On the regularity of the residual scheme
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Abstract. In this paper, we deal with the Castelnuovo-Mumford regu-
larity of the residual scheme resy X of X with respect to Y, where X
and Y are closed subschemes of the n-dimensional projective space P™
over an algebraically closed field of arbitrary characteristic, moreover, we
characterize it by studying its hyperplane section scheme. In addition, we
investigate the case when resy X consists of points in uniform position,
in particular we offer a method of constructing a set of points of a given
projective space in uniform position.
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1 Introduction

Let X and Y be closed subschemes of the n-dimensional projective space P’ over a
fixed algebraically closed field K, where n is a positive integer. The residual scheme
resy X of X with respect to Y is the closed subscheme of P whose ideal sheaf is
defined by the division ideal sheaf Z,es,, x = (Zx : Zy), where Zx and Zy are the
ideal sheaves of X and Y respectively.

An interesting problem is to understand the relationship between the general hy-
persurface section of the residual scheme in the projective space P} and the general
hypersurface sections of the schemes that define such residual scheme. In this direc-
tion, many interesting and fundamental results may be found in [2],[3], and [10]. In [6],
the second author proved a nicely simple and fundamental statement: a sufficiently
general hypersurface section commutes with the residual scheme.

The aim of this paper is to describe and to compare some geometrical properties
of the residual scheme resy X concerning the Castelnuovo-Mumford regularity, and
the “Uniform Position Principle” with those of (resy X )N H and resyng (X N H) for
any hyperplane section H. To be precise, in Section 2, we recall some definitions and
results on the residual scheme whose the most relevant property is (resy X) N F =
resynr(XNF), where F is a general hypersurface. In the first part of Section 3, under
some reasonable hypotheses, we prove that the Castelnuovo-Mumford regularity of
the residual scheme is equal to the regularity of the residual scheme between the
hyperplane sections of the defining schemes, as stated below:
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Theorem 1.1. Let X and Y be closed subschemes of the n-dimensional projective
space P over a fized algebraically closed field K. If H C P is a general hyperplane
such that the ideals Ix + Iy and (Ix : Iy) + Iy are saturated (where Iz stands for
the saturated ideal of the given closed subscheme Z of P7.), then the following equality
holds:

reg(resynm (X N H)) = reg(resy X).

Proof. See item 2) of Theorem 3.5 below. g

In the second part of Section 3, we recall the geometrical definition of the concept of
“set of points in uniform position” (see for example [1], and [7]). Furthermore, for a
linear space V' C P’ of codimension r composed by general hyperplanes with respect
to projective varieties X and Y of P, we prove the next result which gives a way of
constructing sets of points in uniform position:

Theorem 1.2. Let X and Y be irreducible closed subschemes of the n-dimensional
projective space P}, over a fized algebraically closed field K of arbitrary characteristic.
Let V. C P} be a linear space of codimension r composed by hyperplanes in general
position with respect to X and Y. If resy X is irreducible of dimension r, then the
closed subscheme resyny (X NV) of P} is a set of points in uniform position.

Proof. See Corollary 3.10 below. |

Remark 1.1. Our results confirm the basic idea of using hyperplane sections as a
faithful method to understand fundamental statements about schemes, such idea may
be founded in many text books, see for example [8], and [11].

2 Notation and preliminaries

Hereafter, K denotes a fixed algebraically closed field of arbitrary characteristic, and
P™ the n-dimensional projective space over K whose homogeneous coordinate ring is
Klzg,...,xy,], that is, P* = Proj(K|[xo, ..., x,]). Here, n is a positive integer and x;
is homogeneous of degree one for every i € {0,...,n}.

The ideal generated by xy, ..., z, in K[zg,...,2,] is usually called the irrelevant ideal,
and we denote it by m. Recall that for any homogeneous ideal I of K[z, ..., x,], the
saturation I of I is the set {f € K[z,...,z,]: fmf C I, for some positive integer ¢},
which has obviously a structure of a homogeneous ideal of K|xo,...,z,], and do not
have the irrelevant ideal as an associated prime ideal. It is well-known that for any
homogeneous ideal J of K|[xg,...,,], one has that J; = (J); for all £ > 0, where J;
and (J); are the t-graded components of J and .J respectively.

