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Abstract. Our original results refer to multivariate recurrences: discrete
multitime diagonal recurrence, bivariate recurrence, trivariate recurrence,
solutions tailored to particular situations, second order multivariate recur-
rences, characteristic equation, and multivariate diagonal recurrences of
superior order. We find the solutions, we clarify the structural background
and provides short, conceptual proofs. The original results include a new
point of view on discrete minimal submanifolds.
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1 Discrete multitime recurrences

The theory of multi-variate recurrences is a current effervescent topic in mathematics
today. These recurrences are based on multiple sequences and come from areas like
analysis of algorithms, computational biology, information theory, queueing theory,
filters theory, statistical physics etc.

We consider the lattice of points with integer positive coordinates in Rn. A multi-
variate recurrence is a set of rules which transfer a point into another, together with
initial conditions, capable to cover the hole lattice.

A linear multivariate recurrence with polynomial coefficients corresponds to a
linear PDE. In addition, extending the division to the context of differential operators,
the case of recurrences with polynomial coefficients can be treated in an analogous
way.

Bousquet-Mélou and Petkovšek [2] analyse the multivariate linear recurrences with
constant coefficients (see also [6]).

Analyzing linear image processing (representations of filters), Roesser [18] used a
class of linear dynamical systems in two discrete-time variables,

x(i+ 1, j) = A1x(i, j) +A2y(i, j), y(i, j + 1) = A3x(i, j) +A4y(i, j),
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which can be extended as block matrix system
x1(t

1 + 1, t2, ..., tm)
x2(t

1, t2 + 1, ..., tm)
... ... ...

xN (t1, t2, ..., tm + 1)

 =


A11(t) A12(t) ... A1N (t)
A21(t) A22(t) ... A2N (t)
... ... ... ...

AN1(t) AN2(t) ... ANN (t)




x1(t)
x2(t)
... ... ...
xN (t)

 ,

where x(t) = (x1(t), ..., xN (t)).
Fornasini and Marchesini [7]-[9] introduced another class of linear dynamical sys-

tems in two discrete-time variables,

x(i+ 1, j + 1) = Ax(i+ 1, j) +Bx(i, j + 1) + Cx(i, j),

which can be extended as x(t+ 1) = B0 x(t) +

m∑
α=1

Bα x(t+ 1α).

This model is used for image processing, representation of discretized partial dif-
ferential equations, models of different physical phenomena, single-carriage way traffic
flow, and river pollution. Many other authors [1], [5], [11], [12]-[15] develop the theory
of filters. Both of the foregoing extensions are connected to mD filters theory.

Some interesting related works are those of Prepeliţa [3], [17], where a multiple hy-
brid Laplace and z type transformation was introduced to solve multiple differential-
difference and multiple integral equations and to obtain the frequency-domain repre-
sentations of multidimensional hybrid control systems.

The visual inspection of (i) bivariate or (ii) trivariate recurrence plots reveals
some typical geometrical structures: (i) single dots, diagonal lines as well as vertical
and horizontal lines (the combination of vertical and horizontal lines plainly forms
rectangular clusters of recurrence points); (ii) all the above and planes.

The papers [4], [16] presents algorithms to compute stable discrete minimal sur-
faces. We add a new point of view (coming from [25], [21]) in studying this subject.

In the class of multivariate sequences x(t) = x(t1, ..., tm) we distinguish:
Separable multivariate sequences (those which can be written like a product):

x(t) = x1(t1) · · ·xm(tm).
Multi-periodic sequences:

x(t1, ..., tm) = x(t1 + k1T
1, ..., tm + kmT

m), ∀(k1, ..., km) ∈ Zm,

equivalently to the fact that every point (0, . . . , 0, tβ , 0, . . . , 0) is a period.
Diagonal-periodic sequences:

x(t1, ..., tm) = x(t1 + T 1, ..., tm + Tm),

where T = (T 1, ..., Tm) is a vector-period.

2 Discrete multitime diagonal recurrence

Any element t = (t1, . . . , tm) ∈ Nm is called discrete multitime. A function of the
type x : Nm → Rn is called multivariate sequence.



Discrete diagonal recurrences and discrete minimal submanifolds 51

Let F : Nm × Rn → Rn and 1 = (1, . . . , 1) ∈ Nm. We shall study multivariate
diagonal recurrences or (discrete multitime diagonal finite difference equations) of first
order

(2.1) x(t+ 1) = F (t, x(t)),

where the multivariate vector sequence x(t) = (x1(t), . . . , xn(t)) is solution of the
system (2.1).

This model of diagonal recurrence can be justified by the fact that to a first order
PDE system

D1x(t) = f(t, x(t)), t ∈ Rm

we can associate a discretized equation of the form

x(t+ 1)− x(t) = f(t, x(t)), t ∈ Zm.

The initial (Cauchy) conditions on a curve, for the PDE system, are translated into
initial conditions for the diagonal recurrence.

