Theorem for ODEs. It is well-known that a similar theorem holds for
polynomial and holomorphic functions. Though our theory is realized on
second order ODEs, it can be extended immediately to n-th order ODEs,
to PDEs or operator equations.

The main result of Section 1 is the Identity Theorem for ODEs. Section 2
formulates the conditions in which the graphs of the solutions for a given
second order ODE are auto-parallel curves, determining the most general
connection. Section 3 presents the conditions in which the graphs of the
solutions for a given second order ODE are geodesics, finding the most
general Riemannian metric. Also this Section gives the equations form of
such geodesics. Section 4 interprets the results of the Sections 2 and 3 via
isometric manifolds theory.
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1 Identity theorem for ODEs

Second order ODEs on finite dimensional manifolds appear in a wide variety of ap-
plications in mathematics, physics and engineering [1] – [10]. They can be classified
as: (1) ODEs in differential geometry (the auto-parallel curves of a linear connection,
the geodesics of the metric in Riemann and Finsler geometries and the integral curves
of the Reeb field on a contact manifold); (2) Euler-Lagrange ODEs in single-time
variational calculus; (3) ODEs in Classical Mechanics (Newton equations of motion
and the Euler-Lagrange equations of a mechanical Lagrangian); (4) ODEs in gen-
eral relativity and its variants (the worldlines of free particles); (5) ODEs in classical
electrodynamics (the paths of charged particles) etc.
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The theory of identifying two ODEs (or PDEs or operator equations) is very
helpful for researchers in Ordinary Differential Equations, Differential Geometry and
Operator Theory. But, after our knowledge, here it is the first time when this theory
is formulated and presented in details.

Theorem 1.1. Let G ⊆ R3 be an open subset whose points are denoted by (x, y, p).
Let the functions f, g : G → R, with g continuous and f a certain function, not
necessarily continuous. The functions f and g define the ODEs

(1.1) f(x, y, y′) = 0

(1.2) y′′ = g(x, y, y′)

(if f is independent of of the variable p, then the relation (1.1) reduce to f(x, y) = 0).
If any solution of the ODE (1.2) is also a solution of the equation (1.1), then

f(x, y, p) = 0, ∀(x, y, p) ∈ G.

Proof. Suppose that there exists a point (x0, y0, p0) ∈ G such that f(x0, y0, p0) 6= 0.
Since g is continuous, via the Peano Theorem, it follows that there exists ε > 0 and
a twice differentiable function ϕ : (x0 − ε, x0 + ε) → R, with ϕ(x0) = y0, ϕ′(x0) = p0,
such that for any x ∈ (x0 − ε, x0 + ε) one has

(
x, ϕ(x), ϕ′(x)

)
∈ G, ϕ′′(x) = g

(
x, ϕ(x), ϕ′(x)

)
.

That is, the function ϕ is a solution (not necessarily unique) of the Cauchy problem{
(1.2), y(x0) = y0, y′(x0) = p0

}
, the continuity hypothesis (of g) ensuring the

local existence of the Cauchy problem solution (but not the uniqueness).
According to the hypothesis, ϕ is also a solution for the equation (1.1), i.e.,

f
(
x, ϕ(x), ϕ′(x)

)
= 0, ∀x ∈ (x0 − ε, x0 + ε),

and for x = x0, we obtain f(x0, y0, p0) = 0, hence a contradiction. ¤

Theorem 1.2. (Identity Theorem) Let G ⊆ R3 be an open set. Let the functions
f, g : G → R, with g continuous and f a certain function, not necessarily continuous.
We consider the ODEs

(1.3) y′′ = f(x, y, y′)

(1.4) y′′ = g(x, y, y′).

If any solution of ODE (1.4) is also a solution of ODE (1.3), then

f(x, y, p) = g(x, y, p), ∀(x, y, p) ∈ G,

hence the ODEs (1.3) and (1.4) coincide (we have in fact a single ODE).
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Proof. Let ϕ(·) be a solution of the ODE (1.4). According to the hypothesis, ϕ(·) is
also a solution of ODE (1.3). Taking the difference, we deduce that ϕ(·) is a solution
of ODE f(x, y, y′) − g(x, y, y′) = 0. It follows that any solution of the ODE (1.4) is
also a solution of this ODE. Hence, we are in the hypotheses of Theorem 1.1, having
the function f − g instead of the function f . Applying the Theorem 1.1, it follows
that f(x, y, p)− g(x, y, p) = 0, ∀(x, y, p) ∈ G. ¤

Remark 1.1. This theorem provides a very powerful and useful tool to test whether
two normal second order ODEs, whose right hand fields coincide on all solutions, are
indeed the same ODE.

Theorem 1.3. Let D ⊆ R2 be an open set and g : D × R → R be a continuous
function. Let n ∈ N. For each j = 0, n, let us consider the functions cj : D → R.
Assume that the functions cj(·, ·), j = 0, n, and g(·, ·, ·), define the ODEs

(1.5) cn(x, y)(y′)n + · · ·+ cj(x, y)(y′)j + · · ·+ c1(x, y)y′ + c0(x, y) = 0

(1.6) y′′ = g(x, y, y′).

If any solution of the ODE (1.6) is also a solution of the ODE (1.5), then for any
index j = 0, n, we have cj(x, y) = 0, ∀(x, y) ∈ D.

Proof. We are in the hypotheses of Theorem 1.1, with G = D × R and f(x, y, p) =
n∑

j=0

cj(x, y)pj . Applying the Theorem 1.1, it follows that
n∑

j=0

cj(x, y)pj = 0, ∀(x, y, p) ∈

D × R. Fixing the point (x, y) ∈ D, the foregoing polynomial function, with respect
to p, vanishes for any p ∈ R, hence the coefficients vanish, i.e., cj(x, y) = 0. ¤

Theorem 1.4. Let D ⊆ R2 be an open set. Let n ∈ N. For each index j = 0, n, we
consider the functions aj , bj : D → R, with bj continuous. Assume that the functions
aj(·, ·), bj(·, ·) define the ODEs

(1.7) y′′ + an(x, y)(y′)n + · · ·+ aj(x, y)(y′)j + · · ·+ a1(x, y)y′ + a0(x, y) = 0

(1.8) y′′ + bn(x, y)(y′)n + · · ·+ bj(x, y)(y′)j + · · ·+ b1(x, y)y′ + b0(x, y) = 0.