If X C P" is a closed subscheme, we denote by Zxy C Opn the ideal sheaf of X
determined by the saturated homogeneous ideal Iy C Klxg,...,z,] of X, where Opn
is the structure sheaf of P". A variety will always be irreducible.

Furthermore, for any homogeneous element f of K|z, ...,z,] of positive degree,
we denote by K[z, ..., Zn, f o the ring of elements of degree 0 in the graded ring
Klxo, ... xn, f7Y.

If X C P" is a closed subscheme and F' is a hypersurface in P”, then the hyper-
surface section of X with respect to F' is the subscheme X N F' C P™ such that

Ixnr =Ix +1F.
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Definition 2.1. Let X and Y be closed subschemes of P, with ideal sheaves respec-
tively Zx and Zy, and saturated ideals respectively Ix and Iy. The residual scheme
resy X of X with respect to Y is the closed subscheme of P" given by the ideal sheaf
Tresy x = (Zx : Iy). Such sheaf is defined on the affine standard open D,y (x;) as
follows:

(IX : IY)(D+((E1)) = (IX : IY)K[an s ,$n71'71] N K[xo, s ,xn,l';l]o,

i
for every i =0, ..., n.

It is worth nothing that we obtain (Zx : Zy )(D4+(z;)) as a division between the
ideals of X and Y restricted to the open sets (D4 (x;)) for every ¢ = 0,...,n. In fact,
it occurs that (Ix : Iy )K|xo, ..., Zn,z; ] N K]z, ..., zn,xi_l]g is equal to

(IxK|zg,... ,:L'n,xi_l]ﬂK[o:O, o ,zn,xi_l]g Iy K[xo, ..., x,, :z:i_l}ﬂK[xo, . ,xn,x;l]o).
Remark 2.2. Let X and Y be closed subschemes of P". The residual scheme of X
with respect to Y is the closed subscheme resy X of P™ such that

Irc5yX - (IX : IY)

Below, we describe some known relations among the residual scheme resy X of
X with respect to Y and the general hypersurface sections of the schemes X, Y, and
resy X for any closed subschemes X and Y of P™. The following lemma is helpful for
our results.

Lemma 2.1. ([6], Lemma 3.1) Let a,b,t be ideals in a noetherian commutative ring
A with unit, and let t = (t) be a principal ideal in A. Put A = Aja,t =t + a, we
suppose that:

1. tis A/(a: b)—regular
2. the sequence

0 (a:6)/a5 (a:06)/a— (a+t):(b+0)/(a+t) =0

is exact, where the first map is induced by the multiplication by the element t € A.
Then we have
((a+t):(b+t) =(a:b)+t

Remark 2.3. The associated prime ideals of the quotient (a : b) are among the
associated prime ideals of a, that is Ass(a : b) C Assa (see Chapter three of [9]).

Theorem 2.2. ([6], Theorem 3.3 ) Let X, Y C P™ be two closed subschemes. Then,
for a general hypersurface I C P™ of degree d, we have

(2.1) (resy X) N F =resynp(X NF)
that means, in the sheaf language:

(IX 2Iy) +7Zp = ((IX +IF) : (Iy +IF))
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Corollary 2.3. With notation and assumptions as in Theorem 2.2. Let Ix, Iy and
I be the saturated homogeneous ideals associated of the closed schemes X, Y and F
of P™ respectively. It follows that

(IX :Iy)+IF: ((Ix+IF) : (Iy+IF)).

Remark 2.4. The previous equality fails if we consider only homogeneous ideals, not
saturated. On the other hand, such equality is always true if B/Ix, B/Iy and B/(Ix :
Iy) are arithmetically Cohen-Macaulay (aCM), where B is equal to K|z, ..., zy] (see
for example [10, Corollary 3.8]).