Remark 2.1. Let us consider a two-variate recurrence with the unknown sequence
x(m,n). A very frequent and interesting case happens when the difference m−n, be-
tween the arguments of the unknown sequence, is constant among all its occurrences
in the multivariate recurrence relation. For instance, this happens for any diagonal
recurrence x(m,n) = f(x(m − 1, n − 1)), where the difference between the first and
second argument of x(m,n) is always m − n. Such a recurrence can be rewritten as
a univariate recurrence y(t) = f(y(t− 1)), where y(t− k) = x(m− k, n− k), ∀γ ∈ N.
Another interesting case, similar to the one above, is when the sum m+ n of the ar-
guments of the unknown sequence is constant. For instance, multivariate recurrences
of the form x(m,n) = f(x(m + 1, n − 1)) can be rewritten as univariate recurrences
y(t) = f(y(t− 1)), where y(t− k) = x(m+ k, n− k),∀k ∈ N.

2.1 Linear discrete single-time recurrence

Let us recall a well-known result regarding a single-time linear recurrence equation,
i.e., m = 1, in an original version that can be extended to the multi-temporal case.

Proposition 2.1. Let A : N → Mn(R), b : N → Rn and x0 ∈ Rn. Then the unique
sequence x : N → Rn which verifies the first order linear single-time recurrence equa-
tion

(2.2) x(t+ 1) = A(t)x(t) + b(t), ∀t ∈ N,

and the condition x(0) = x0, is

(2.3) x(t) =
( t∏

j=1

A(t− j)
)
x0 + b(t− 1) +

t−2∑
k=0

( t−k−1∏
j=1

A(t− j)
)
b(k), ∀t ≥ 2,

and x(1) = A(0)x0 + b(0).
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Proof. Mathematical induction after t ≥ 1. For t = 1, the result is verified automat-
ically, using the first relation in (2.2), for t = 0, as well as x(0) = x0. For t = 2,
x(2) = A(1)x(1) + b(1) = A(1)A(0)x0 +A(1)b(0) + b(1).

It remains to solve the inductive step: prove that, if the statement holds for some
natural number t ≥ 2, then the statement holds for t+ 1; indeed,

x(t+ 1) = A(t)x(t) + b(t)

= A(t)
( t∏

j=1

A(t− j)
)
x0 +A(t)b(t− 1) +

t−2∑
k=0

A(t)
( t−k−1∏

j=1

A(t− j)
)
b(k) + b(t).

Hence x(t+ 1) =
( t+1∏

j=1

A(t+ 1− j)
)
x0 +

t−1∑
k=0

( t−k∏
j=1

A(t+ 1− j)
)
b(k) + b(t). �

Corollary 2.2. Let A ∈ Mn(R) be a constant matrix, and x0 ∈ Rn. Then the
unique sequence x : N → Rn, which, for all t ∈ N, verifies x(t+1) = Ax(t)+ b(t), and
x(0) = x0, is

(2.4) x(t) = Atx0 +
t−1∑
k=0

At−1−k b(k), ∀t ≥ 1.

2.2 Linear discrete multitime diagonal recurrence

The diagonal discretization of PDEs incorporate points which lie on diagonals of
the grid. This is a good enough reason for introducing and analyzing the diagonal
recurrences.

Let m ≥ 2, A : Nm → Mn(R), b : Nm → Rn. In this Subsection we refer to a
linear discrete multitime diagonal recurrence equation of first order

(2.5) x(t+ 1) = A(t)x(t) + b(t), t ∈ Nm,

with x : Nm → Rn = Mn,1(R).
For convenience, we denote µ(t) = min{t1, t2, . . . , tm}.
For k ∈ N, k ≤ µ(t), we denote

Ã(t, k) =


k∏

j=1

A(t− j · 1), if k ≥ 1,

In, if k = 0.

Lemma 2.3. Let D =
{
t = (t1, t2, . . . , tm) ∈ Nm

∣∣∣µ(t) = tm
}
, m ≥ 2, and

A : D → Mn(R), b : D → Rn, f : Nm−1 → Rn. Then there exists a unique multivari-
ate sequence x : D → Rn, which, for all t ∈ D, verifies the first order linear discrete
multitime diagonal recurrence equation (2.5), and the condition

(2.6) x(t1, . . . , tm−1, 0) = f(t1, . . . , tm−1), ∀(t1, . . . , tm−1) ∈ Nm−1.
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For all t ∈ D, with tm ≥ 1, we have

(2.7) x(t) = Ã(t, tm)f(t1 − tm, . . . , tm−1 − tm) +
tm∑
k=1

Ã(t, k − 1)b(t− k · 1).