If any solution of the ODE (1.8) is also a solution for the ODE (1.7), then for any
j = 0, n, we get aj(x, y) = bj(x, y), ∀(x, y) ∈ D, hence the ODEs (1.7) and (1.8)
coincide (we have in fact a single ODE).

Proof. We are in the hypotheses of the Theorem 1.2, with G = D × R,

f(x, y, p) = −
n∑

j=0

aj(x, y)pj , g(x, y, p) = −
n∑

j=0

bj(x, y)pj ,

the function g being continuous since the functions bj(·, ·) are so.
Applying the Theorem 1.2, it follows

n∑

j=0

(
aj(x, y)− bj(x, y)

)
pj = 0, ∀(x, y, p) ∈ D × R.

Fixing the point (x, y) ∈ D, the foregoing polynomial function, with respect to p,
vanishes for any p ∈ R, hence the coefficients vanish, i.e., aj(x, y)− bj(x, y) = 0. ¤
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2 Auto-parallel curves as solutions of
second order ODEs

Our aim is to find the conditions in which the graphs of the solutions for a given second
order ODE are auto-parallel graphs. This is a consequence of our thinking that the
important graphs in applications, like Bessel functions, Legendre functions, Hermite
functions etc, may be auto-parallel curves in an appropriate geometric structure. But
since now, little or nothing about this idea has appeared in the auto-parallel curves
literature. This is unusual for such an important topic and it is hoped that this
paper can redress the situation. The procedure to solve this problem involves the
identification of two ODEs.

Let D ⊆ R2 be an open subset and ∇ be a linear symmetric connection on D of
components Γi

jk, i, j, k ∈ {1, 2}. Since the connections ∇ are introduced as deriva-
tion rules on C∞ manifolds, and by vector fields we understand C∞ vector fields, it
follows that the components Γi

jk are C∞ functions. A C2 curve γ : I → D, γ(t) =
(x1(t), x2(t)) is auto-parallel with respect to the connection ∇ if and only if

ẍi + Γi
jk(x1, x2) ẋj ẋk = 0, ∀i, j, k ∈ {1, 2}.

A C2 curve γ : I → D, γ(t) = (t, y(t)) is an auto-parallel curve with respect to the
connection ∇ if and only if the function y(·) : I → R is a solution of the differential
ODE system

(2.1) Γ1
22(t, y) (y′)2 + 2 Γ1

12(t, y) y′ + Γ1
11(t, y) = 0

(2.2) y′′ + Γ2
22(t, y) (y′)2 + 2Γ2

12(t, y) y′ + Γ2
11(t, y) = 0.

Our aim is to prove the following statement: if any solution of the ODE (2.2) is also
a solution of the equation (2.1), then Γ1

jk = 0.

Theorem 2.1. Let D ⊆ R2 be an open subset and ∇ be a linear symmetric connection
on D. We consider the ODE

(2.3) y′′ + F (x, y, y′) = 0,

where F : D × R→ R is a continuous function.
If, for any solution y(·) : I → R of the ODE (2.3), the curve γ : I → D, γ(x) =

(x, y(x)) is auto-parallel with respect to the connection ∇, then Γ1
jk(x, y) = 0, ∀(x, y) ∈

D, ∀j, k ∈ {1, 2} and

(2.4) F (x, y, p) = Γ2
22(x, y) p2 + 2Γ2

12(x, y) p + Γ2
11(x, y), ∀(x, y) ∈ D, ∀p ∈ R.

Proof. Any solution y(·) of ODE (2.3) would be solution for the ODE

(2.5) y′′ + Γ2
22(x, y) (y′)2 + 2 Γ2

12(x, y) y′ + Γ2
11(x, y) = 0.

Hence we can apply the Theorem 1.2. Here g = −F and f(x, y, p) = −Γ2
22(x, y) p2 −

2Γ2
12(x, y) p − Γ2

11(x, y). The set G is G = D × R. Applying the Theorem 1.2, it
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follows the equality (2.4). Also, any solution y(·) of the ODE (2.3) must be solution
for the ODE

Γ1
22(x, y) (y′)2 + 2Γ1

12(x, y) y′ + Γ1
11(x, y) = 0.

We can apply the Theorem 1.3, for n = 2, g = −F and c2(x, y) = Γ1
22(x, y), c1(x, y) =

2Γ1
12(x, y), c0(x, y) = Γ1

11(x, y). We find Γ1
ij(x, y) = 0, ∀(x, y) ∈ D, ∀j, k ∈ {1, 2}. ¤

Suppose we have an ODE of type (2.3). We wish to look for the conditions that we
must assume in order that for any solution y(·) of the ODE, the curve γ(x) = (x, y(x))
to be an auto-parallel curve. The Theorem 2.1 says that necessarily the function F
must be a polynomial function of degree two in p, having the coefficients as C∞

functions of variables x, y. In this case, the following Theorem gives the answer to
the proposed problem.

Theorem 2.2. Let D ⊆ R2 be an open subset and ∇ be a linear symmetric connec-
tion on D. Suppose the C∞ functions aj(·, ·) : D → R, j ∈ {0, 1, 2} determine the
differential equation

(2.6) y′′ + a2(x, y)(y′)2 + a1(x, y)y′ + a0(x, y) = 0.

The following statements are equivalent:
i) for any solution y(·) : I → R of ODE (2.6), the curve γ : I → D, γ(x) =

(x, y(x)), x ∈ I, is auto-parallel with respect to ∇.
ii) The connection ∇ has the components

(2.7) Γ1
11(x, y) = Γ1

12(x, y) = Γ1
21(x, y) = Γ1

22(x, y) = 0

and

(2.8) Γ2
22(x, y) = a2(x, y), Γ2

12(x, y) = Γ2
21(x, y) =

1
2
a1(x, y), Γ2

11(x, y) = a0(x, y),

∀(x, y) ∈ D.