We conclude this section by recalling the following classic result that we do not
find an explicit proof anywhere.

Proposition 2.4. Let I be a homogeneous ideal of K|xo,...,xy]. For every nonneg-
ative integer d, there exists a sheaf morphism eq : Ig®k Opn (—d) — Opn such that for
a sufficiently large integer d, its image is constant. Here, I (respectively, K ) means
the constant sheaf on P™ with coefficients in I; (respectively, in K ).

Proof. Let d be a nonnegative integer. By the universal property of the asso-
ciated sheaf, construct the sheaf morphism ey : Iy ®x Opn(—d) — Opn is equiv-
alent to construct a presheaf morphism e; : (I ®x Opn(—d))” — Opn, where
(I4®K Opn(—d))~ is the presheaf defined by the following way: for every open set U
of P*, (I @k Opn(—d))~(U) = I4 @k Opn(—d)(U), and for every open sets V and
W of P" such that W C V, we have that p(Id®KOP"(*d))7K/ = pjd% ® pon,m(_d)%,
where pzy;, denotes the restriction map of the presheaf F from F(V) to F(W) for
any presheaf F on P”. Let U be a nonempty open set of P”. Consider the following
application:

UU:IdXO[pm(—d)(U) — O[pm(U)
Ns) = ou(Ns)

where o7 (A, s) : U = [[ ey Ko, - - -, Zn](p) Is such that ou (A, s)(q) = Ag)s(q) for
every q € U. It is not difficult to prove that oy is a K-bilinear application, therefore
there exists the K-linear application eq; : g @i (Opn(—d)(U)) — Opn (U) such that
for every A € I; and for every s € Opn(—d)(U) we have that eq;; (A ® s) = op (A, s).
Moreover, we obtain the presheaf morphism e;~ from (Iy @ Opn(—d))~ to Opn,
henceforth, by the universal property of the associated sheaf, there exists a morphism
ed : g @K Opn(—d) = Oprn of Opn-modules (see [8, Proposition-Definition 1.2, page
64]).

Now, what is left is to show that for a sufficiently large integer d, the image of the
morphism ey is constant. Indeed, we may assume that the homogeneous ideal I is
generated by homogeneous elements aq,...,a, for some r € N. Fix a nonnegative
integer d such that d is greater than or equal to the degree of a; for any i € {1,...,r}.
Next, we prove that the image imey of eg is isomorphic to the Opn—moduleNf To
this end, it is enough to construct a presheaf morphism between im~ e4 and I. It is

worth noting that by the construction of eq~, the image eq; is contained in I(U) for
every open set U of P", and therefore, im™ eq_is an Opn-submodule of I. This gives
rise to the inclusion morphism ¢~ : iém™ eq — I, which induces obviously an injective
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application ¢, : (tm~ eq)p — Ej for every p € P". Henceforth, the induced morphism

Liimeg — 1 is injective. Recall that P™ has an open covering by the affine standard
open sets (D4 (x;))i=0,...n. Fix ¢ € {0,...,n}, our first aim is to prove that LD (aa)

is surjective. Indeed, let s be an element of I(D; (z;)), using the fact that I(D4 (z;))
is isomorphic to I(,,) (see [8, Proposition 5.11, page 116]), there exists a nonnegative
integer m and a homogeneous element A of I of degree m such that s is equal to
the element a%m of I(D, (x;)). On the other hand, there exists homogeneous elements
Wiy b € Klxo,21,...,2,] such that A = Z;Zl w;aj, where deg(u;) = m—deg(a,)
for every j € {1,...,r}. Consider the following element of I; @ x (Opn(—d) (D (x;))):

N dedeg(an) oMy
f - Z[xl a; @ m—deg(aj)-i-d]’
j=1 T

K2

—_—~—

where % is the element of I (D4 (z;)) associated to #‘W for every j €
{1,..., T} Consequently, 0p_ (5,)(f) belongs to (Iq ®x (’)]p:n,(—ld))(D+(xi)), where 0 is
the canonical morphism between (I3® x Opn (—d))~ and I;® k Opr (—d). Furthermore,
we have that eip. (z,)(0p, (2, (f)) = s. Since the sheaf I is flasque, or flabby (see [8,
Exercise 1.16, page 67] or [12, Section 6.1, page 111]), we get that LD, ()W is
surjective for every nonempty open set W of P". This proves the surjectivity of ¢,
for every p € P". Finally, we conclude that ¢ is an isomorphism between im ey and f,
and we are done.

