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1 Introduction

Various conditions that a foliation be Riemannian are studied in many papers, for
example [3, 4, 10, 11, 12, 14].

The conditions studied in this paper have initially the origin in a special case of
a problem presented by E. Ghys in Appendix E of P. Molino’s book [6], i.e. asking
if the existence of a foliated Finsler metric assure that a foliation is Riemannian
(Ghys conjecture). We proved the answer is affirmative in a more general case of a
transverse Lagrangian fulfilling a natural regularity condition, automatically fulfilled
by a transverse Finslerian (see [10]).

Our goal below is to present in a unitary way, following [11, 12], some conditions
that a foliation be Riemannian, involving general conditions on higher order normal
bundles (jets or accelerations). Some other aspects of the problem can be stressed. For
example, if the leaves of a Riemannian foliation F are compact, then the leaf spaces
M/F is a Satake manifold (or a V-manifold, in the original terminology of Satake),
one of the first known non-trivial orbifold. The existence of a transverse Lagrangian
or Hamiltonian is worth to be studied on such generalized manifolds, together with
their physical properties; it is also the case of the normal bundle (of first order) of a
foliation.

In the sequel we study the real case, but it can also be developed a study in a
complex setting for foliations, as in [1, 2].

Let M be an n-dimensional manifold and F be a k-dimensional foliation on M .
We denote by τF and νF the tangent plane field and the normal bundle respectively.

A bundle E over M is called foliated if there is a bundle atlas on E such that all
the components of the structural functions are basic ones. In this case a canonical
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foliation FE on E is induced, having the same dimension k, such that p restricted to
leaves is a local diffeomorphism. In particular, we consider affine and vector bundles
that are foliated. For example, νF is a foliated bundle and a natural foliation on νF
can be considered.

According to [11], a positively admissible Lagrangian on a foliated vector bundle
p : E → M is a continuous map L : E → IR that is asked to be differentiable at least
when it is restricted to the total space of the slashed bundle E∗ = E\{0̄} → M , where
{0̄} is the image of the null section, such that the following conditions hold: 1) L is
positively defined (i.e. its vertical Hessian is positively defined) and L(x, y) ≥ 0 =
L(x, 0), (∀)x ∈ M and y ∈ Ex = p−1(x); 2) L is locally projectable on a transverse
Lagrangian; 3) there is a basic function ϕ : M → (0,∞), such that for every x ∈ M
there is y ∈ Ex such that L(x, y) = ϕ(x).

If a positively transverse Lagrangian F is 2–homogeneous (i.e. F (x, λy) = λ2F (x, y),
(∀)λ > 0), then F is called a Finslerian; it is also a positively admissible Lagrangian,
taking ϕ ≡ 1, or any positive constant. For a foliated bundle, we can see the ver-
tical bundle V TE = ker p∗ → E as a vector subbundle of νFE → E by mean of
the canonical projection TE → νFE , since V TE is transverse to τFE . We say that
an invariant Riemannian metric G′ on νFE is vertically exact if its restriction to the
vertical foliated sections is the transverse vertical Hessian of a positively admissible
Lagrangian L : E → IR; in this case, we say that the foliation FE is vertically exact.
Notice that if p : E → M is an affine bundle, then the vertical Hessian Hess L of
a Lagrangian L : E → IR is a symmetric bilinear form on the fibers of the vertical
bundle V TE, given by the second order derivatives of L, using the fiber coordinates
(see [10, 13] for more details using coordinates).

2 The jet bundle case

If p : E → M is a foliated bundle, then J 1E → M is a foliated bundle of 1-jets
of foliated sections of E; a canonical foliation F1

E on J 1E can be considered. For
r ≥ 1, the canonical projection πr

r−1 : J rE → J r−1E is also an affine bundle,
with the director vector bundle Hom((νF )r, E)). For r = 0 one obtain a bundle
πr
−1 : J rE → M . If p : E → M is a foliated vector bundle, then πr

−1 : J rE → M is
also a foliated vector bundle and a natural vector subbundle of J 1J r−1E → M , the
first jet bundle of πr−1

−1 : J r−1E → M .