Proof. The implication i) =⇒ ii). The relations (2.7) are obtained from Theorem 2.1.
From the hypothesis one gets that any solution of the ODE (2.6) is also a solution

of ODE (2.2). Further, the Theorem 1.4 is applied and one obtains (2.8).
The implication ii) =⇒ i). Since the equalities (2.8) are fulfilled, one obtains that

in this case the ODE (2.6) coincides to ODE (2.2). This leads to the fact that any
solution of Eq. (2.6) is also a solution of Eq. (2.2).

Since the equalities (2.7) are fulfilled, the equation (2.1) is in fact the equality
0 = 0.

In conclusion, any solution of the ODE (2.6) is also a solution for both the ODE
(2.1) and ODE (2.2); therefore γ(·) is an auto-parallel curve. ¤

Remark 2.1. 1) The connection is uniquely determined by ii).
2) Always still there exist other auto-parallel curves which are not of the form

(t, y(t)) with y(·) solution of ODE (2.6). Indeed, in the conditions of Theorem 2.2,
the curve γ(t) = (x(t) = x1(t), y(t) = x2(t)) is auto-parallel with respect to the
foregoing connection ∇ if and only if

x′′(t) = 0
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y′′(t) + a2(x(t), y(t))(y′(t))2 + a1(x(t), y(t))y′(t)x′(t) + a0(x(t), y(t))(x′(t))2 = 0.

We can select (vertical straight lines) x(t) = x0, y′′(t) + a2(x(t), y(t))(y′(t))2 = 0, the
last ODE having always solutions.

Corollary 2.3. Let I be an open interval in R. Suppose the C∞ functions a0, a1 :
I → R determine the linear homogeneous ODE

(2.9) y′′ + a1(x)y′ + a0(x)y = 0.

Let ∇ be a linear symmetric connection on D = I ×R. The following statements are
equivalent:

i) for any solution y(·) : J ⊆ I → R of the ODE (2.9), the curve γ : J →
I × R, γ(x) = (x, y(x)),∀x ∈ J is auto-parallel with respect to ∇.

ii) The connection ∇ has the components

Γ1
11(x, y) = Γ1

12(x, y) = Γ1
21(x, y) = Γ1

22(x, y) = 0,

(2.10) Γ2
22(x, y) = 0, Γ2

12(x, y) = Γ2
21(x, y) =

1
2
a1(x), Γ2

11(x, y) = a0(x)y,

∀x ∈ I, ∀y ∈ R.

3 Geodesics as solutions of
second order ODEs

The aim of this Section is to find the conditions in which the graphs of the solutions
for a given second order ODE are geodesics. Since present, little or nothing about this
idea has appeared in the geodesics theory. Of course our problem is a special (but
important) case of the inverse problem of auto-parallel curves of a linear connection
[1], [3], [5]: are auto-parallel graphs the geodesics of some metric?

Proposition 3.1. Let D ⊆ R2 be an open, connected and simply connected set, and
let P, Q : D → R be C1 (Cp, p ≥ 1) functions. The following statements are equivalent

i) For any (x, y) ∈ D, we have

(3.1)
∂P

∂y
(x, y) =

∂Q

∂x
(x, y).

ii) There exists a differentiable function u : D → R (it will be just of class C2

(Cp+1)) such that for any (x, y) ∈ D, we have

(3.2)
∂u

∂x
(x, y) = P (x, y),

∂u

∂y
(x, y) = Q(x, y).

In these conditions, if u0(·, ·) verifies the PDE system (3.2), on D, then any other
solution of this system is of the form u(x, y) = u0(x, y) + c, ∀(x, y) ∈ D, where c ∈ R
is an arbitrary constant.
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Proposition 3.2. Let D ⊆ R2 be an open, connected and simply connected set.
We consider the functions u, P,Q : D → R, with P , Q of class Cp, p ≥ 1, with u
differentiable and u(x, y) 6= 0, ∀(x, y) ∈ D. The following statements are equivalent

i) For any (x, y) ∈ D, we have

(3.3)
∂u

∂x
(x, y) = P (x, y)u(x, y),

∂u

∂y
(x, y) = Q(x, y)u(x, y).

ii) There exists a function F : D → R, of class Cp+1 and a constant c ∈ R, c 6= 0,
such that for any (x, y) ∈ D, we have

(3.4) u(x, y) = ceF (x,y), P (x, y) =
∂F

∂x
(x, y), Q(x, y) =

∂F

∂y
(x, y).

We remark that in these conditions, u is a Cp+1 function.

Proof. i) =⇒ ii): u is continuous since it is differentiable. From the relations (3.3) it
follows that the first order partial derivatives of u are continuous, hence u is of class
C1. Since P , Q and u are of class C1, from (3.3), it follows that the first order partial
derivatives of u are of class C1, i.e., u is of class C2.

From the relations (3.3) and from the Schwarz Theorem, it follows that on the set
D we have

∂

∂y
(P (x, y)u(x, y)) =

∂

∂x
(Q(x, y)u(x, y))

⇐⇒ ∂P

∂y
u(x, y) + P (x, y)

∂u

∂y
=

∂Q

∂x
u(x, y) + Q(x, y)

∂u

∂x
.

From the relations (3.3), we replace the partial derivatives of u. We obtain

∂P

∂y
u(x, y) + P (x, y)Q(x, y)u(x, y) =

∂Q

∂x
u(x, y) + Q(x, y)P (x, y)u(x, y),

equivalent to
∂P

∂y
u(x, y) =

∂Q

∂x
u(x, y). Since u(x, y) 6= 0, ∀(x, y) ∈ D, it follows

that
∂P

∂y
=

∂Q

∂x
. From the Proposition 3.1 we deduce the existence of a function

F : D → R, of class Cp+1, such that
∂F

∂x
= P and

∂F

∂y
= Q, on D. The relations

(3.3) are equivalent to
∂u

∂x
− ∂F

∂x
u = 0,

∂u

∂y
− ∂F

∂y
u = 0, or to

∂

∂x

(
e−F u

)
= 0,

∂

∂y

(
e−F u

)
= 0. Since the set D is connected, it follows that the function e−F · u is

constant on D. There exists c ∈ R such that e−F (x,y)u(x, y) = c, ∀(x, y) ∈ D, i.e.,
u(x, y) = ceF (x,y), ∀(x, y) ∈ D. We have c 6= 0, since u(x, y) 6= 0. We remark that u
is of class Cp+1 since F is of class Cp+1.