3 Main results

The Castelnuovo-Mumford regularity is a very interesting geometric invariant for
schemes and there are important conjectures involving the regularity that explore
purely algebraic approaches to discover new properties of a projective variety (e.g.
[4], and [8]). In order to state the main result of this section on the regularity of the
hyperplane section of a residual scheme, we give some definitions and results. Remind

that for any homogeneous ideal I of K|z, ..., 2,] and for any positive integer d, let
I; be the K—vector space generated by all forms of degree d of I.
From the last section, we know that for every homogeneous ideal I of K[z, ..., z,],

and for a sufficiently large integer d, the image of the canonical sheaf morphism
ed : Ig® Opn(—d) — Opn is constant, and it is usually called the sheafification I of I.

Proposition 3.1. With the above notation, the sheaff is a coherent sheaf of P™.
Proof. See [8, Proposition 5.11, page 116]. O

For any nonnegative integer i and for any sheaf F on P", let H*(P", F) be the
ith-cohomology group of F (see [8, Chapter three, Section two, page 206]). If m is an
integer, we denote by F(m) the sheaf F ®o.,, Opn(m).

Definition 3.1. Let m be an integer. A coherent sheaf F on P" is m-regular if
H1(P™, F(m — q)) = {0} for every positive integer q.
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Here comes the concept of Castelnuovo-Mumford regularity of a given coherent
sheaf.

Definition 3.2. Let F be a coherent sheaf on P". The Castelnuovo-Mumford reg-
ularity of F is the smallest m for which F is m-regular, it is denoted by reg(F).
Furthermore, for every closed subscheme X of P”, the regularity of X is the regular-

ity of the coherent sheaf R/Ix, where I'x is the unique saturated homogeneous ideal
associated to X, and R is equal to K[xq,...,x,].

Definition 3.3. Let m be an integer. A homogeneous ideal I of Klzg,...,z,] is
m-satured if I; = (I)q, for every d > m. The satiety, known also as the saturation
index, of I is the smallest integer m for which I is m—saturated, and it is usually
denoted by sat(I).

Proposition 3.2. ([7], Proposition 2.6) An ideal I is m-regular if and only if T is
m-saturated and its sheafification I is m-reqular.

An useful algebraic version of the definition of the regularity is due to Eisenbud-
Goto (see [5]). Here we review briefly such version. Let k be a field, R = k[xo, ..., T
the polynomial ring over k, and let M be a finitely generated graded R-module. Then
as an R-module, M admits a finite minimal graded free resolution:

0— @;R(—j)% — ... = &;R(—5)" — M — 0.

Definition 3.4. ([5]) With the above notation, the Castelnuovo-Mumford regularity
of M is the integer

reg(M) = max {j — p, by; # 0}.

The following theorem is crucial to use the definition of regularity of a finitely
generated R-module, in particular of an ideal of R, from the algebraic point of view.

Theorem 3.3. ([7], Proposition 2.6) Let I be a homogeneous saturated ideal of R.
Then the regularity of I and the regularity of its sheafification are equals.

Also, we need the following result:
Theorem 3.4.

1) Let I be a homogeneous ideal of R = k[xq, ..., x,], and let H be a principal ideal
generated by a linear form h of R. If h ¢ I and I + H # (xq,...,x,), then

(3.1) reg(l) =reg(I + H).

