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Abstract. This paper introduces and proves a stochastic variant of Chow-
Rashewski global connectivity theorem for the Grushin distribution. Given
two points A and B, in the Grushin distribution of step 2, then for any
ball centered at B the probability that an admissible stochastic process
ever reaches a disk centered at B of arbitrary small radius r can be made
as large as possible by choosing proper controls u1(t), u2(t). The details
refer to admissible curves, stochastic admissibility and stochastic control-
lability.
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1 Introduction

Let M be a finite dimensional, connected differentiable manifold. Any subbundle H
of the tangent bundle TM will be called a distribution on M . The distribution H is
supposed to be non-integrable, because otherwise we obtain a foliation on M . Most
usually, the distribution H is given locally as the linear hull of a set {X1, X2, · · · , Xm}
of smooth vector fields on M , where m ≤ dimM = n is the rank of H. The codi-
mension of H, which is equal to n−m, provides the number of missing directions of
the sub-Riemannian geometry. We can always construct locally a metric g defined on
H×H, with respect to which the vector fields Xj are assumed orthonormal.

A sub-Riemannian manifold is a triplet (M,H, g), where M is a finite dimensional
connected manifold, H is a horizontal distribution, and g is a sub-Riemannian metric,
i.e. a positive definite, non-degenerate metric g : H×H → F(M).

The set of smooth functions on M is denoted by F(M) and the horizontal vector
fields, which are linear combinations of Xj , are considered sections of the horizontal
subbundle, i.e. elements of Γ(H).

The first approach of this geometry from the dual equivalent point of view of con-
straints was done by Vranceanu [21] in 1926, under the name of non-holonomic geom-
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etry. Sub-Riemannian geometry is also known under the synonym name of Carnot-
Carathéodory geometry.

The distribution H satisfies the bracket generating condition if the vector fields
Xj , together with finitely many of their iterated brackets span the tangent space of
the space M at each point. This means that for each x ∈ M , there is an r > 1 such
that

Xi, · · · , [Xi, Xj ], · · · , [Xi, [Xj , Xk]], · · · , [· · · [Xi1 , · · · , [Xir
, Xir+1 ]] · · · ]

span TxM .
The aforementioned condition has been used independently by Chow and Ra-

shevskii ([10], [18]) to prove global connectedness of M by horizontal curves; it was also
used by Hörmander [14] as a sufficient, but not necessary condition for the differential
operator

∑
j X2

j to be hypoelliptic. It is worth noting that there are sub-Riemannian
manifolds on which the global connectedness holds but the bracket-generating condi-
tion fails, see for instance [6].

More precisely, Chow’s theorem states the following:
If the distribution H is bracket generating at each point on a connected manifold

M , then any two points of M can be joined by a piecewise curve tangent to the
distribution.

The horizontal curves are called admissible curves. If we perform a stochastic per-
turbation of the distribution H, the admissible curves will be replaced by admissible
stochastic processes, see Section 3. Hopping that any two points can be joined by an
admissible stochastic process is not too realistic. Take for instance the 2-dimensional
difussion process Xt = (W 1

t ,W 2
t ), where W j

t is a 1-dimensional Brownian motion.
Then Xt starts at the origin and the probability that it reaches a given point (dif-
ferent than the origin) is zero. Therefore, we cannot expect that an exact analog
of Chow’s theorem would hold. However, we can modify the connectivity property,
replacing it by a stochastic connectivity. In this case, one stochastic variant of Chow’s
theorem reads:

Let (M, H, g) be a connected sub-Riemannian manifold with the distribution H
bracket generating. Given any two points A, B on M , then for any r, ε > 0, there is
an admissible process xt, with x0 = A and

(1.1) P
(
xt ∈ D(B, r) for some t > 0

)
≥ 1− ε,

where D(B, r) = {y ∈ M ; ‖y −B‖g < r} is the ball centered at B of radius r.
This states that given any two points A and B, we can choose proper control func-

tions u1(t), u2(t) such that the corresponding admissible stochastic process reaches
any disk centered at B with a probability sufficiently close to 1 (see Fig. 1).