The implication ii) =⇒ i): the relations (3.3) are easy verified by direct compu-
tation, taking into account the equalities (3.4). ¤
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Proposition 3.3. Let D ⊆ R2 be an open set and ∇ be a linear symmetric connection
on D. Let gij : D → R, i, j ∈ {1, 2}, with g12 = g21. Then

(
D, gij

)
is a Riemannian

manifold, having ∇ as the Levi-Civita connection if and only if, on the set D we have

(3.5)
∂

∂x




g11

g12

g22


 =




2Γ1
11 2Γ2

11 0
Γ1

12 Γ1
11 + Γ2

12 Γ2
11

0 2Γ1
12 2Γ2

12







g11

g12

g22




(3.6)
∂

∂y




g11

g12

g22


 =




2Γ1
12 2Γ2

12 0
Γ1

22 Γ1
12 + Γ2

22 Γ2
12

0 2Γ1
22 2Γ2

22







g11

g12

g22




(3.7) g22 > 0, g22g11 − (g12)2 > 0.

For Γ1
ij = 0, g22 6= 0, let us determine Γ2

ij and gij , such that (3.5) and (3.6) to be
true, on D.

Proposition 3.4. Let D ⊆ R2 be an open, connected and simply connected set. Let
Γ2

11, Γ
2
12, Γ

2
22 : D → R, of class Cp, p ≥ 1; and g11, g12, g22 : D → R, g11, g22 of class

C1, g12 of class Cp+1; with g22(x, y) 6= 0, ∀(x, y) ∈ D.
We consider the PDE system

(3.8)
∂

∂x




g11

g12

g22


 =




0 2Γ2
11 0

0 Γ2
12 Γ2

11

0 0 2Γ2
12







g11

g12

g22




(3.9)
∂

∂y




g11

g12

g22


 =




0 2Γ2
12 0

0 Γ2
22 Γ2

12

0 0 2Γ2
22







g11

g12

g22


 .

Then, the equalities (3.8), (3.9) are true on the set D, if and only if there exists
W : D → R, of class Cp+2, and the constant a, b ∈ R, with a 6= 0, such that one has

(3.10)
∂W

∂y
> 0, Γ2

11 =

∂2W

∂x2

∂W

∂y

, Γ2
12 =

∂2W

∂x∂y
∂W

∂y

, Γ2
22 =

∂2W

∂y2

∂W

∂y

,

(3.11) g11 = a

(
∂W

∂x

)2

+ b, g12 = a
∂W

∂x

∂W

∂y
, g22 = a

(
∂W

∂y

)2

.

In these conditions, the functions g11, g12, g22 are of class Cp+1.

Proof. Let us consider the last two PDEs from (3.8) and (3.9):
∂g22

∂x
= 2Γ2

12g22,
∂g22

∂y
= 2Γ2

22g22. According to the Proposition 3.2, it follows that the two equalities
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are true if and only if there exists F : D → R of class Cp+1 and a constant a ∈ R,
a 6= 0, such that

(3.12) g22 = aeF , 2Γ2
12 =

∂F

∂x
, 2Γ2

22 =
∂F

∂y
.

The second PDE from (3.9) becomes
∂g12

∂y
=

1
2

∂F

∂y
g12 +

1
2

∂F

∂x
aeF . Multiplying by

1
a
e−

F
2 , the PDE is equivalent to

∂

∂y

(g12

a
e−

F
2

)
=

∂

∂x

(
e

F
2

)
. We can apply the

Proposition 3.1, with P =
g12

a
e−

F
2 for Q = e

F
2 . Hence there exists W : D → R, of

class Cp+2 such that

(3.13)
∂W

∂x
=

g12

a
e−

F
2 ,

∂W

∂y
= e

F
2 > 0.

From (3.13), we obtain

(3.14) g12 = a
∂W

∂x

∂W

∂y
,

F

2
= ln

∂W

∂y
.

Using (3.12) and (3.14), we find

(3.15) g22 = aeF = a

(
∂W

∂y

)2

(3.16) Γ2
12 =

∂

∂x

(
F

2

)
=

∂

∂x

(
ln

∂W

∂y

)
=

∂2W

∂x∂y
∂W

∂y

(3.17) Γ2
22 =

∂

∂y

(
F

2

)
=

∂

∂y

(
ln

∂W

∂y

)
=

∂2W

∂y2

∂W

∂y

.

The second PDE from (3.8) can be written
∂g12

∂x
=

1
2

∂F

∂x
g12 + Γ2

11aeF . We multiply

by
1
a
e−

F
2 , and the PDE is equivalent to

∂

∂x

(g12

a
e−

F
2

)
= Γ2

11e
F
2 . The PDEs (3.13)

can be written
∂

∂x

(
∂W

∂x

)
= Γ2

11

∂W

∂y
. Hence

(3.18) Γ2
11 =

∂2W

∂x2

∂W

∂y

.
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In the first relations from (3.8) and (3.9), we replace Γ2
11, g12, Γ2

12 by the values ob-
tained in the formulas (3.18), (3.14), (3.16) and the two mentioned equations become

∂g11

∂x
= 2Γ2

11g12 = 2a
∂2W

∂x2

∂W

∂x
= a

∂

∂x

((
∂W

∂x

)2
)

∂g11

∂y
= 2Γ2

12g12 = 2a
∂2W

∂x∂y

∂W

∂y
= a

∂

∂y

((
∂W

∂x

)2
)

hence
∂

∂x

(
g11 − a

(
∂W

∂x

)2
)

= 0,
∂

∂y

(
g11 − a

(
∂W

∂x

)2
)

= 0.

There exists a constant b ∈ R, such that

(3.19) g11 = a

(
∂W

∂x

)2

+ b.

Since W is of class Cp+2, from the relations (3.14), (3.15) and (3.19) , it follows that
g11, g12, g22 are of class Cp+1, and from (3.10) we deduce that Γ2

11, Γ2
12, Γ2

22 are of
class Cp.