2) Let X be a closed subscheme of P™ and let H be a general hyperplane of P™. If
Ix + Iy is a saturated ideal of K|xq, ..., 2], then the following equality occurs:
(3.2) reg(X) =reg(X N H).

Proof. 1)Let E. :=0—>E,_1 — ... > E; - Ey - R — R/I — 0 be the minimal
graded resolution of R/I, where

E, = @jR(_j)bpj’
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for every p € {0,...,n — 1}. Recall that by definition reg(/) = maxz{j — p, b,; # 0}.
Consider the tensor product of the resolution E. for R/H. If Tor1(R/I,R/H) is null,
then E. ®g (R/H) is a minimal graded resolution of R/(I + H) and

reg(I) =reg(R/I) — 1 =reg(R/(I+ H)) — 1 =reg(I + H).

Since H ¢ Ass(I), it implies that the localization Tor(R/I, R/H)p of Tor1(R/I,R/H)
at the prime ideal P is null for every P € Ass(I), so we are done.

2) The fact that H is a general hyperplane implies that Iy = (h) for some general
linear form h € K|xg,...,x,], and h ¢ Ix. Using Theorem 3.3 and the previous item
1), we obtain the following equalities:

reg(X N H) = reg(R/Ixnn) = reg(Ix + Ir) — 1 = reg(Ix + Iry) — 1 = reg(Ix) — 1.
Hence, we conclude that
reg(X NH) =reg(R/Ixnm) = reg(R/Ix) = reg(X).
|

Example 3.5. Here, we provide an example to show that the saturation hypothesis
in the item 2) of the previous theorem is necessary. Let R = K[zg,x1]. Consider the
closed subscheme X of P! defined by the ideal (), and the hyperplane H defined by
the ideal (zg+x1). Note that by construction, H is general. It is clear that Ix = (z¢)
and Iy = (2 + 1) are saturated ideals, however, the ideal Ix + Iy = (zo, o+ 1) =
(20, 1) is not saturated. Now, the fact that reg(X) = reg(R/Ix) = reg(R/(Xy)) =0
and X NH = & implies that the Equation (3.2) is not true. On the other hand, note
that reg(Ix) = reg((zo)) = 1 and reg(Iyy) = reg((zo + x1)) = 1, this implies that the
Equation (3.1) is true in spite of the hypothesis Ix + Iy # (xo, 1) is not satisfied.

Now we are able to prove the result stated in the introduction.
Theorem 3.5.

1) Let I and J be homogeneous ideals of R = k[zg, ..., x,] and let H be a principal
ideal generated by a linear form h of R. If H ¢ Ass(I) and [(I : J) + H] #
(zoy-..,Tn), then

(3.3) reg({+H): (J+ H)) =reg(:J).
2) Let X and Y be closed subschemes of P™. If H C P™ is a general hyperplane

such that the ideals Ix + 1y and (Ix : Iy)+ Iy are saturated, then the following
equality holds:

(3.4) reg(resyng (X N H)) = reg(resy X).

Proof. 1) By hypothesis and Remark 2.3, we have that h is general with respect to
the ideals I and (I : J). Hence, the equality (I : J)+ H = ((I+ H) : (J 4+ H)) holds
true from Lemma 2.1. By item 1) of Theorem 3.4 we get

reg((I:J)+ H) =reg(I : J).
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2) Observe that the equality (resy X) N H = resyng (X N H) is achieved by using
the Equation (2.1) of Theorem 2.2. Hence, by hypothesis we have:

(Ixily)—‘rIH:(IxtIy)-l-IH: ((Ix—l-IH) : (Iy+IH))

On the other hand, the fact that the ideal Ix + Iy is saturated implies that the ideal
((Ix+1Ig): (Iy+1Ig)) is saturated. Indeed, Ass((Ix+1g) : (Iy+Ig)) C Ass(Ix+1g),
som ¢ Ass(Ix + Iy). Therefore, m ¢ Ass((Ix + Iy) : (Iy + Ig)) and consequently
((Ix 4+ Ig) : (Iy + Ip)) is saturated. Then by the item 1), it follows that

reg(Ix : Iy) =reg((Ix : Iy) + In) =reg((Ix + In) : (Iy + In))-
This proves that reg(resy X) = reg(resynu (X N H)). O

