# Indefinite trans-Sasakian manifold of quasi-constant curvature with lightlike hypersurfaces 

Dae Ho Jin


#### Abstract

In this paper, we study indefinite trans-Sasakian manifold $\bar{M}$ of quasi-constant curvature with lightlike hypersurfaces $M$. We provide several new results on such a manifold $\bar{M}$, in which the characteristic 1form $\theta$ and the characteristic vector field $\zeta$, defined by (1.1), are identical with the structure 1-form $\theta$ and the structure vector field $\zeta$ of the indefinite trans-Sasakian structure $(J, \zeta, \theta)$ of $\bar{M}$, respectively.


M.S.C. 2010: 53C25, 53C40, 53C50.

Key words: indefinite Trans-Sasakian manifold; quasi-constant curvature; Hopf lightlike hypersurface; Lie recurrent lightlike hypersurface.

## 1 Introduction

B.Y. Chen-K. Yano [2] introduced the notion of a semi-Riemannian manifold of quasiconstant curvature as a semi-Riemannian manifold $(\bar{M}, \bar{g})$ endowed with the curvature tensor $\bar{R}$ satisfying the following form:

$$
\begin{align*}
\bar{R}(X, Y) Z & =\lambda\{\bar{g}(Y, Z) X-\bar{g}(X, Z) Y\}  \tag{1.1}\\
& +\mu\{\bar{g}(Y, Z) \theta(X) \zeta-\bar{g}(X, Z) \theta(Y) \zeta \\
& \quad+\theta(Y) \theta(Z) X-\theta(X) \theta(Z) Y\}
\end{align*}
$$

for any vector fields $X, Y$ and $Z$ of $\bar{M}$, where $\lambda$ and $\mu$ are smooth functions, $\zeta$ is a smooth vector field and $\theta$ is a 1 -form associated with $\zeta$ by $\theta(X)=\bar{g}(X, \zeta)$. In this case, $\zeta$ and $\theta$ are called the characteristic vector field and the characteristic 1-form of $\bar{M}$, respectively. It is well known that if the curvature tensor $\bar{R}$ is of the form (1.1), then $\bar{M}$ is conformally flat. If $\mu=0$, then $\bar{M}$ is a space of constant curvature $\lambda$.
J.A. Oubina [9] introduced the notion of a trans-Sasakian manifold of type ( $\alpha, \beta$ ). Sasakian manifold is an important kind of trans-Sasakian manifold such that $\alpha=1$ and $\beta=0$. Cosymplectic manifold is another kind of trans-Sasakian manifold such that $\alpha=\beta=0$. Kenmotsu manifold is also an example with $\alpha=0$ and $\beta=1$.

The theory of lightlike hypersurfaces is an important topic of research in differential geometry due to its application in mathematical physics. The study of such

[^0]notion was initiated by K.L. Duggal-A. Bejancu [3] and later studied by many authors $[4,5]$. In this paper, we study indefinite trans-Sasakian manifold $\bar{M}$ of quasi-constant curvature with lightlike hypersurfaces $M$ such that the 1 -form $\theta$ and its associated vector field $\zeta$, defined by (1.1), are identical with the structure 1 -form $\theta$ and the structure vector field $\zeta$ of the indefinite trans-Sasakian structure $(J, \zeta, \theta)$ of $\bar{M}$.

## 2 Lightlike hypersurfaces

Let $(M, g)$ be a lightlike hypersurface of a semi-Riemannian manifold $(\bar{M}, \bar{g})$. Then the normal bundle $T M^{\perp}$ of $M$ is a vector subbundle of the tangent bundle $T M$ of $M$, of rank 1. Therefore there exists a non-degenerate complementary vector bundle $S(T M)$ of $T M^{\perp}$ in $T M$, which is called a screen distribution of $M$, such that

$$
T M=T M^{\perp} \oplus_{\text {orth }} S(T M)
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. We denote such a lightlike hypersurface by $M=(M, g, S(T M))$. Denote by $F(M)$ the algebra of smooth functions on $M$ and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle $E$. Also denote by $(2.5)_{i}$ the $i$-th equation of the two equations in (2.5). We use same notations for any others. It is known [3] that, for any null section $\xi$ of $T M^{\perp}$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section $N$ of a unique vector bundle $\operatorname{tr}(T M)$ of rank 1 in $S(T M)^{\perp}$ satisfying

$$
\bar{g}(\xi, N)=1, \quad \bar{g}(N, N)=\bar{g}(N, X)=0, \quad \forall X \in \Gamma(S(T M))
$$