Conversely, one verifies by direct computation that if (3.10), (3.11) are true, then
the equalities (3.8), (3.9) hold. ¤

Proposition 3.5. Let D ⊆ R2 be an open, connected and simply connected set. Let
Γ2

11, Γ
2
12, Γ

2
22 : D → R, be of class Cp, p ≥ 1. The following statements are equivalent.

i) On the set D, the relations

(3.20)
∂Γ2

12

∂y
=

∂Γ2
22

∂x
,

∂Γ2
12

∂x
+

(
Γ2

12

)2
=

∂Γ2
11

∂y
+ Γ2

11Γ
2
22

hold.
ii) There exists W : D → R, of class Cp+2, such that we have the relations (3.10),

i.e.,

∂W

∂y
> 0, Γ2

11 =

∂2W

∂x2

∂W

∂y

, Γ2
12 =

∂2W

∂x∂y
∂W

∂y

, Γ2
22 =

∂2W

∂y2

∂W

∂y

.

In the equivalent conditions i), ii), if W0 is a fixed function which verifies (3.10), then
any other function W , solution of (3.10), is of the form

W (x, y) = cW0(x, y) + c1x + c2, ∀(x, y) ∈ D,

where c, c1, c2 are real constants, and c > 0.

Proof. i) =⇒ ii): From the first equality of (3.20) and from the Proposition 3.1, it
follows that there exists F1 : D → R, of class Cp+1, such that

(3.21) Γ2
12 =

∂F1

∂x
, Γ2

22 =
∂F1

∂y
.
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The second equality of (3.20) becomes
∂2

∂x2

(
eF1

)
=

∂

∂y

(
Γ2

11e
F1

)
. We apply the

Proposition 3.1, for P = Γ2
11e

F1 , Q =
∂

∂x

(
eF1

)
. There exists F2 : D → R, of class

Cp+1, such that

(3.22)
∂F2

∂x
= Γ2

11e
F1 ,

∂F2

∂y
=

∂

∂x

(
eF1

)
.

We apply again the Proposition 3.1, for the Cp+1 functions: P = F2, Q = eF1 . There
exists W : D → R, of class Cp+2, such that

(3.23)
∂W

∂x
= F2,

∂W

∂y
= eF1 > 0.

Replacing F2 and eF1 from (3.23) in the first equality of (3.22), we find Γ2
11 =

∂2W

∂x2

∂W

∂y

.

From (3.23), it follows F1 = ln
(

∂W

∂y

)
and replacing in (3.21), one obtains the last

two equalities of (3.10).

ii) =⇒ i): We have Γ2
12 =

∂

∂x

(
ln

(
∂W

∂y

))
, Γ2

22 =
∂

∂y

(
ln

(
∂W

∂y

))
. It follows

that
∂Γ2

12

∂y
=

∂Γ2
22

∂x
. On the other hand

∂

∂y

(
∂W

∂x

)
= Γ2

12

∂W

∂y
,

∂

∂x

(
∂W

∂x

)
= Γ2

11

∂W

∂y
.

Since W is at least of class C3, it follows

∂

∂x

(
Γ2

12

∂W

∂y

)
=

∂

∂y

(
Γ2

11

∂W

∂y

)
⇐⇒

⇐⇒ ∂Γ2
12

∂x

∂W

∂y
+ Γ2

12

∂2W

∂x∂y
=

∂Γ2
11

∂y

∂W

∂y
+ Γ2

11

∂2W

∂y2
.

We divide by
∂W

∂y
; replacing the quotients of partial derivatives by the values of

(3.10), we obtain the second equality of (3.20).
Let W0, fixed, a function of class Cp+2 which verifies the relations (3.10). Let us

determine all the functions W , of class Cp+2, which verify the conditions (3.10). They
satisfy

∂

∂x

(
ln

∂W

∂y
− ln

∂W0

∂y

)
= Γ2

12 − Γ2
12 = 0

∂

∂y

(
ln

∂W

∂y
− ln

∂W0

∂y

)
= Γ2

22 − Γ2
22 = 0.

There exists a real constant k, such that ln
∂W

∂y
− ln

∂W0

∂y
= k, equivalent to

∂W

∂y
=

c
∂W0

∂y
, where c = ek > 0. Hence

∂

∂y
(W − cW0) = 0.
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Using the first equality from (3.10), the relation
∂2

∂x2
(W − cW0) =

∂2W

∂x2
−c

∂2W0

∂x2

is transformed to
∂2

∂x2
(W − cW0) = Γ2

11

∂W

∂y
− Γ2

11c
∂W0

∂y
= 0. We showed that

(3.24)
∂2

∂x2
(W − cW0) = 0,

∂

∂y
(W − cW0) = 0.

Consequently,
∂

∂x

(
∂

∂x
(W − cW0)

)
= 0,

∂

∂y

(
∂

∂x
(W − cW0)

)
= 0. Hence there

exists a constant c1 ∈ R such that
∂

∂x
(W − cW0) = c1, which is equivalent to

∂

∂x
(W − cW0 − c1x) = 0. On the other hand, from the second equality of (3.24)

we have also
∂

∂y
(W − cW0 − c1x) = 0. Hence there exists a constant c2 ∈ R such

that W − cW0 − c1x = c2 or W = cW0 + c1x + c2.
One remarks that the converse is immediately verified: if W0 verifies the conditions

(3.10) and W = cW0 + c1x + c2, with c, c1, c2 constants, c > 0, then W verifies the
relations (3.10). ¤

From the Propositions 3.4 and 3.5, it follows the following Theorem.