Example 3.6. Here, we present an example to show that the saturation hypothesis
in the item 2) of the previous theorem is necessary. Let R be the homogeneous
coordinate ring K [rg, 1] of the projective line P! defined over a field K. Consider the
closed subschemes X and Y of P! defined by the ideals (zoz1) and (zg) respectively,
the hyperplane H defined by the ideal (xg + 1), and we denote Z = resy X. Note
that H is general by construction. We have that the ideals Ix = (xoz1), Iy = (z0),
and Iy = (zo + 1) are saturated, however, the ideal

(Ix : Iy) + Iu = (z1) + (xo + 1) = (w0, 71)
is not saturated. The fact that reg(Z) = reg((az:A;)) —1=reg((x1)) —1 = 0 and that

Z N H is empty implies that reg(Z) # reg(Z N H), and consequently the Equation
(3.4) is not true. On the other hand, the equality

((Ux +1u): (Iy +1u)) = ((xoz1,20 + 1) : (T0,T0 + 71))
= ((_’170.%’1,.7}0 +$1> : ($0,$1))
= (z0,71)

give us that reg((Ix + Ig) : (Iy + Ig)) = 1. So, the Equation (3.3) holds because
reg(Ix : Iy) = reg((z1)) = 1, in spite of the hypothesis (Ix : Iy) + Iy # (xo,x1) is
not satisfied.

Remark 3.7. If [ is not saturated, we have the following definition of regularity:
reg(I) = maz{reg(I),sat(I)}.

Remark 3.8. Let < be a term order introduced on the monomials of the polynomial
ring R = K[z, ...,z,] and let in. (I) be the initial ideal of an homogeneous ideal I
of R. If the ideal I is saturated, it may happen that in.(I) is not saturated, however,
the inequality reg(l) < reg(in<(I)) still true (see [7, Corollary 2.12]). The latter
could be not true for the regularity of schemes. Indeed, let X be an algebraic variety
of P™, henceforth, reg(X) = reg(R/Ix),where X = Proj(R/Ix) and Ix is saturated.
Despite of the fact that reg(lx) < reg(in<(Ix)) holds true, the ideal in. (Ix) is not
longer saturated in general, so we cannot speak of Proj(R/in<(Ix)).
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Now we focus on the second topic that we want to investigate. We recall that
the “Uniform Position Principle” for a set of points I' of the projective space P" is
formulated in terms of the Hilbert function of the scheme I'. To be precise, we have:

Definition 3.9. A set I' of points of P" is in uniform position if every pair of subsets
of I' having the same number of points have the same Hilbert function.

The relevance of the concept comes from the following known result:

Theorem 3.6 (Uniform Position Principle). Let X be a variety of the projective space
P™ of dimension r. If V is a general linear space of P of codimension r, then X NV
s a set of points in uniform position.

Proof. See pages 109-113 of [1]. O

To state the most relevant geometric consequence in our context, we have the following
concept:

Definition 3.10. Let X be a variety of the projective space P whose defining ideal
is Ix. A linear space V of P" is general with respect to X if every associated prime
ideal of its defining ideal Iy is not an associated prime ideal of Ix.

Proposition 3.7. A linear space V' of a projective space P™ of codimension r is a
variety of P™.

Proof. The ideal Iy can be generated by n — r circuits (see [11, Example 1.5]), hence
Iy can be generated by a regular sequence of n —r linear forms of K|z, ..., z,], then
Iy is a prime ideal. (Il

Proposition 3.8. Let X be a variety of a projective space P™. If V. C P" is a linear
space consisting of hyperplanes in general position with respect to X, then V is general
with respect to X.