In this case, the tangent bundle $T \bar{M}$ of $\bar{M}$ is decomposed as

$$
T \bar{M}=T M \oplus \operatorname{tr}(T M)=\left\{T M^{\perp} \oplus \operatorname{tr}(T M)\right\} \oplus_{\text {orth }} S(T M)
$$

We call $\operatorname{tr}(T M)$ and $N$ the transversal vector bundle and the null transversal vector field of $M$ with respect to the screen distribtion $S(T M)$ respectively.

Let $\bar{\nabla}$ be the Levi-Civita connection of $\bar{M}$ and $P$ the projection morphism of $T M$ on $S(T M)$. Then the local Gauss and Weingartan formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N  \tag{2.1}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N  \tag{2.2}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) \xi  \tag{2.3}\\
& \nabla_{X} \xi=-A_{\xi}^{*} X-\tau(X) \xi
\end{align*}
$$

for all $X, Y \in \Gamma(T M)$, where $\nabla$ and $\nabla^{*}$ are the liner connections on $M$ and $S(T M)$ respectively, $B$ and $C$ are the local second fundamental forms on $M$ and $S(T M)$, respectively, $A_{N}$ and $A_{\xi}^{*}$ are the shape operators on $M$ and $S(T M)$ respectively and $\tau$ is a 1 -form on $T M$. Since $\bar{\nabla}$ is torsion-free, $\nabla$ is also torsion-free and $B$ is symmetric. The induced connection $\nabla$ of $M$ is not metric and satisfies

$$
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y)
$$

for any $X, Y, Z \in \Gamma(T M)$, where $\eta$ is a 1 -form such that

$$
\eta(X)=\bar{g}(X, N), \quad \forall X \in \Gamma(T M)
$$

From the fact that $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$, we show that $B$ is independent of the choice of a screen distribution $S(T M)$ and satisfies

$$
\begin{equation*}
B(X, \xi)=0, \quad \forall X \in \Gamma(T M) \tag{2.4}
\end{equation*}
$$

Two local second fundamental forms $B$ and $C$ are related to their shape operators by

$$
\begin{array}{ll}
B(X, Y)=g\left(A_{\xi}^{*} X, Y\right), & \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \\
C(X, P Y)=g\left(A_{N} X, P Y\right), & \bar{g}\left(A_{N} X, N\right)=0 \tag{2.6}
\end{array}
$$

From (2.5), the operator $A_{\xi}^{*}$ is $S(T M)$-valued self-adjoint on $T M$ such that

$$
A_{\xi}^{*} \xi=0
$$

From now and in the sequel, let $X, Y, Z$ and $W$ be the vector fields on $M$, unless otherwise specified. Denote by $\bar{R}, R$ and $R^{*}$ the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ of $\bar{M}$, the induced connection $\nabla$ on $M$ and the induced connection $\nabla^{*}$ on $S(T M)$ respectively. Using the Gauss-Weingarten formulas for $M$ and $S(T M)$, we obtain the Gauss equations for $M$ and $S(T M)$ such that

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X  \tag{2.7}\\
& +\left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)\right. \\
& +\tau(X) B(Y, Z)-\tau(Y) B(X, Z)\} N
\end{align*}
$$

$$
\begin{align*}
R(X, Y) P Z= & R^{*}(X, Y) P Z+C(X, P Z) A_{\xi}^{*} Y-C(Y, P Z) A_{\xi}^{*} X  \tag{2.8}\\
+ & \left\{\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)\right. \\
& -\tau(X) C(Y, P Z)+\tau(Y) C(X, P Z)\} \xi
\end{align*}
$$

In case $R=0$, we say that $M$ is flat.