Theorem 3.6. Let D ⊆ R2 be an open, connected and simply connected set. We
consider the given functions Γ2

11, Γ
2
12, Γ

2
22 : D → R, of class Cp, p ≥ 1.

a) The following statements are equivalent.
i) On the set D, the relations (3.20) hold, i.e.,

∂Γ2
12

∂y
=

∂Γ2
22

∂x
,

∂Γ2
12

∂x
+

(
Γ2

12

)2
=

∂Γ2
11

∂y
+ Γ2

11Γ
2
22.

ii) There exists W : D → R, of class Cp+2, such that on the set D, to have the
relations (3.10), i.e.,

∂W

∂y
> 0, Γ2

11 =

∂2W

∂x2

∂W

∂y

, Γ2
12 =

∂2W

∂x∂y
∂W

∂y

, Γ2
22 =

∂2W

∂y2

∂W

∂y

.

iii) The PDEs system (3.8), (3.9) has solutions with g11, g12, g22 : D → R, g11,
g22 of class C1, g12 of class Cp+1, and g22(x, y) 6= 0, ∀(x, y) ∈ D.
b) Suppose that the equivalent statements i), ii), iii) hold. Let W be a function as at
the point ii) (regardless which one). Then all the solutions of the system {(3.8), (3.9)},
with the conditions of iii), are of the form

(3.25) g11 = a

(
∂W

∂x
+ c

)2

+ b; g12 = a

(
∂W

∂x
+ c

)
∂W

∂y
; g22 = a

(
∂W

∂y

)2

with a 6= 0, b, c arbitrary real constants.
In these conditions, the functions g11, g12, g22 are of class Cp+1.
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Proof. a) The equivalence i) ⇐⇒ ii) is in fact the result obtained in the Proposition
3.5.

ii) =⇒ iii): Let W be a function as in ii). We choose g11, g12, g22 defined by
the formulas (3.11) (eventually we choose also a = 1 and b = 0). According to the
Proposition 3.4, the equalities (3.8) and (3.9) are verified.

iii) =⇒ ii): There exist (g11, g12, g22), solution of the PDE system (with the
specified conditions). From the Proposition 3.4 it follows that there exists W which
satisfies the conditions of ii).

b) Let W be a function that satisfies the conditions of ii). From the Proposition
3.4, we deduce that (g11, g12, g22) is solution for the system, verifying the conditions
from iii), if and only if there exists W̃ : D → R, of class Cp+2, and the constants
a1 6= 0, b1, such that

∂W̃

∂y
> 0, Γ2

11 =

∂2W̃

∂x2

∂W̃

∂y

, Γ2
12 =

∂2W̃

∂x∂y

∂W̃

∂y

, Γ2
22 =

∂2W̃

∂y2

∂W̃

∂y

,

(3.26) g11 = a1

(
∂W̃

∂x

)2

+ b1; g12 = a1
∂W̃

∂x

∂W̃

∂y
; g22 = a1

(
∂W̃

∂y

)2

.

Since W̃ and W verify the relations (3.10), from the Proposition 3.5 we deduce that
there exist the constants k > 0, c1, c2, such that W̃ = kW + c1x + c2. Replacing in
(3.26), we get

g11 = a1k
2

(
∂W

∂x
+

c1

k

)2

+ b1

g12 = a1k
2

(
∂W

∂x
+

c1

k

)(
∂W

∂y

)
; g22 = a1k

2

(
∂W

∂y

)2

.

We choose a = ak2, b = b1, c =
c1

k
and we obtain (3.25). One can verify by direct

computation that the functions defined by the formulas (3.25) verify the PDE system.
¤

We come back in the context of the Proposition 3.3, with Γ1
ij = 0. We obtain the

conclusion of the Theorem 3.6, with p = ∞, but we must moreover to see when the
relations (3.7) are true.

The components gij are given by the formulas (3.25). Since
∂W

∂y
> 0, we find

g22 > 0 if and only if a > 0. On the other hand g11g22 − (g12)2 = ab

(
∂W

∂y

)2

. We

have a > 0, hence g11g22 − (g12)2 > 0 if and only if b > 0. Consequently, we have
obtained the following result.

Theorem 3.7. Let D ⊆ R2 be an open, connected and simply connected set and ∇ be
a linear symmetric connection on D, with Γ1

ij(x, y) = 0, ∀(x, y) ∈ D, ∀i, j ∈ {1, 2}.
a) The following statements are equivalent.
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i) The set D is a Riemannian manifold having ∇ as Levi - Civita connection.
ii) On the set D, the relations (3.20) hold, i.e.,

∂Γ2
12

∂y
=

∂Γ2
22

∂x
,

∂Γ2
12

∂x
+

(
Γ2

12

)2
=

∂Γ2
11

∂y
+ Γ2

11Γ
2
22.

iii) There exists W : D → R, of class C∞, such that on the set D, to have the
relations (3.10), i.e.,

∂W

∂y
> 0, Γ2

11 =

∂2W

∂x2

∂W

∂y

, Γ2
12 =

∂2W

∂x∂y
∂W

∂y

, Γ2
22 =

∂2W

∂y2

∂W

∂y

.

b) Suppose that the equivalent statements i), ii), iii) hold. Let W be a function as
those in iii) (regardless which one). Then all the metrics (gij)i,j∈{1,2}, for which(
D, gij

)
is a Riemannian manifold having ∇ as Levi - Civita connection, are of the

form

g11 = a

(
∂W

∂x
+ c

)2

+ b; g12 = a

(
∂W

∂x
+ c

)
∂W

∂y
; g22 = a

(
∂W

∂y

)2

with a > 0, b > 0, c ∈ R.

In the context of the Theorem 3.7, the statements i), ii), iii) are true. We shall
determine the geodesics of the manifold

(
D, gij

)
. Let W as in the statement iii).

The geodesics (x(t), y(t)) are solutions of the ODE system

x′′(t) = 0

y′′(t) + Γ2
22(x, y)(y′(t))2 + 2Γ2

12(x, y)x′(t)y′(t) + Γ2
11(x, y)(x′(t))2 = 0.

In the second ODE, we replace Γ2
ij by the values given in the formulas (3.10). The

ODE is changed into

∂W

∂y
(x(t), y(t))y′′(t) +

∂2W

∂y2
(x(t), y(t))(y′(t))2

+2
∂2W

∂x∂y
(x(t), y(t))x′(t)y′(t) +

∂2W

∂x2
(x(t), y(t))(x′(t))2 = 0.

From x′′(t) = 0, we obtain x(t) = pt + q, p, q constant. The foregoing ODE becomes

∂W

∂y
(pt + q, y(t))y′′(t) +

∂2W

∂y2
(pt + q, y(t))(y′(t))2

+2
∂2W

∂x∂y
(pt + q, y(t))py′(t) +

∂2W

∂x2
(pt + q, y(t))p2 = 0.