Theorem 2.1. The lifted foliation Fr is Riemannian for some r ≥ 1 iff F is Rie-
mannian.

Considering the induced foliation Fr
0 on the slashed vector bundle J r

∗ = J r\{0̄},
then Theorem 2.1 can not give any answer to the following question: when is F
Riemannian if Fr

0 is Riemannian for some r ≥ 1?

Theorem 2.2. Let F be a foliation on a manifold M and Fr
0 be the lifted foliation

on the slashed bundle of r-jets of sections of the normal bundle νF . Then Fr
0 is

Riemannian and vertically exact for some r ≥ 1 iff F is Riemannian.

In particular, it follows that any invariant metric g on νF gives rise to a canonical
Lagrangian on J r, coming from the vertical part of the vertically exact invariant
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Riemannian metric on νF r. So, it is natural to ask for the converse: does the existence
of a Lagrangian on J r give guaranties that F is Riemannian?

Theorem 2.3. Let p : E → M be a foliated vector bundle over a foliated manifold
(M,F). There is a positively admissible Lagrangian on J rE for some r ≥ 1 iff the
foliation F is Riemannian.

The key result to prove the above Theorems, as well as the main results is the
following statement.

Proposition 2.4. Let p1 : E1 → M and p2 : E2 → M be foliated vector bundles over
a foliated manifold (M,F) and q2 : E2∗ → M be the slashed bundle. If there are a
positively admissible Lagrangian L : E2 → IR and a metric b on the pull back bundle
q∗2E1 → E2∗, foliated with respect to FE2∗ , then there is a foliated metric on E1, with
respect to F .

3 The acceleration bundle case

We consider now the higher order transverse foliated bundle of order r ≥ 1 of a
foliation F on M , denoted by νrF , as spaces of classes of transverse curves having
a transverse contact of order r ≥ 0. Notice that in the foliate case the transverse
νFr play a role of a tangent space for νrF , as the tangent space τT rM is for T rM
in the non-foliate case in [5]. We denote by Fr the foliation on νrF . In a similar
way as in the non-foliate case in [5, Sect. 6.1], some constructions can be performed.
For example, various bundle structures can be considered over a νrF ; for example,
for 0 ≤ r′ ≤ r, the canonical projection πr

r′ : νrF → νr′F is a foliated bundle. In
particular, for r ≥ 1, πr

r−1 : νrF → νr−1F is a (foliated) affine bundle for r > 1 and
π1

0 : νF → ν0F = M is a (foliated) vector bundle (for r = 1).

Proposition 3.1. For 1 ≤ r′ ≤ r, there is an inclusion of foliated submanifolds (in
fact of foliated subbundles over M), Ir

r′ : νr′F → νrF , where the inclusion assigns to
an equivalence class in [γ] ∈ νr′

;mF an equivalence class in νr
;mF that the first r − r′

derivatives vanish, then the next r′ derivatives are the same as the first r′ derivatives
of γ.

Thus we have Ir
0 (M) ⊂ Ir

1 (νF) ⊂ Ir
2 (ν2F) ⊂ · · · ⊂ Ir

r−1(ν
r−1F) ⊂ νrF .

A transverse vector field X̄ ∈ Γ(νF) lifts in this way to the transverse section
Ir
1 (X̄) : M → νrF of the bundle πr

0 : νrF → M . An other lift can be constructed as
it follows. Denoting by γX

t the one parameter group of local transformations of X,
we consider [γX

t=0(m)] ∈ νr
;mF . The simplest case is when X̄ = 0̄ is the null vector

field; its lift is the null section 0̄r : M → νrF , 0̄r(m) = Ir
0 (m).