Proof. Let us remark that for any t = (t1, t2, . . . , tm) ∈ D and any s ∈ N, it follows
t − (tm − s) · 1 = (t1 − tm + s, . . . , tm−1 − tm + s, s) ∈ D. Hence, for a fixed t ∈ D,
we can define the sequences

A0 : N → Mn(R), b0 : N → Rn, y : N → Rn,

A0(s) = A(t− (tm − s) · 1), b0(s) = b(t− (tm − s) · 1), y(s) = x(t− (tm − s) · 1)

The sequence y verifies: y(s+ 1) = A0(s)y(s) + b0(s), ∀s ∈ N, and
y(0) = f(t1 − tm, . . . , tm−1 − tm).
Now we can apply the Proposition 2.1. For any s ≥ 2, we have

y(s) =
( s∏

j=1

A0(s− j)
)
y(0) + b0(s− 1) +

s−2∑
k=0

( s−k−1∏
j=1

A0(s− j)
)
b0(k)

i.e., x(t− (tm − s) · 1) =
( s∏

j=1

A(t− (tm − s+ j) · 1)
)
y(0)

+b(t− (tm − s+ 1) · 1) +
s−2∑
k=0

( s−k−1∏
j=1

A(t− (tm − s+ j) · 1)
)
b(t− (tm − k) · 1)

For tm ≥ 2, we set s = tm in the foregoing relation. Then

x(t) = Ã(t, tm)y(0) + Ã(t, 0)b(t− 1) +
tm−2∑
k=0

Ã(t, tm − k − 1)b(t− (tm − k) · 1)

= Ã(t, tm)y(0) + Ã(t, 0)b(t− 1) +
tm∑
k=2

Ã(t, tm − k + 1)b(t− (tm − k + 2) · 1)

= Ã(t, tm)f(t1 − tm, . . . , tm−1 − tm) + Ã(t, 0)b(t− 1) +
tm∑
k=2

Ã(t, k − 1)b(t− k · 1)

i.e. the relation (2.7). The formula (2.7) is verified immediately also for tm = 1. �

Remark 2.2. In the conditions of Lemma 2.3, if moreover the function A(·) is con-
stant, i.e., A(t) = A, ∀t, then the formula (2.7) becomes

(2.8) x(t) = Atmf(t1 − tm, . . . , tm−1 − tm) +
tm∑
k=1

Ak−1b(t− k · 1).

Notation: for every β ∈ {1, 2, . . . ,m}, we denote

(t1, . . . , t̂β , . . . , tm) := (t1, . . . , tβ−1, tβ+1 . . . , tm) ∈ Nm−1.
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Theorem 2.4. Let m ≥ 2, A : Nm → Mn(R), b : Nm → Rn. We consider the
(m− 1)-sequences f1, f2, . . . , fm : Nm−1 → Rn, such that

fα(t
1, . . . , t̂α, . . . , tm)

∣∣∣
tβ=0

= fβ(t
1, . . . , t̂β , . . . , tm)

∣∣∣
tα=0

,

∀t1, . . . , tα−1, tα+1, . . . , tβ−1, tβ+1, . . . , tm ∈ N,
(2.9)

for any α, β ∈ {1, 2, . . . ,m}. Then the unique m-sequence x : Nm → Rn, which, for
all t ∈ Nm, verifies the recurrence equation (2.5), and the conditions

(2.10) x(t)
∣∣∣
tβ=0

= fβ(t
1, . . . , t̂β , . . . , tm), ∀(t1, . . . , t̂β , . . . , tm) ∈ Nm−1,

∀β ∈ {1, 2, . . . ,m},

is defined by the formula

(2.11) x(t) = Ã(t, tβ)fβ(t
1 − tβ , . . . , t̂β , . . . , tm−1 − tβ) +

tβ∑
k=1

Ã(t, k − 1)b(t− k · 1),

if µ(t) = tβ ≥ 1.

Proof. Let us remark that the multivariate sequence x is well defined, i.e., if tα =
tβ = µ(t), then the expressions which define x of the formulas (2.11), corresponding
to α and β, coincide due to the equalities (2.9).

If tβ = µ(t), the conclusion follows applying directly the Lemma 2.3, having tβ

instead of tm.

Conversely, one observes immediately that if the multivariate sequence x is de-
fined by the formulas (2.11), together with the formula (2.10) (for tβ = 0), then the
multivariate sequence x verifies also the relation (2.5). �

Remark 2.3. Let m ≥ 2, A : Nm → Mn(R), b : Nm → Rn and the (m−1)-sequences
f1, f2, . . . , fm : Nm−1 → Rn. If the m-sequence x : Nm → Rn verifies the relations
(2.10), then the relations (2.9) are satisfied.

This follows immediately since, x(t)
∣∣∣
tβ=0,tα=0

= x(t)
∣∣∣
tα=0,tβ=0

.