One rewrites as

d2

dt2

(
W (pt + q, y(t))

)
=

∂W

∂y
(pt + q, y(t))y′′(t) +

∂2W

∂y2
(pt + q, y(t))(y′(t))2

+ 2
∂2W

∂x∂y
(pt + q, y(t))py′(t) +

∂2W

∂x2
(pt + q, y(t))p2 = 0.
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Hence there exist the constant c1, c2 ∈ R such that W (pt + q, y(t)) = c1t + c2.
The geodesics (x(t), y(t)) are given by the equations

(3.27) x(t) = pt + q, W (pt + q, y(t)) = c1t + c2.

We remark that y(t) is perfectly determined (locally) by the implicit equation W (pt+

q, y(t))− c1t− c2 = 0, since
∂W

∂y
> 0.

Let us consider the case p 6= 0. If p = 1, q = 0, then x = t, and hence the geodesic
is (x, y(x)), where y(x) is solution of the ODE

(3.28) y′′(x) + Γ2
22(x, y(x))(y′(x))2 + 2Γ2

12(x, y(x))y′(x) + Γ2
11(x, y(x)) = 0.

This ODE has solutions given by the implicit equation W (x, y(x)) = c1x + c2 (where
c1 and c2 are arbitrary constants). We remark immediately that all geodesics (3.27),
with p 6= 0, are in fact affine reparameterizations of the curves (x, y(x)), with y(·)
solution of the equation (3.28) (the parameter change is x = pt + q).

Let us consider the case p = 0. These geodesics are given by x(t) = q, W (q, y(t)) =
c1t + c2, with c1 6= 0 (contrary the geodesic reduces to a point). Obviously these
geodesics reduces to portions of vertical straight lines.

If c1 = 1, c2 = 0, then we have W (q, y(t)) = t. Let us denote with ψq(·),
the function y(·) (locally) obtained in this case. One obtains the geodesic x = q,
y = ψq(t), where W (q, ψq(t)) = t. One observes immediately that all geodesics, with
x = q, ∀t, are in fact affine reparameterizations of the foregoing curves: (q, ψq(t)); the
change of the parameter being t = c1s + c2.

Obviously that the geodesics with p = 0 differ from those with p 6= 0, since when
p 6= 0, x is no longer constant, the image of the curve is no longer portion of vertical
straight line, but it intersects a vertical straight line in at most one point.

We have obtained the following result

Theorem 3.8. Suppose that we are in the conditions of the Theorem 3.7 and that
the equivalent statements i), ii), iii) are true. Let W as in the statement iii) of the
Theorem 3.7.

Then the geodesics of the manifold D are only of two types:
a) of the form (x, y(x)), with y(·) solution of the ODE (3.28):

y′′(x) + Γ2
22(x, y(x))(y′(x))2 + 2Γ2

12(x, y(x))y′(x) + Γ2
11(x, y(x)) = 0,

i.e., y(·) is given implicitly by W (x, y) = c1x + c2, c1, c2 constants (fixed). Further-
more, we still have the affine reparameterizations of the curves (x, y(x)), with y(·)
solution for (3.28).

b) of the form (q, ψq(t)), where ψq(·) is given implicitly by W (q, ψq(t)) = t; as well
as the affine reparameterizations of these.

Remark 3.1. Let D ⊆ R2 be an open, connected and simple connected set. Let
Γ2

11, Γ
2
12, Γ

2
22 : D → R, of class Cp, p ≥ 1 such that on the set D are satisfied the

conditions (3.20).
From the proof of the Propositions 3.5, implication i) =⇒ ii), we obtain the

following algorithm of finding a function W , that satisfies the relations (3.10):
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– one determines F1, such that
∂F1

∂x
= Γ2

12,
∂F1

∂y
= Γ2

22, on D;

– one determines F2, such that
∂F2

∂x
= Γ2

11e
F1 ,

∂F2

∂y
=

∂

∂x

(
eF1

)
, on D;

– one determines W , such that
∂W

∂x
= F2,

∂W

∂y
= eF1 , on D.

As a rule we need only one function W . But, if we need all, they are described in
the Proposition 3.5.

Let us determine the geodesics in the case in which the ODE (3.28) is linear. We
have seen (Theorem 2.2) that in this case D = I × R, with I open interval, and

Γ2
11(x, y) = a0(x)y, Γ2

12(x, y) =
a1(x)

2
, Γ2

22(x, y) = 0, ∀(x, y) ∈ I × R.

The first relation (3.20) is verified for any a0(·), a1(·), and the second becomes
a′1(x)

2
+

(
a1(x)

2

)2

= a0(x). The equation (3.28) can be written now in the form

y′′(x) + a1(x)y′(x) +

(
a′1(x)

2
+

(
a1(x)

2

)2
)

y(x) = 0

equivalent to

d2

dx2


y(x)e

A1(x)
2


 = 0,

where A1(·) is a fixed primitive on I of the function a1(·).
We apply the algorithm described in the Remark 3.1 for determining a function

W . One gets

F1(x, y) =
A1(x)

2
, F2(x, y) = y · ∂

∂x


e

A1(x)
2


 , W (x, y) = ye

A1(x)
2 .

We apply the Theorem 3.8. One obtains the geodesics of the form (x, y(x)), with

y(x) = (c1x + c2)e
−A1(x)

2 , together their affine reparameterizations. Furthermore,

one finds also the geodesics (with p = 0) of the form x = q, y(t)e
A1(q)

2 = c1t + c2 or,
if we re-denote the constants, x = q, y(t) = c̃1t + c̃2; i.e., the vertical straight lines
x = q, y = t and their affine reparameterizations.

One obtains the following Theorem which completes the Corollary 2.3:

Theorem 3.9. Let I ⊆ R be an open interval and a0, a1 : I → R be functions of class
C∞. On I × R, we consider the linear and symmetric connection ∇, with

Γ1
11(x, y) = Γ1

12(x, y) = Γ1
22(x, y) = 0, ∀(x, y) ∈ I × R,
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Γ2
11(x, y) = a0(x)y, Γ2

12(x, y) =
a1(x)

2
, Γ2

22(x, y) = 0, ∀(x, y) ∈ I × R.