The plan of the paper is as in the following. Section 2 shows the connectivity by
admissible curves on the Grushin plane. Then Section 3 defines admissible stochastic
processes and proves the aforementioned stochastic connectivity property for the case
of Grushin distribution.

The stochastic version of the Grushin problem may have some applications in
finding heat kernels and fundamental solutions. It is known that the heat kernel of a
sub-elliptic operator depends on the geometry of the underlying horizontal distribu-
tion H. It is expected that the heat kernel K(x, x0; t) is given by the path integral
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Figure 1: The admissible stochastic process xt starting at x0 = A and reaching the
disk D(B, r).

with respect to all horizontal curves joining the points x0 and x in time t. We believe
that the aforementioned path integral can be replaced by a probabilistic argument,
where the probability that an admissible process starting at x0 reaching a volume
element centered at x plays a central role in defining a measure on the space of ad-
missible stochastic processes starting at a given point. A similar well known result
states that the fundamental solution, F (x0, x), of a second order differential operator,
which is associated with the diffusion Xt, can be expressed probabilistically by

F (x0, x)dx = P x0

(
Xt ∈ dx for some t > 0

)
,

where dx is an infinitesimal volume element centered at x, and Xt starts at x0.
In a second paper (see [9]) we define the stochastic geodesic processes as minimizers

of a stochastic energy action. The exact number of stochastic geodesics from the origin
to any other point is computed and the corresponding energies are calculated. It is
also shown that the number of stochastic geodesics increases unbounded when the
second point approaches the vertical axis (stochastic cut locus).

2 Grushin Distribution

The linear differential operators X1 = ∂x1 , X2 = x1∂x2 in R2 are called Grushin
vector fields. The rank of the distribution generated by {X1, X2} is 1 along the
vertical axis {x1 = 0} and 2 elsewhere. Since their bracket is [X1, X2] = ∂x2 , then
Chow’s bracket generating condition is satisfied; this means that X1, X2, [X1, X2] span
all tangent space at each point. By Chow-Rashevski theorem, any two points A and
B in the plane can be joined by a continuous, piecewise differentiable curve which is
tangent to the distribution generated by {X1, X2}. This means that there are two
controls u1(t), u2(t) such that there is a solution x : [0, T ] → R2 to the following
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boundary problem

dx

dt
(t) = u1(t)X1

(
x(t)

)
+ u2(t)X2

(
x(t)

)
(2.1)

x(0) = A, x(T ) = B.

The system can be written equivalently as

dx1(t) = u1(t) dt(2.2)
dx2(t) = u2(t)x1(t) dt(2.3)

xj(0) = xA
j , xj(T ) = xB

j , j = 1, 2.

An admissible curve between A and B is a solution x(t) = (x1(t), x2(t)) of the
system (2.1), or, equivalently, the system (2.2− 2.3).

In fact, the admissible curves between A and B can be constructed explicitly.
Assume for the sake of simplicity that A = (0, 0) and B = (xB

1 , xB
2 ) 6= A (otherwise

we can join separately A and B with the origin and concatenate the resulting admis-
sible curves). There are two cases to investigate, which come from the rank-varying
property of the Grushin distribution: xB

1 6= 0 and xB
1 = 0.

1. We assume that B is outside of the x2-axis. If we consider the constant controls
u1(t) = a, u2(t) = b, then the system can be easily solved, obtaining x1(t) = at,
x2(t) = 1

2abt2. The boundary condition yields

(2.4) a =
xB

1

T
, b =

2xB
2

xB
1 T

,

which corresponds to the admissible curve

x1(t) =
xB

1

T
t, x2(t) =

xB
2

T 2
t2, 0 ≤ t ≤ T,

joining the origin and the point B. Since

x2 =
xB

2

(xB
1 )2

x2
1,

the curve is just an arc of parabola.
2. We assume that B is on the x2-axis. In this case we look for controls of type

u1(t) = a cos(at), u2(t) = b, with a and b constants. Solving the system and using the
boundary conditions yields a = π

T , b = πxB
2

2T . The admissible curve joining the origin
and B(0, xB

2 ) is given by

x1(t) = sin(πt/T )

x2(t) =
1
2
xB

2 (1− cos(πt/T )), 0 ≤ t ≤ T,

i.e., the semi-ellipse

(x1)
2 +

(
1− 2

xB
2

x2

)2

= 1.