Corollary 2.5. In the conditions in Theorem 2.4, if moreover, the function A(·) is
constant, i.e., A(t) = A, ∀t, then the formula (2.11) becomes

x(t) = Atβfβ(t
1 − tβ , . . . , t̂β , . . . , tm−1 − tβ) +

tβ∑
k=1

Ak−1b(t− k · 1),

if µ(t) = tβ ≥ 1.

(2.12)

Identifying the initial conditions with the constant diagonal recurrence, we obtain
new information about the discrete diagonal flow.
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Proposition 2.6. Let m ≥ 2 and A : Nm → Mn(R). Denote

S =
{
y : Nm → Rn

∣∣∣ y(t+ 1) = y(t),∀t ∈ Nm
}
,

V =
{
x : Nm → Rn

∣∣∣x(t+ 1) = A(t)x(t), ∀t ∈ Nm
}

and introduce the function ψ : S → V , ψ
(
y(·)

)
(t) = Ã

(
t, µ(t)

)
y
(
t− µ(t) · 1

)
.

a) The sets S and V are real vector spaces, and ψ is an isomorphism of vector spaces.
b) The vector space V has infinite dimension.

Proof. a) First, let us observe that the application ψ is well defined, i.e., the m-

sequence x(t) := Ã
(
t, µ(t)

)
y
(
t − µ(t) · 1

)
verifies the recurrence x(t + 1) = A(t)x(t).

This follows immediately from the Theorem 2.4.
The respective sequence is the unique sequence x : Nm → Rn which verifies the

problem

(2.13)


x(t+ 1) = A(t)x(t), ∀t ∈ Nm,

x(t)
∣∣∣
tβ=0

= y(t1, . . . , tβ−1, 0, tβ+1, . . . , tm), ∀(t1, . . . , t̂β , . . . , tm) ∈ Nm−1,

∀β ∈ {1, 2, . . . ,m}.

Obviously, V and S are vector spaces over R. One observes that ψ is a morphism
of vector spaces. Let us prove that the function ψ is injective: let y ∈ S such that

ψ
(
y(·)

)
(t) = 0, ∀t ∈ Nm. It follows ψ

(
y(·)

)
(t)

∣∣∣
tβ=0

= 0; but, ψ
(
y(·)

)
(t)

∣∣∣
tβ=0

=

Ã
(
t, 0

)
y
(
t−0 ·1

)∣∣∣
tβ=0

= y(t)
∣∣∣
tβ=0

and we obtain y(t)
∣∣∣
tβ=0

= 0. Hence y is the unique

m-sequence which verifies the problem
y(t+ 1) = y(t), ∀t ∈ Nm,

y(t)
∣∣∣
tβ=0

= 0, ∀(t1, . . . , t̂β , . . . , tm) ∈ Nm−1,

∀β ∈ {1, 2, . . . ,m}.

Applying the Theorem 2.4, it follows y(t) = 0, ∀t ∈ Nm, i.e., y is m-sequence zero.
The surjectivity of ψ: let x ∈ V . We choose y : Nm → Rn, the unique m-sequence

which verifies
y(t+ 1) = y(t), ∀t ∈ Nm,

y(t)
∣∣∣
tβ=0

= x(t1, . . . , tβ−1, 0, tβ+1, . . . , tm), ∀(t1, . . . , t̂β , . . . , tm) ∈ Nm−1,

∀β ∈ {1, 2, . . . ,m}.

Obviously y ∈ S and x(t)
∣∣∣
tβ=0

= y(t)
∣∣∣
tβ=0

. Hence the m-sequence x verifies the

relations (2.13). It follows (Theorem 2.4) that x(t) = Ã
(
t, tβ

)
· y(t− tβ · 1), if µ(t) =

tβ ≥ 1, and x(t) = y(t), if µ(t) = 0; hence ψ
(
y(·)

)
= x(·).

b) Since V and S are isomorphic vector spaces, it is sufficient to show that S
has an infinite dimension. Equivalently, we shall show that S contains an infinity of
linearly independent elements.
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Let v ∈ Rn, v ̸= 0. For each k ∈ N∗, we consider the sequence

yk : Nm → Rn, yk(t) =
(
t1 − t2

)k
v, ∀t = (t1, t2, . . . , tm) ∈ Nm.

Since yk(t+ 1) =
(
t1 + 1− t2 − 1

)k
v = yk(t), it follows yk ∈ S.

Let F ⊆ N∗, F finite and non-void. For each k ∈ F , we consider the sequence

ak ∈ R, such that
∑
k∈F

akyk(·) = 0, i.e.,
∑
k∈F

akyk(t) = 0, ∀t ∈ Nm. Setting t2 = 0, it

follows
∑
k∈F

ak(t
1)kv = 0, ∀t1 ∈ N, or

(∑
k∈F

ak(t
1)k

)
v = 0, ∀t1 ∈ N. Since v ̸= 0, we

deduce that
∑
k∈F

ak(t
1)k = 0,∀t1 ∈ N.