Let A1(·) be a primitive of the function a1(·).
a) I × R is a Riemannian manifold having ∇ as Levi - Civita connection if and

only if

(3.29) a0(x) =
a′1(x)

2
+

(
a1(x)

2

)2

, ∀x ∈ I.

b) If the relation (3.29) is satisfied, then all the metrics (gij) are of the form

g11(x, y) = a


ya1(x)

2
e

A1(x)
2 + c




2

+ b,

g12(x, y) = a


ya1(x)

2
e

A1(x)
2 + c


 e

A1(x)
2 , g22(x, y) = aeA1(x),

with a > 0, b > 0, c ∈ R.
c) If the relation (3.29) is fulfilled, then the geodesics of the Riemannian manifold(

I × R, gij

)
are

– of graph type: (x, y(x)), y(x) = (c1x + c2)e
−A1(x)

2 , x ∈ I (c1, c2 arbitrary real
constants); as well as their affine reparameterizations;

– vertical straight lines: x = q, y = t, t ∈ R (with q ∈ I constant); as well as their
affine reparameterizations.

d) If I = R and the relation (3.29) is fulfilled, the manifold
(
R2, gij

)
is complete.

Remark 3.2. If the relation (3.29) is satisfied, then the ODE (2.9) is equivalent to
the ODE

d2

dx2


y(x)e

A1(x)
2


 = 0,

where A1(·) is an arbitrary primitive on I of the function a1(·).

4 Interpretation via isometric manifolds

Suppose we are in the context of the Theorem 3.7, with true statements i), ii), iii).
We try to embed the manifold

(
D, gij

)
in the Euclidean space (R3, δij). In fact we

want to look at
(
D, gij

)
as an usual surface.

According to the Theorem 3.7, we have

g11 = a

(
∂W

∂x
+ c

)2

+ b; g12 = a

(
∂W

∂x
+ c

)
∂W

∂y
; g22 = a

(
∂W

∂y

)2
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with a > 0, b > 0, c ∈ R. Let h̃ = (h̃1, h̃2, h̃3) : D → R3, h̃1(x, y) =
√

b x,
h̃2(x, y) =

√
a
(
W (x, y) + cx

)
, h̃3(x, y) = 0. We find

∂h̃

∂x
=

(√
b,
√

a

(
∂W

∂x
+ c

)
, 0

)
,

∂h̃

∂y
=

(
0,
√

a
∂W

∂y
, 0

)
.

Denote S = h̃(D). One remarks that the map h̃ is injective and has the image S,
hence it is a parameterization of the surface S.

Denote by 〈·, ·〉 the usual scalar product δij on R3. We have
〈

∂h̃

∂x
,

∂h̃

∂x

〉
= a

(
∂W

∂x
+ c

)2

+ b = g11,

〈
∂h̃

∂x
,

∂h̃

∂y

〉
= a

(
∂W

∂x
+ c

)
∂W

∂y
= g12,

〈
∂h̃

∂y
,

∂h̃

∂y

〉
= a

(
∂W

∂y

)2

= g22.

Hence the scalar products on D and S coincide. The two manifolds (D, δij) and
(S, gij) are diffeomorphic and isometric. In fact, S is a planar surface. Summarizing
we obtain

Proposition 4.1. Let D ⊆ R2 be an open, connected and simply connected set, which
has the following property: for any two points A = (xA, yA), B = (xB , yB), xA = xB ,
in D, it follows that the segment [A,B] is included in D.

Suppose we are in the context of the Theorem 3.7, with true statements i), ii),
iii). Let

h = (h1, h2) : D → R2, h1(x, y) =
√

b x, h2(x, y) =
√

a
(
W (x, y) + cx

)

and D0 := h(D). Then
i) D0 is open, connected and simply connected.
ii) h realizes a diffeomorphism of class C∞ between D and D0.
iii) We endow D0 with the metric (δij)i,j∈{1,2} and denote by 〈·, ·〉 the usual scalar

product on R2, hence also on D0. The manifolds
(
D, gij

)
and

(
D0, δij

)
are isometric.

Hence in fact the manifold
(
D, gij

)
is similar to a part of the Euclidean plane,

with all consequences that follows from here. For example, the geodesics identify to
parts of straight lines.

Proof. i) Since h is continuous and D is connected and simple connected, it follows
that h(D) = D0 is also connected and simple connected.

Let us show that h is injective. Let (x1, y1), (x2, y2) ∈ D, such that h1(x1, y1) =
h1(x2, y2) , h2(x1, y1) = h2(x2, y2). From

√
b x1 =

√
b x2, we have x1 = x2. From

h2(x1, y1) = h2(x1, y2), we deduce that W (x1, y1) = W (x1, y2). Let us assume that
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y1 6= y2, for example y1 < y2. Since (x1, y1), (x1, y2) ∈ D, it follows that (x1, y) ∈ D,
∀y ∈ [y1, y2]; consequently we can define the function

ϕ : [y1, y2] → R, ϕ(y) = W (x1, y), ∀y ∈ [y1, y2].

But ϕ′(y) =
∂W

∂y
(x1, y) > 0, hence the function ϕ is strictly increasing. It follows

ϕ(y1) < ϕ(y2), i.e., W (x1, y1) < W (x1, y2). We have obtained a contradiction. Hence
y1 = y2. In this way, the map h is injective.

Since h is continuous, injective and D is open, it follows that h(D) = D0 is open.
ii) At i) we showed that h is injective. Hence h : D → h(D) = D0 is bijective.

Since we have

∂h

∂x
=

(√
b,
√

a

(
∂W

∂x
+ c

))
,

∂h

∂y
=

(
0,
√

a
∂W

∂y

)
,

the Jacobian of h is
√

ab·∂W

∂y
> 0, hence nonzero. From the inverse function Theorem,

it follows that h−1 : D0 → D is of class C∞ (since h is of class C∞).
iii) From the point ii) we deduce that h realizes a reparameterization (changing of

coordinates) of the manifold D0 (changing with respect to the Cartesian coordinates).
Since 〈

∂h

∂x
,

∂h

∂x

〉
= a

(
∂W

∂x
+ c

)2

+ b = g11,

〈
∂h

∂x
,

∂h

∂y

〉
= a

(
∂W

∂x
+ c

)
∂W

∂y
= g12,

〈
∂h

∂y
,

∂h

∂y

〉
= a

(
∂W

∂y

)2

= g22,

i.e., the scalar product is conserved, we deduce that h induces an isometry between
the tangent spaces of the manifolds D and D0. ¤
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