## 3 Indefinite trans-Sasakian manifolds

An odd-dimensional semi-Riemannian manifold $(\bar{M}, \bar{g})$ is called an indefinite almost contact metric manifold if there exist a $(1,1)$-type tensor field $J$, a vector field $\zeta$ which is called the structure vector field, and a 1 -form $\theta$ such that

$$
\begin{equation*}
J^{2} X=-X+\theta(X) \zeta, \quad \bar{g}(J X, J Y)=\bar{g}(X, Y)-\epsilon \theta(X) \theta(Y), \quad \theta(\zeta)=1 \tag{3.1}
\end{equation*}
$$

for any vector fields $X$ and $Y$ on $\bar{M}$, where $\epsilon$ denotes the signature of $\zeta$, i.e., $\bar{g}(\zeta, \zeta)=\epsilon$. In this case, the set $\{J, \zeta, \theta, \bar{g}\}$ is called an indefinite almost contact metric structure of $\bar{M}$. From (3.1), we see that $J \zeta=0, \theta \circ J=0$ and $\theta(X)=\epsilon \bar{g}(X, \zeta)$. Also, we see that $\zeta$ is a non-null vector field. In the entire discussion of this article, we shall assume that $\zeta$ to be unit spacelike, i.e., $\epsilon=1$, without loss generality.
Definition 3.1. An indefinite almost contact metric manifold $(\bar{M}, \bar{g})$ is said to be an indefinite trans-Sasakian manifold $[7,8,9]$ if, for any vector fields $X$ and $Y$ on $\bar{M}$, there exist two smooth functions $\alpha$ and $\beta$ such that

$$
\begin{equation*}
\left(\bar{\nabla}_{X} J\right) Y=\alpha\{\bar{g}(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) J X\} \tag{3.2}
\end{equation*}
$$

We say that $\{J, \zeta, \theta, \bar{g}\}$ is an indefinite trans-Sasakian structure of type $(\alpha, \beta)$.

From (3.1) and (3.2), we get

$$
\begin{equation*}
\bar{\nabla}_{X} \zeta=-\alpha J X+\beta(X-\theta(X) \zeta), \quad d \theta(X, Y)=g(X, J Y) \tag{3.3}
\end{equation*}
$$

In the sequel, let $M$ be a lightlike hypersurface of an indefinite trans-Sasakian manifold $\bar{M}$ such that the structure vector field $\zeta$ of $\bar{M}$ is tangent to $M$. Călin [1] proved that if $\zeta$ is tangent to $M$, then it belongs to $S(T M)$ which we assume in this work. It is known [7, 8] that, for any lightlike hypersurface $M$ of an indefinite almost contact metric manifold $\bar{M}$, the distributions $J\left(T M^{\perp}\right)$ and $J(\operatorname{tr}(T M))$ are vector subbundles of $S(T M)$, of rank 1 , and $J\left(T M^{\perp}\right) \cap J(\operatorname{tr}(T M))=\{0\}$. Thus we see that $J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M))$ is a vector subbundle of $S(T M)$ of rank 2 . Therefore there exists two non-degenerate almost complex distributions $D_{o}$ and $D$ with respect to the structure tensor $J$, i.e., $J\left(D_{o}\right)=D_{o}$ and $J(D)=D$, such that

$$
\begin{aligned}
& S(T M)=J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M)) \oplus_{\text {orth }} D_{o} \\
& D=T M^{\perp} \oplus_{\text {orth }} J\left(T M^{\perp}\right) \oplus_{\text {orth }} D_{o}
\end{aligned}
$$

Using these distributions, $T M$ is decomposed as follow:

$$
T M=D \oplus J(\operatorname{tr}(T M))
$$

Consider the local lightlike vector fields $U$ and $V$ such that

$$
\begin{equation*}
U=-J N, \quad V=-J \xi \tag{3.4}
\end{equation*}
$$

Denote by $S$ the projection morphism of $T M$ on $D$. Using this operator,

$$
X=S X+u(X) U, \quad \forall X \in \Gamma(T M)
$$

where $u$ and $v$ are 1-forms locally defined on $M$ by

$$
\begin{equation*}
u(X)=g(X, V), \quad v(X)=g(X, U) \tag{3.5}
\end{equation*}
$$