Consequently the polynomial P (X) :=
∑
k∈F

akX
k vanishes for any t1 ∈ N, i.e.,

P (X) has an infinity of roots; whence, it follows that P (X) is zero polynomial, i.e.,
ak = 0, ∀k ∈ F .

We proved that
{
yk

∣∣ k ∈ N∗} is a subset of S consisting in linear independent
elements. Hence the dimension of S is infinite. �

Remark 2.4. For determining the solutions of the recurrence x(t+ 1) = A(t)x(t) it
is sufficient to know the solutions of the recurrence y(t+ 1) = y(t).

Suppose that the functions f1, f2, . . . , fm : Nm−1 → Rn satisfy the relations (2.9).
We want to determine the multivariate sequence x : Nm → Rn such that

x(t+ 1) = A(t)x(t), ∀t ∈ Nm,

x(t)
∣∣∣
tβ=0

= fβ(t
1, . . . , t̂β , . . . , tm), ∀(t1, . . . , t̂β , . . . , tm) ∈ Nm−1,

∀β ∈ {1, 2, . . . ,m}.

If y : Nm → Rn verifies

y(t+ 1) = y(t), ∀t ∈ Nm,

y(t)
∣∣∣
tβ=0

= fβ(t
1, . . . , t̂β , . . . , tm), ∀(t1, . . . , t̂β , . . . , tm) ∈ Nm−1,

∀β ∈ {1, 2, . . . ,m},

then, from the proof of the Proposition 2.6, it follows x(·) = ψ
(
y(·)

)
.

2.3 Examples

Bivariate recurrences Let A ∈ Mn(R) and two sequences f1, f2 : N → Rn, with
f1(0) = f2(0). Then the unique double sequence x : N2 → Rn which solves the
problem 

x(t1 + 1, t2 + 1) = A · x(t1, t2), ∀(t1, t2) ∈ N2,

x(0, t2) = f1(t
2), ∀t2 ∈ N,

x(t1, 0) = f2(t
1), ∀t1 ∈ N
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is

x(t1, t2) =

{
At1f1(t

2 − t1), if t1 ≤ t2

At2f2(t
1 − t2), if t2 ≤ t1.

Trivariate recurrences LetA ∈ Mn(R) and three double sequences f1, f2, f3 : N2 →
Rn, with f1(0, t

3) = f2(0, t
3), f1(t

2, 0) = f3(0, t
2), f2(t

1, 0) = f3(t
1, 0), ∀t1, t2, t3 ∈ N.

Then the unique triple sequence x : N3 → Rn which solves the problem
x(t1 + 1, t2 + 1, t3 + 1) = A · x(t1, t2, t3), ∀(t1, t2, t3) ∈ N3,

x(0, t2, t3) = f1(t
2, t3), ∀(t2, t3) ∈ N2,

x(t1, 0, t3) = f2(t
1, t3), ∀(t1, t3) ∈ N2,

x(t1, t2, 0) = f3(t
1, t2), ∀(t1, t2) ∈ N2

is

x(t1, t2, t3) =


At1f1(t

2 − t1, t3 − t1), if t1 = min{t1, t2, t3}
At2f2(t

1 − t2, t3 − t2), if t2 = min{t1, t2, t3}
At3f3(t

1 − t3, t2 − t3), if t3 = min{t1, t2, t3}.

2.4 Solutions tailored to particular situations

To find the solution for a discrete multitime diagonal recurrence, with constant coeffi-
cients, x(t+1) = Ax(t), we can use a discrete single-time recurrence y(t+1) = Ay(t),
together a family of initial conditions (see the foregoing examples). Particularly, for
any constant matrix A, the solution of first order discrete multitime diagonal recur-
rence can be written as

x(t) = A<ϵ,t> x0, ϵ = (ϵ1, ..., ϵm), < ϵ,1 >= 1.

The existence conditions of the powers of the matrix A gives the conditions: (i) ϵ ∈ Zm

if A is non-degenerate, (ii) ϵ ∈ Nm if A is degenerate. If we add initial condition,
then, in both cases, one and only one component of ϵ is non-zero (depending on the
initial condition).

Theorem 2.7. Let A ∈ Mn(R) be a matrix which verify the equation Am = A. For

any x0 ∈ Rn (constant), the vector x(t) = At1+...+tmx0 verify the diagonal recurrence
x(t+ 1) = Ax(t).

Proof. By computation, x(t+ 1) = Am+t1+...+tmx0 = AmAt1+...+tmx0 = Ax(t). �

A matrix B is said to be an m-th root of an n×n matrix A if Bm = A, where m is
a positive integer greater than or equal to 2. If there is no such matrix for any integer
m ≥ 2, then A is called a rootless matrix. A non-singular matrix and a diagonalizable
matrix have m-th roots in complex numbers (see [28]).

Theorem 2.8. If the n×n matrix A has an m-root B, then a solution of the diagonal
recurrence x(t+ 1) = Ax(t) is x(t) = Bt1+...+tmx0, where x0 is a constant vector.