For every r ≥ 1 and 0 ≤ r′ ≤ r, , the canonical projection πr
r′ : νrF → νr′F

induces a transverse map π̄r
r′ : νFr → νFr′ that is a vector bundle map of foliated

vector bundles; notice that πr
0 = πr, F0 = F , ν1F = νF , ν0F = M and π̄r

0 = π̄r. We
denote the kernel vector subbundle ker π̄r

r′ ⊂ νFr by V̄ r
r′ ; it is a foliate vector bundle

as well. Since for r1 ≤ r2 ≤ r3, one have πr3
r1

= πr3
r2
◦πr2

r1
and π̄r3

r1
= π̄r3

r2
◦ π̄r2

r1
, it follows

that there are foliated vector subbundles V̄ r
r−1 ⊂ V̄ r

r−2 ⊂ · · · ⊂ V̄ r
0 ⊂ νFr. Notice

that νr+1F ⊂ νFr is an affine subbundle over νrF , for r ≥ 1, while ν1F = νF0 = νF
for r = 0.
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There is an r-transverse structure in the fibers of on νFr, i.e. a vector bundle
map J : νFr → νFr (analogous of the r-tangent structures in the non-foliate case),
and its dual J∗ : ν∗Fr → ν∗Fr.

A transverse r-nonlinear connection is a splitting of νFr as a Whitney sum of
transverse vector bundles

(3.1) νFr = V̄ r
0 ⊕ H̄r

0 ,

where H̄r
0 is the r-horizontal vector bundle, that is canonically isomorphic with

(π̄r)∗νF . We denote by h : νFr → H̄r
0 the projector given by the above decom-

position.
Given a transverse r-nonlinear connection by a splitting (3.1), the consecutive

images by J in the fibers of νFr,

J
(
H̄r

0

)
= H̄r

1 , . . . , J
(
H̄r

r−1

)
= H̄r

r

define some transverse vector subbundles of νFr, all isomorphic with H̄r
0 , such that

there are the following Whitney sum decompositions

(3.2) V̄ r
0 = H̄r

1 ⊕ · · · ⊕ H̄r
r , νFr = H̄r

0 ⊕ H̄r
1 ⊕ · · · ⊕ H̄r

r .

Notice that H̄r
r = V̄ r

r−1 and we can prove the following result.

Proposition 3.2. Any splitting νFr = V̄ r
r−1 ⊕ H̄r

r−1 gives rise to a splitting (3.1).

A transverse r-semispray is a foliate section S : νrF → νr+1F of the affine bundle
πr+1

r : νr+1F → νrF . Since νr+1F ⊂ νFr, it follows that an r-semispray can be
regarded as well as a transverse section S : νrF → νFr.

Proposition 3.3. Any transverse r-semispray gives rise to a transverse r-nonlinear
connection, i.e. a splitting (3.1).

A fact that we use latter is the following result.

Proposition 3.4. A transverse r-nonlinear connection and a transverse Riemannian
metric in the fibers of V̄ r

r−1 give a transverse Riemannian metric on νFr. Conversely,
a transverse Riemannian metric on νFr gives a transverse r-nonlinear connection and
a transverse Riemannian metric in the fibers of V̄ r

r−1.

4 The Lagrangian case

Some r-transverse non-linear connections, semi-sprays and Riemannian metrics are
involved in the case of regular r-transverse Lagrangians that we consider in the sequel.

An r-transverse Lagrangian (a transverse Lagrangian of order r ≥ 1, i.e. locally
projectable on an r-Lagrangian) is a continuous real map L : νrF → IR, smooth on
an open fibered submanifold νr

∗F ⊂ νrF . The cases studied in the paper are when
νr
∗F =νrF , i.e. L is smooth, or when νrF\νr

∗F contains Ir
r−1(ν

r−1F), i.e. L is
slashed. For sake of simplicity, we perform the next constructions in the case of a
smooth L, in the slashed case we must be care of domains where the objects are
defined. As usually, the vertical Hessian of L is the bilinear form h in the fibers
of V̄ r

r−1, given in some generic coordinates by the second order derivatives. We say
that L is regular if its vertical Hessian is non-degenerated. The fibers of the fibered
manifold νrF → νr−1F are affine spaces.
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Proposition 4.1. 1) If an r-Lagrangian L is regular, then it can define canonically
a transverse r-semispray and a transverse r-nonlinear connection.