Proof. Assume that for some positive integer s we have Iy = (hy,...,hs), which is
composed by hyperplanes defined by H; = (h;) where hq,...,hs are linear forms of
Klxg,...,xn], and such that each H; is general with respect to X. This implies that
H; ¢ Ass(Ix) = {Ix}, and consequently H; # Ix, foreach : = 1,...,s. If Iy = Ix,
then h; € Ix, but this contradicts the fact that H; # Ix. Therefore, Iy ¢ Ass(Ix)
and V is general with respect to X. ([l

Remark 3.11. The converse of Proposition 3.8 is not true. Suppose that V' is general
with respect to X. Since Iy ¢ Ass(Ix), we have that Iy # Ix. Hence, (h;) ¢ Ass(Ix)
for some i € {1,..., s}, and the hyperplane generated by H; is general with respect to
X. Nevertheless, we can have some hyperplane in V' that is not general with respect
to X.

Corollary 3.9. Let X and Y be closed subschemes of P such that resy X is irre-
ducible of dimension one. If H C P" is a general hyperplane with respect to X, then
resynp (X N H) is a set of points in uniform position.
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Proof. The hyperplane H is a linear space of codimension n—1, then (resy X)NH
is a set of points in uniform position. The assertion follows by the next equality which
is given in Theorem 2.2:

(resy X) N H =resynu(X N H).
The corollary below gives a way of constructing sets of points in uniform position.

Corollary 3.10. Let X and Y be varieties of a projective space P such that resy X
is irreducible of dimension r. If V is a linear space of P of codimension r that
consists of hyperplanes in general position with respect to X and Y, then the variety
resyv (X NV) is a set of points in uniform position.

Proof. By Proposition 3.8, we obtain that V is general with respect to X, Y and
resy X. Set Hi,..., H,_, the hyperplanes that defines Iy, (that is, Iy = > " H;).
So, we infer that:

(UIx:Iy)+1Iy = (IXIIY)-i-z_:Hi
= ((IX+H1):(IY+H1))+§Hi

= ((IX +Iv) : (Iy +Iv)).

Hence (resy X)NV = resyny (X NV). Since (resy X)NV is a set of points in uniform
position, the assertion follows. O

Below, we need the following result:

Lemma 3.11. Let I and J be homogeneous ideals of K|[xg,...,x,]. If I and J are
prime ideals, then (I:J)=1 or (I:J)= Klxo,...,2Tn].

Proof. Let J = (g1, -..,9s) where s is a positive integer and gy, .. ., gs are irreducible
elements of K|z, ...,xy]. It is known that (I : J) = ();_;({ : ;). Two cases may
occur. If J C I, then (I : J) = K[xzo,...,2s|. Otherwise, (I : J) = I. Indeed, one
may find some i € {1,...,s} such that g; ¢ I. Now, take a homogeneous element h of
Klxo,...,x,] belonging to the ideal (I : g;). Since I is prime, it follows that h € I,
and therefore (I : g;) C I. This proves that (I : J) C I, and we are done. O

We conclude the paper with the following natural question:
Problem: Let I' and I be sets of points of P in uniform position with sheaf ideals
Ir and Zy. Does the quotient sheaf Zr : Zr+ define a scheme of points in uniform

position?

Here, we give a partial answer to the above question:



36 B. L. De La Rosa Navarro, G. Failla, J. B. Frias Medina, M. Lahyane

Theorem 3.12. Let X and Y be irreducible closed subschemes of dimension r of
a projective space P" such that resy X is irreducible of dimension r. If V. C P" is
a linear space of codimension r which is general with respect to X and Y, then the
closed subschemes X NV and Y NV of P™ are sets of points in uniform position, and
either

1. the equality resyny (X NV) =X NV holds, or
2. both resy X and resyny (X NV) are empty.

Proof. 1t is obvious that Ix and Iy are homogeneous prime ideals. So, by Theorem
2.2 and Lemma 3.11, the statement 1. corresponds to the case (Ix : Iy) = Ix, and
the statement 2. corresponds to the case (Ix : Iy) = K[z, ..., Zy]. O
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