Much more it is known about the Grushin distribution. The reader can find more
information, for instance, in [3] p.271 and [8].
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3 Stochastic Admissibility

We shall stochastically perturb the system (2.2 − 2.3) by adding some “noise”. The
traditional way of doing this is to add normal errors given by increments of a Brownian
motion process. For the definition and properties of Brownian motions the reader can
consult Kuo [15].

Let W1(t), W2(t) be two independent Brownian motion processes and σi two non-
negative constants used in controlling the amplitudes of the error term, so σidWi(t) ∼
N(0, σidt), i=1,2. Consider the following stochastic perturbation of the system (2.2–
2.3)

dx1(t) = u1(t)dt + σ1dW1(t)(3.1)
dx2(t) = u2(t)x1(t)dt + σ2dW2(t)(3.2)
x1(0) = x2(0) = 0.

An admissible process is a stochastic process xt =
(
x1(t), x2(t)

)
, which starts at

the origin and satisfies the system (3.1-3.2). It is worth noting that the end point
xT = x(T ) is left free.

In this section we shall prove the connectivity property from the origin by admis-
sible stochastic processes.

Theorem 3.1. Let B be any point in the plane and consider the origin A = (0, 0).
Then for any r, ε > 0, there is an admissible stochastic process xt such that x0 = A
and

(3.3) P
(
xt ∈ D(B, r) for some t > 0

)
≥ 1− ε.

This can be restated equivalently as: the probability that an admissible stochastic
process, which starts at the origin, ever reaches a given disk centered at B of arbitrary
radius r can be made as large as possible by choosing proper controls u1(t), u2(t).

Proof. We need to address the following two cases:

1. If B is outside of the x2-axis, we look for a solution xt with constant controls
u1(t) = a and u2(t) = b, with a and b subject to be found later on. Solving the system
(3.1-3.2) yields

x1(t) = at + σ1W1(t)(3.4)

x2(t) =
ab

2
t2 + bσ1Zt + σ2W2(t),(3.5)

where Zt =
∫ t

0
W1(s) ds. Since Zt ∼ N(0, t3/3) and W2(t) ∼ N(0, t), using the

independence of W1(t) and W2(t), yields

x1(t) ∼ N(at, σ2
1t)

x2(t) ∼ N
(ab

2
t2, b2σ2

1t3/3 + σ2
2t

)
.
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Since the pair (x1(t), x2(t)) does not have an obvious joint distribution, we shall use
the following approach.

Let At = {ω ∈ Ω; ‖xt(ω) − B‖ ≥ r} be the complementary event, which consists
of all states ω for which xt does not belong to the disk D(B, r). Then evaluating the
expectation of the square of the Euclidean distance ‖xt − B‖2 with respect to the
natural probability measure dP we have the following estimation

E[‖xt −B‖2] =
∫

Ω

‖xt(ω)−B‖2 dP (ω) ≥
∫

At

‖xt(ω)−B‖2 dP (ω)

≥ r2

∫

At

dP (ω) = r2P (At),

so P (At) ≤ 1
r2

E[‖xt −B‖2], or

P (‖xt −B‖ ≥ r) ≤ 1
r2
E[‖xt −B‖2].

This is equivalent to

P
(
xt ∈ D(B, r)

)
= P (‖xt −B‖ ≤ r) ≥ 1− 1

r2
E[‖xt −B‖2].

Comparing to the inequality (3.3), we set

ε =
1
r2
E[‖xt −B‖2].