2) If the vertical Hessian of an r-Lagrangian L is positively defined, then Fr is a
Riemannian foliation.

As in the case of trivial foliation of M by points in [9], νr−1F ×M ν∗F not.= νr∗F
play the role of the vectorial dual of the affine bundle νrF → νr−1F . The usual
partial derivatives of L in the highest order transverse coordinates define a well-defined
Legendre map L : νr → νr∗F . If L is regular, then L is a local diffeomorphism; if L is a
global diffeomorphism we say that L is hyperregular. We say that H : νr∗F → IR, H =
L ◦ L−1 is the pseudo-Hamiltonian associated with L. For 0 ≤ r′ ≤ r, let us denote
νr′,(r−r′)∗F = νr′F ×M (ν∗F)r−r′ , where (ν∗F)r−r′ = ν∗F ×M · · · ×M ν∗F , with the
fibered product of (r− r′)-times. In particular, νr∗ = νr−1,r∗F = νr−1F ×M ν∗F . A
transverse slashed Lagrangian of order r is a continuous map Lr : νrF → IR that is
differentiable on an open fibered submanifold νr

∗F ⊂νrF , called a slashed bundle. All
the above constructions can be adapted for slashed Lagrangians.

Let us suppose that Lr is hyperregular, i.e. the Legendre map L(r) : νr
∗ →

ν1,(r−1)∗F = νr−1F ×M ν∗F is an diffeomorphism on its image. Let us suppose
also that L(r) (νr

∗) = ν
1,(r−1)∗
∗ F = νr−1

∗ F ×M ν∗∗F ; here ν∗∗F = ν∗F\{0̄} (where
{0̄} is the zero section) and νr−1

∗ F is a slashed subbundle of νr−1F . We denote
by H1,r−1 = Lr ◦ (L(r)

)−1
: ν

1,(r−1)∗
∗ F → IR its pseudo-Hamiltonian. (See [9] for

its classical definition and [8] for a coordinate description of the whole construc-
tion in the non-foliate case). Analogous, for 0 ≤ j < r − 1, we suppose, step by
step, backward from r − 1 from 0, that the usual partial derivatives of L(j+1) :
ν

j+1,(r−j−1)∗
∗ F = νr−j−1

∗ F ×M (ν∗∗F)j+1 → IR in the highest order transverse coor-
dinates (of order j +1) define a well-defined Legendre map L(j+1) : ν

j+1,(r−j−1)∗
∗ F =

νj+1
∗ F ×M (ν∗∗F)r−j−1 → νj,(r−j)∗F = νjF ×M (ν∗F)r−j . We suppose that L(j+1)

is a diffeomorphism on its image and the image is exactly L(j+1)
(
ν

j+1,(r−j−1)∗
∗ F

)
=

ν
j,(r−j)∗
∗ F = νj

∗F ×M (ν∗∗F)r−j . Then the pseudo-Hamiltonian L(j) = L(j+1) ◦(L(j+1)
)−1

: ν
j,(r−j)∗
∗ F → IR can be considered. Finally, for j = 0, we obtain a trans-

verse slashed Lagrangian L(0) = L1◦(L(1)
)−1

: ν0,r∗
∗ F = (ν∗∗F)r → IR and we suppose

that L(1) : ν
1,(r−1)∗
∗ F = ν∗F ×M (ν∗∗F)r−1 → ν0,r∗

∗ F = (ν∗∗F)r ⊂ ν0,r∗F = (ν∗F)r

is a diffeomorphism. It follows a diffeomorphism L = L(1) ◦ · · · ◦ L(r) : νr
∗ → (ν∗∗F)r

and a transverse slashed Lagrangian L(0) : (ν∗∗F)r → IR. The canonical diagonal
inclusion ν∗F → (ν∗F)r sends ν∗∗F → (ν∗∗F)r. We suppose that the restriction of
L(0) to the diagonal is a positively admissible Lagrangian on ν∗F , in fact a transverse
Hamiltonian H : ν∗∗F → IR. If the given transverse Lagrangian Lr : νrF → IR fulfills
all the above conditions, we say that L itself is a positively admissible Lagrangian (of
order r) and H is its diagonal Hamiltonian. The existence of a lifted metric, from the
base space to the higher order tangent bundle, is an well-known fact in the non-foliate
case (see, for example [5, Sect. 9.2]); we have to consider a simpler construction in
the foliated case, that it is also vertically exact, as in [7, 8, 9].