Proof. Explicitly, we have x(t+ 1) = Bm+t1+...+tmx0 = BmBt1+...+tmx0 = Ax(t). �
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2.5 Characteristic equation

We refer to the recurrence x(t + 1) = Ax(t), satisfying the initial conditions (2.10)
made compatible by (2.9).

If the matrix A is diagonalizable, then there exists a basis {v1, ..., vn} consisting in
eigenvectors, in Cn = Mn,1(C). Denote by λk the corresponding eigenvalues (distinct
or not). Any solution of the previous recurrence is of the form

x(t) =
n∑

k=1

ck(t)λ
µ(t)
k vk,

where ck(t) ∈ C and ck(t + 1) = ck(t). The functions ck(t) are determined by the
initial conditions (2.10).

Remark 2.5. We look for solutions of the form x(t) = v λ<ϵ,t>, with < ϵ,1 >= 1
and v ̸= 0. The existence conditions of the powers of the eigenvalue λ gives the
conditions: (i) ϵ ∈ Zm if A is non-degenerate, (ii) ϵ ∈ Nm if A is degenerate. It follows
Av = λv. Consequently, λ is an eigenvalue, and v is an eigenvector. The equation
P (λ) = det(A−λI) = 0 is called characteristic equation. If we can determine n pairs

(λk, vk), then a particular solution of the recurrence is x(t) =
n∑

k=1

ck λ
<ϵ,t>
k vk.

When ϵ = (0, ..., 0, 1, 0, ..., 0), the scalar product is < ϵ, t >= tα. We find a solution

of the form x(t) =

n∑
k=1

ck λ
tα

k vk.

3 Multivariate diagonal recurrences of
superior order

Let k ≥ 2 and the matrix sequences B0, B1, . . . , Bk−1 : Nm → Mn(R), f : Nm → Rn.
The linear diagonal vectorial recurrences of order k have the form

x(t+ k · 1) =
k−1∑
j=0

Bj(t)x(t+ j · 1) + f(t),

with x(t1, . . . , tβ−1, 0, tβ+1, . . . , tm), . . ., x(t1, . . . , tβ−1, k − 1, tβ+1, . . . , tm) given for
any β ∈ {1, 2, . . . ,m}. The unknown sequence is x : Nm → Rn.

These recurrences easily be reduced to order one recurrences of the form (2.5).
Indeed, it is enough to consider

y : Nm →
(
Rn

)k
= Mnk,1(R), b : Nm →

(
Rn

)k
= Mnk,1(R),

y(t) =


x(t)

x(t+ 1)
x(t+ 2 · 1)

...

x(t+ (k − 1) · 1)

 ; b(t) =


On,1

On,1

...

On,1

f(t)

 ;
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and
A : Nm → Mnk(R),

A(t) =


On In On . . . On On

On On In . . . On On

...

On On On . . . On In
B0(t) B1(t) B2(t) . . . Bk−2(t) Bk−1(t)

 .

Then the sequence y verifies: y(t + 1) = A(t)y(t) + b(t), ∀t ∈ Nm, being given
y(t1, . . . , tβ−1, 0, tβ+1, . . . , tm), ∀β ∈ {1, 2, . . . ,m}.

4 Second order multivariate recurrences

Apart from the first order multitime recurrences, an important role is played by the
second order multitime recurrences.

Lemma 4.1. Let A ∈ M2(R) and λ1, λ2 its eigenvalues. Then we have

i) Ak =
λk1 − λk2
λ1 − λ2

A− λ2λ
k
1 − λ1λ

k
2

λ1 − λ2
I2, ∀k ∈ N, if λ1, λ2 ∈ R, λ1 ̸= λ2;

ii) Ak = kλk−1
1 A− (k − 1)λk1 I2, ∀k ∈ N, if λ1 = λ2;

iii) Ak =
rk−1 sin kθ

sin θ
A− rk sin(k − 1)θ

sin θ
I2, ∀k ∈ N, if λ1, λ2 ∈ C \ R,

λ1, λ2 = r(cos θ ± i sin θ), with r > 0, θ ∈ (0, 2π) \ {π}.

We consider now diagonal recurrences of order two

x(t+ 2 · 1) + ax(t+ 1) + bx(t) = 0,

with a, b ∈ R constants and with initial conditions x(t1, . . . , tβ−1, 0, tβ+1, . . . , tm),
x(t1, . . . , tβ−1, 1, tβ+1, . . . , tm) given for any β ∈ {1, 2, . . . ,m} and x : Nm → R un-

known sequence. Denoting y(t) =

(
x(t)

x(t+ 1)

)
, A =

(
0 1
−b −a

)
, then the mul-

tivariate sequence y verifies y(t+ 1) = Ay(t). From the Corollary 2.5, it follows

y(t) =

(
x(t)

x(t+ 1)

)
= Atβy(t− tβ · 1) = Atβ

(
x(t− tβ · 1)

x(t− (tβ − 1) · 1)

)
, if µ(t) = tβ .