We need to show now that for any r, ε > 0, there is a t > 0 such that

(3.6) E[‖xt −B‖2] = ε r2.

The left side of (3.6) can be evaluated directly using formulas (3.4-3.5). We have

‖xt −B‖2 = (x1(t)− xB
1 )2 + (x2(t)− xB

2 )2

= (at− xB
1 + σ1W1(t))2 +

(ab

2
t2 − xB

2 + bσ1Zt + σ2W2(t)
)2

=
(
at− xB

1

)2 + 2σ1(at− xB
1 )W1(t) + σ2

1W1(t)2

+
(ab

2
t2 − xB

2

)2

+ b2σ2
1Z2

t + σ2
2W2(t)2

+ 2
(ab

2
t2 − xB

2

)
bσ1Zt + 2

(ab

2
t2 − xB

2

)
σ2W2(t) + 2bσ1σ2ZtW2(t).

Using

E[W1(t)] = E[W2(t)] = E[Zt] = 0

E[W1(t)2] = E[W2(t)2] = t

E[Z2
t ] =

t3

3
E[ZtW2(t)] = E[Zt]E[W2(t)] = 0,
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we have

E[‖xt −B‖2] =
(
at− xB

1

)2 + (σ2
1 + σ2

2)t +
(ab

2
t2 − xB

2

)2

+ b2σ2
1

t3

3
.

Then condition (3.6) becomes the polynomial equation

(3.7)
(
at− xB

1

)2 + (σ2
1 + σ2

2)t +
(ab

2
t2 − xB

2

)2

+ b2σ2
1

t3

3
= εr2.

We need to show that we can choose the constants a and b such that the previous
equation has a solution t > 0. First we ask the expectaion of the random variable xt

to be the center of the disk, i.e., E[x1(t)] = xB
1 and E[x2(t)] = xB

2 . This implies

at− xB
1 = 0(3.8)

ab

2
t2 − xB

2 = 0.(3.9)

Then the first and the third terms of equation (3.7) vanishes, leading to the more
simple equation

(σ2
1 + σ2

2)t + b2σ2
1

t3

3
= εr2.(3.10)

Solving for a and b in terms of t in (3.8-3.9) yields

(3.11) a =
xB

1

t
, b =

2xB
2

xB
1 t

.

It is worth noting the similarity with relations (2.4). Substituting in (3.10) leads to
the following linear equation in t

t
[
σ2

1 + σ2
2 +

4
3
σ2

1

(xB
2

xB
1

)2]
= εr2,

which obviously has a positive solution. Substituting back in (3.11) determines the
following values of controls

u1(t) = a =
xB

1

εr2

[
σ2

1 + σ2
2 +

4
3
σ2

1

(xB
2

xB
1

)2]

u2(t) = b =
2xB

2

xB
1 εr2

[
σ2

1 + σ2
2 +

4
3
σ2

1

(xB
2

xB
1

)2]
.

We make the remark that the previous computation assumed that σ2
1 + σ2

2 6= 0,
i.e., at least one constant σi is nonzero; we also have ε > 0.

If σ1 = σ2 = 0, then the second and the fourth terms of (3.7) disapear, leading to

(3.12)
(
at− xB

1

)2 +
(ab

2
t2 − xB

2

)2

= εr2.
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Substituting relations (3.11) into (3.12) yields ε = 0. This can be restated by saying
that in the non-stochastic case the probability that an admisible curve reaches a given
disk is always equal to 1.

2. If B belongs to the x2-axis, then xB
1 = 0. This case is similar to case 1 and

consists in a straightforward calculation. We shall provide it in the following for the
sake of completeness. In this case we look for controls u1(t) = a cos(at) and u2(t) = b,
with a and b constants. The system (3.1-3.2) becomes

dx1(t) = a cos(at)dt + σ1 dW1(t)
dx2(t) = bx1(t)dt + σ2 dW2(t)
x1(0) = x2(0) = 0.