Proposition 4.2. Any transverse metric g on νF gives canonically a positively ad-
missible Lagrangian L(r) of order r and a canonical vertically exact invariant Rie-
mannian metric g(r) on νrF , for any r ≥ 1.
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We can state the following results.

Theorem 4.3. The lifted foliation Fr is Riemannian for some r ≥ 1 iff F is Rie-
mannian.

We say that a foliation F is transversely almost parallelizable if there is a F-
transverse vector bundle ξ over M , such that ξ ⊕ νF is transversely parallelizable.
Obviously, if a foliation F is transversely parallelizable, then it is a Riemannian one.

Corollary 4.4. If the lifted foliation Fr is transversely parallelizable of almost par-
allelizable, then F is a Riemannian foliation.

The proof of Theorem 4.3 can not give any answer to the following question:
when is F Riemannian if the foliation induced on νrF\Ir

r−1(ν
r−1F) is Riemannian

for some r ≥ 1? We are going to relate this question to the existence of a certain
transverse slashed Lagrangian Lr of order r, asking that the open subset νr

∗F ⊂νrF
does not contains Ir

r−1(ν
r−1F). We say that a such Lagrangian Lr is r-regular if

its vertical Hessian, according to the induced affine bundle structure πr
r−1 : νrF →

νr−1F , is non-degenerate. In order to give an answer to the above question, we are
going to consider below some other regularity conditions for these slashed Lagrangians
of order r, as it follows.

A transverse bundle of order r, νrF can be regarded as a fibered manifold πr
r′ :

νrF → νr′F , (∀)0 ≤ r′ < r. We denote νr′,(r−r′)∗F = νr′F ×M (ν∗F)r−r′ (where
(ν∗F)r−r′ = ν∗F ×M · · · ×M ν∗F , with the fibered product of (r− r′)-times and ν∗F
is the transverse bundle dual to νF).

In particular, according to the case of trivial foliation of M by points in [9],
ν1.(r−1)∗F = νr−1F ×M ν∗F is denoted by νr∗M and play the role of the vectorial
dual of the affine bundle νrF → νr−1F .

A transverse slashed Lagrangian of order r is a map Lr : νrF → IR that is
differentiable on an open subset νr

∗F ⊂νrF , where νrF \νr
∗F contains Ir

r−1(ν
r−1F).

We can now state and prove the following Theorems, where the main technical
tool to prove the necessity is Proposition 2.4.

Theorem 4.5. Let F be a foliation on a manifold M and Fr
0 be the lifted foliation in

a suitable slashed bundle νr
∗F of the r-normal bundle νrF . Then Fr

0 is Riemannian
and vertically exact for some r ≥ 1 iff F is Riemannian.

In particular, it follows that any transverse metric g on νF gives rise to a canonical
Lagrangian on νrF , coming from the vertical part of the vertically exact invariant
Riemannian metric on νFr. So, it is natural to ask that only the existence of a
Lagrangian on νrF guaranties that F is Riemannian. One have a positive answer, as
it follows.

Theorem 4.6. If (M,F) is a foliated manifold, then there is a positively admissible
Lagrangian on νrF for some r ≥ 1 iff the foliation F is Riemannian.

Finally, as in the jet bundle case, the following question arises: can we drop in
Theorem 4.5 the condition that Fr

0 is vertically exact?
As a conclusion, the results in both cases (jets and accelerations), confirm that

imposing some minimal conditions in each case on some higher order Lagrangians, the
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given foliation must be Riemannian; thus: Riemannian foliations are necessary setting
to study certain transverse Lagrangians, subject to some natural conditions, considered
on jet transverse bundles or on higher order transverse bundles of a foliation.
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