The characteristic polynomial P (λ) = λ2 + aλ + b of the matrix A has the roots

λ1, λ2. According the Lemma 4.1, the matrix Atβ is of the form:

Atβ = c1(t
β)A+ c0(t

β)I2 (formulas i), ii), iii) in Lemma 4.1).
Hence, if µ(t) = tβ , then(

x(t)
x(t+ 1)

)
= c1(t

β)A

(
x(t− tβ · 1)

x(t− (tβ − 1) · 1)

)
+ c0(t

β)

(
x(t− tβ · 1)

x(t− (tβ − 1) · 1)

)
.

Consequently x(t) = c1(t
β)x(t− (tβ − 1) · 1) + c0(t

β)x(t− tβ · 1), if µ(t) = tβ .
We have proved the following result
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Theorem 4.2. Let m ≥ 2, a, b ∈ R and λ1, λ2 the roots of the polynomial P (λ) =
λ2 + aλ+ b. Suppose that the (m− 1)-sequences

f1, f2, . . . , fm : Nm−1 → R, g1, g2, . . . , gm : Nm−1 → R,

satisfy, for any α, β ∈ {1, 2, . . . ,m}, the compatibility conditions

fα(t
1, . . . , t̂α, . . . , tm)

∣∣∣
tβ=0

= fβ(t
1, . . . , t̂β , . . . , tm)

∣∣∣
tα=0

,

gα(t
1, . . . , t̂α, . . . , tm)

∣∣∣
tβ=1

= gβ(t
1, . . . , t̂β , . . . , tm)

∣∣∣
tα=1

,

fα(t
1, . . . , t̂α, . . . , tm)

∣∣∣
tβ=1

= gβ(t
1, . . . , t̂β , . . . , tm)

∣∣∣
tα=0

,

∀t1, . . . , tα−1, tα+1, . . . , tβ−1, tβ+1, . . . , tm ∈ N.

Then the unique m-sequence x : Nm → R which verifies

x(t+ 2 · 1) + ax(t+ 1) + bx(t) = 0, ∀t ∈ Nm,

x(t)
∣∣∣
tγ=0

= fγ(t
1, . . . , t̂γ , . . . , tm), ∀(t1, . . . , t̂γ , . . . , tm) ∈ Nm−1,

x(t)
∣∣∣
tγ=1

= gγ(t
1, . . . , t̂γ , . . . , tm), ∀(t1, . . . , t̂γ , . . . , tm) ∈ Nm−1,

∀γ ∈ {1, 2, . . . ,m},

is defined by the following formulas:
i) If λ1, λ2 ∈ R and λ1 ̸= λ2, then

x(t) =
λt

β

1 − λt
β

2

λ1 − λ2
gβ(t

1 − tβ + 1, . . . , t̂β , . . . , tm−1 − tβ + 1)

− λ2λ
tβ

1 − λ1λ
tβ

2

λ1 − λ2
fβ(t

1 − tβ , . . . , t̂β , . . . , tm−1 − tβ), if µ(t) = tβ .

ii) If λ1 = λ2, then

x(t) = tβλt
β−1
1 gβ(t

1 − tβ + 1, . . . , t̂β , . . . , tm−1 − tβ + 1)

− (tβ − 1)λt
β

1 fβ(t
1 − tβ , . . . , t̂β , . . . , tm−1 − tβ), if µ(t) = tβ .

iii) If λ1, λ2 ∈ C \ R, λ1, λ2 = r(cos θ ± i sin θ), with r > 0, θ ∈ (0, 2π) \ {π}, then

x(t) =
rt

β−1 sin tβθ

sin θ
gβ(t

1 − tβ + 1, . . . , t̂β , . . . , tm−1 − tβ + 1)

− rt
β

sin(tβ − 1)θ

sin θ
fβ(t

1 − tβ , . . . , t̂β , . . . , tm−1 − tβ), if µ(t) = tβ .

5 Discrete minimal submanifolds

Let (M, g) be a Riemannian manifold and (N,h) be a Riemannian oriented subman-
ifold (possibly with boundary). Let x = (xi), i = 1, ..., n, be the local coordinates in
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M and t = (tα), α = 1, ...,m, the local coordinates in N . If the parametric equations
of the submanifold N are xi = xi(t), then the induced Riemannian metric has the
components

hαβ(t) = gij(x(t))x
i
α(t)x

j
β(t),

where xiα(t) =
∂xi

∂tα (t). The determinant of this metric is denoted by d = det(hαβ(t)).
If Σ ⊂ N is compact subset, corresponding to t ∈ Ω- compact, then its area is∫

Σ

dσ =

∫
Ω

√
d dt1 ∧ ... ∧ dtm.