The solution is

x1(t) = sin(at) + σ1W1(t)(3.13)

x2(t) =
b

a
(1− cos(at)) + bσ1Z(t) + σ2W2(t),(3.14)

with Zt =
∫ T

0
W1(t) dt.

As before, we need to prove that there are constants a and b such that for any
ε, r > 0, the equation

(3.15) E[‖xt −B‖2] = εr2

has a positive solution t. Evaluating the left side we get

E[‖xt −B‖2] = E[(x1(t)− xB
1 )2] + E[(x2(t)− xB

2 )2]

= E
[(

sin(at) + σ1W1(t)
)2

]

+ E
[( b

a

(
1− cos(at))− xB

2

)
+ bσ1Zt + σ2W2(t)

)2]

= (σ2
1 + σ2

2)t + sin2(at) +
b2σ2

1

3
t3 +

( b

a

(
1− cos(at)

)− xB
2

)2

.

The following conditions are sufficient for (3.15) to hold

sin2(at) = 0(3.16)
b

a

(
1− cos(at)

)− xB
2 = 0(3.17)

(σ2
1 + σ2

2)t +
b2σ2

1

3
t3 = εr2.(3.18)

From (3.16) we obtain a =
π

t
, and then (3.17) yields b =

πxB
2

2t
. Since the equation

(3.18) has the positive solution

t =
εr2

σ2
1 + σ2

2 + π2

4 (xB
2 )2σ2

1

,
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substituting in the formulas of a and b yields

a =
π(σ2

1 + σ2
2 + π2

4 (xB
2 )2σ2

1)
εr2

(3.19)

b =
πxB

2 (σ2
1 + σ2

2 + π2

4 (xB
2 )2σ2

1)
2εr2

.(3.20)

Hence, in the case xB
1 = 0, the solution (3.13-3.14) with a and b given by (3.19-3.20)

satisfies condition (3.3). ¤

A general stochastic connectivity result for any sub-Riemannian manifold is hard
to address at this incipient stage. However, the stochastic connectivity proved in this
section shows the transience property of the stochastic admissible processes in the
case of Grushin distribution; it shows, actually, an “almost recurrence” property. It
is worth mentioning that in the case of Brownian motion on surfaces, there are two
main factors which influence its recurrence: the dimension and the curvature. The
lower the dimension and the higher the curvature, the more recurrent the diffusion
tends to be. When the problem is studied on distributions, it is expected that the
rank and the step of the distribution play a similar role. An answer to this problem
requires future endeavors.

4 Stochastic Controllability by Bang-Bang Controls

This section deals with the controllability of a stochastic ODE system induced by the
Grushin distribution using bang-bang controls. The concept of controllability is given
by the following definition.

Definition 4.1. A stochastic dynamical system on Rn is said to be controllable if
for every initial condition x(0) and every vector x1 ∈ Rn, there is a finite random
time t1 and a control u(t) ∈ Rm, t ∈ [0, t1], such that x(t1; x(0), u) steers to x1 with
probability 1.

In the following we shall solve the random time minimum problem, i.e. to find the
optimal admissible process that steers an initial point x0 to the origin in the shortest
possible time.

Let U = [−1, 1]2 ⊂ R2 be the control set and τ be a random time. Giving the
starting point x0 ∈ R2, we shall find an optimal control u∗(·) such that

I(u∗(·)) = min
u(·)

E

(∫ τ

0

dt

)
,

where x(t) satisfies the stochastic evolution ODEs induced by the perturbed Grushin
distribution

dx1(t) = u1(t) dt + σ1dW1(t), dx2(t) = u2(t)x1(t) dt + σ2dW2(t).