The submanifold Σ is called minimal if and only if it is a critical point of the area
functional

I(x(·)) =
∫
Ω

√
d dt1 ∧ ... ∧ dtm,

for all compactly supported variations. Introducing the Lagrangian

L =
√
d =

√
det

(
gij(x(t))xiα(t)x

j
β(t)

)
a minimal submanifold is solution of Euler-Lagrange PDEs system

∂L

∂xi
−Dα

∂L

∂xiα
= 0,

i.e., vanishing mean curvature vector,
∑
r

Ωr|αβh
αβξir = 0.

Though continuous models of minimal submanifolds are usually more convenient
and yield results which are more transparent, the discrete models are also of interest
being in fact discrete dynamical systems.

The theory of integrators for multi-parameter Lagrangian dynamics shows that
instead of discretization of Euler-Lagrange PDEs we must use a discrete Lagrangian,
a discrete action, and then discrete Euler-Lagrange equations (see [13]). Of course,
the discrete Euler-Lagrange equations associated to multitime discrete Lagrangian
can be solved successfully by the Newton method if it is convergent for a convenient
step.

To simplify, we consider the minimal 2-dimensional submanifolds, having the co-
ordinates t = (t1, t2). The discretization of the Lagrangian L(x(t), xα(t)) can be
performed by using the centroid rule (see [26], [25], [21]) which consists in: (i) the
substitution of the point (t1, t2) with (mh1, nh2), for the fixed step (h1, h2); (ii) the
substitution of the point x(t1, t2) with the fraction

ξmn =
xmn + xm+1n + xmn+1

3
;

and (iii) the substitution of the partial velocities x1 = ∂x
∂t1 , x2 = ∂x

∂t2 by the fractions
xm+1n−xmn

h1
, xmn+1−xmn

h2
. We can write L2

d = dethαβ(m,n) and since

hαβ = gij(ξmn)
(ximn)α
hα

(xjmn)β
hβ

, (ximn)1 = xim+1n − ximn, (x
i
mn)2 = ximn+1 − ximn,
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it follows h21h
2
2 L

2
d = det

(
gij(ξmn)(x

i
mn)α(x

j
mn)β

)
.

The discrete Euler-Lagrange equations are
∑
ξ

∂Ld

∂xmn
(ξ) = 0, where ξ runs over three

points: (xmn, xm+1n, xmn+1), (xm−1n, xmn, xm−1n+1), (xmn−1, xm+1n−1, xmn),
with m = 1, ...,M − 1, n = 1, ..., N − 1.

Since
∂(ximn)α
∂xkmn

= −δik,
∂(xim−1n)α

∂xkmn

= δikδ
1
α,

∂(ximn−1)α

∂xkmn

= δikδ
2
α, explicitly, we

compute

2
∂Ld

∂xkmn

(xmn, xm+1n, xmn+1) =
1√
d

∂d

∂hαβ

∂hαβ
∂xkmn

=
√
d hαβ

(
1

3

∂gij
∂xk

(ξmn)(x
i
mn)α(x

j
mn)β − gkj

(
(xjmn)α + (xjmn)β

))
;

2
∂Ld

∂xkmn

(xm−1n, xmn, xm−1n+1)

=
√
d hαβ

(
1

3

∂gij
∂xk

(ξm−1n)(x
i
m−1n)α(x

j
m−1n)β + gkj

(
(xj

m−1n)αδ
1
β + δ1α(x

j
m−1n)β

))
;

2
∂Ld

∂xkmn

(xmn−1, xm+1n−1, xmn)

=
√
d hαβ

(
1

3

∂gij
∂xk

(ξmn−1)(x
i
mn−1)α(x

j
mn−1)β + gkj

(
(xj

mn−1)αδ
2
β + δ2α(x

j
mn−1)β

))
.

Theorem 5.1. The variational integrator of discrete minimal 2-submanifolds is de-
scribed by the recurrence equation∑

m,m−1,n−1

hαβ(m,n)

(
1

3

∂gij
∂xk

(ξmn)(x
i
mn)α(x

j
mn)β +Amnαβ

)
= 0,

where
Amnαβ = −gkj

(
(xjmn)α + (xjmn)β

)
,

Am−1nαβ = gkj
(
(xjmn)α δ

1
β + δ1α (xjmn)β

)
,

Amn−1αβ = gkj
(
(xjmn)α δ

2
β + δ2α (xjmn)β

)
.

6 Conclusions

This paper presents original results regarding the multivariate recurrence equations.
Our approach to multivariate recurrence equations is advantageous for practical prob-
lems. The original results have a great potential to solve problems in various areas
such as ecosystem dynamics, financial modeling, economics, image processing (repre-
sentations of filters), and differential geometry etc. The two-dimensional filters are
extensively used in processing two-dimensional sampled data (seismic data sections,
digitized photographic data, gravitational and magnetic maps etc).
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