Since τ∗ = I(u∗(·)), the optimal point τ∗ ensures the minimum random time to steer
to the origin with probability 1. This random time optimum problem is equivalent to
a stochastic controllability problem.
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In order to prove the existence of a bang-bang control, we use the stochastic
maximum principle as in Theorem 4.1 of Udriste and Damian [19]. The Hamiltonian
1-form

H(x, p, u) := −[1 + u1(t)p1(t) + u2(t)p2(t)x1(t)]dt

gives the adjoint stochastic system

dpj(t) = −Hxj (x(t), p(t), u(t),Wt)− pi(t)σi
axj dW a

t

or
dp1(t) = p2(t)u2(t)dt, dp2(t) = 0.

The maximum of the linear 1-form u → H exists since each control variable belongs
to the interval [−1, 1]; for optimum, the control must be at a vertex of ∂U (see linear
optimization, simplex method). The optimal controls u∗a must be the functions

u1(t) = sgn p1(t), u2(t) = sgn [p2(t)x1(t)].

Consequently
H∗ = −[1 + |p1(t)|+ |p2(t)x1(t)|]dt.

Next we shall look at possible bang-bang trajectories. For u2(t) = ±1, we obtain
the general solution

p1(t) = ± at + b, p2(t) = a.

We have the following optimal stochastic evolutions:
1) For u1(t) = 1, u2(t) = 1, we find

x1(t) = t + c1 + σ1W1(t), x2(t) =
1
2
t2 + c1t + c2 + σ2W2(t) + σ1

∫ t

0

W1(s)ds.

2) For u1(t) = 1, u2(t) = −1, we obtain

x1(t) = t + c1 + σ1W1(t), x2(t) = −
(

1
2
t2 + c1t + c2

)
+ σ2W2(t)− σ1

∫ t

0

W1(s)ds.

3) For u1(t) = −1, u2(t) = 1, we find

x1(t) = −t + c1 + σ1W1(t), x2(t) = −1
2
t2 + c1t + c2 + σ2W2(t) + σ1

∫ t

0

W1(s)ds.

4) For u1(t) = −1, u2(t) = −1, we get

x1(t) = −t + c1 + σ1W1(t), x2(t) =
1
2
t2 − c1t + c2 + σ2W2(t)− σ1

∫ t

0

W1(s)ds.

It is worthy to note that all optimum solutions given above are Gaussian processes.
For instance, in the case of 1), using the independence of W1(t) and W2(t) we have

x1(t) ∼ N
(
t + c1, σ1t

)
, x2(t) ∼ N

(1
2
t2 + c1t + c2, σ

2
2t + σ2

1

t3

3

)
.

The Lebesgue measure of each set {t ∈ [0, τ ] : p1(t) = 0}, {t ∈ [0, τ ] : p2(t)x1(t) =
0} vanishes. Then, the singular control is ruled out and the remaining possibilities
are bang-bang controls. This optimal control is discontinuous since each component
jumps from a minimum to a maximum and vice versa, in response to each change in
the sign of each function p1(t), respectively p2(t)x1(t). The functions p1(t), p2(t)x1(t)
are called switching functions.
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5 Conclusions

We recall that Chow’s theorem states that on a sub- Riemannian manifold which sat-
isfies the bracket generating condition any two points can be joined by an admissible
piecewise smooth curve (a curve tangent to the horizontal distribution). In the case
when the horizontal distribution is stochastically perturbed, the admissible curves are
replaced by admissible stochastic processes. Our ideea was to introduce and prove
a stochastic variant of Chow’s theorem of connectedness by admissible curves in the
case of Grushin distribution.

Our research interests lie at the boundary of probability theory, differential geom-
etry and control theory, mainly in the area of admissibility and controllability. This
field is concerned with the properties of solutions of suitable stochastic equations and
the stochastic processes to which they correspond.

The novelty of this article is based on a mixture between probability theory, differ-
ential geometry and control theory. We believe that the mixture can be continued, but
stochastic-deterministic balance cannot be understood without new points of view.
Obviously it all depends on which side of the fence you stand : (1) differential ge-
ometry over a stochastic theory plus control theory or (2) a stochastic theory over
geometry plus control theory.
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sity Politehnica of Bucharest, and by Academy of Romanian Scientists, Bucharest,
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