Using (3.4), the action $J X$ of any vector field $X$ on $M$ by $J$ is expressed as

$$
\begin{equation*}
J X=F X+u(X) N \tag{3.6}
\end{equation*}
$$

where $F$ is a tensor field of type $(1,1)$ globally defined on $M$ by $F=J \circ S$.
Applying $\bar{\nabla}_{X}$ to $(3.4) \sim(3.6)$ and using $(2.1) \sim(2.4)$ and (3.4) $\sim(3.6)$, we have

$$
\begin{align*}
& B(X, U)=C(X, V)  \tag{3.7}\\
& \nabla_{X} U=F\left(A_{N} X\right)+\tau(X) U-\{\alpha \eta(X)+\beta v(X)\} \zeta  \tag{3.8}\\
& \nabla_{X} V=F\left(A_{\xi}^{*} X\right)-\tau(X) V-\beta u(X) \zeta  \tag{3.9}\\
& \begin{aligned}
\left(\nabla_{X} F\right)(Y) & =u(Y) A_{N} X-B(X, Y) U \\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\} \\
\left(\nabla_{X} u\right)(Y) & =-u(Y) \tau(X)-\beta \theta(Y) u(X)-B(X, F Y) \\
\left(\nabla_{X} v\right)(Y) & =v(Y) \tau(X)-\theta(Y)\{\alpha \eta(X)+\beta v(X)\}-g\left(A_{N} X, F Y\right)
\end{aligned} \tag{3.10}
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $g(\zeta, \xi)=0$ and $\bar{g}(\zeta, N)=0$ and using (3.3), we have

$$
\begin{equation*}
B(X, \zeta)=-\alpha u(X), \quad C(X, \zeta)=-\alpha v(X)+\beta \eta(X) \tag{3.13}
\end{equation*}
$$

Substituting (3.6) into (3.3), we see that

$$
\begin{equation*}
\nabla_{X} \zeta=-\alpha F X+\beta(X-\theta(X) \zeta) . \tag{3.14}
\end{equation*}
$$

Applying $J$ to (3.6) and using (3.1) and (3.4), we have

$$
\begin{equation*}
F^{2} X=-X+u(X) U+\theta(X) \zeta, \quad F U=0, \quad F \zeta=0, \quad u(U)=1 \tag{3.15}
\end{equation*}
$$

We say that $U$ is the canonical structure vector field of $M$.

## 4 Manifold of quasi-constant curvature

Let $M$ be a lightlike hypersurface of an indefinite trans-Sasakian manifold $\bar{M}$ of quasiconstant curvature. Comparing the tangential and transversal components of the two equations (1.1) and (2.7), we obtain

$$
\begin{align*}
& R(X, Y) Z= \lambda\{\bar{g}(Y, Z) X-\bar{g}(X, Z) Y\}  \tag{4.1}\\
&+ \mu\{\bar{g}(Y, Z) \theta(X) \zeta-\bar{g}(X, Z) \theta(Y) \zeta+\theta(Y) \theta(Z) X \\
&\quad-\theta(X) \theta(Z) Y\}+B(Y, Z) A_{N} X-B(X, Z) A_{N} Y, \\
&\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)-\tau(Y) B(X, Z)=0, \tag{4.2}
\end{align*}
$$

respectively. Taking the scalar product with $N$ to (2.8), we have

$$
\begin{aligned}
\bar{g}(R(X, Y) P Z, N) & =\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z) \\
& -\tau(X) C(Y, P Z)+\tau(Y) C(X, P Z) .
\end{aligned}
$$

Substituting (4.1) into the last equation, we see that

$$
\begin{align*}
& \left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)-\tau(X) C(Y, P Z)+\tau(Y) C(X, P Z)  \tag{4.3}\\
& =\lambda\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
& \quad+\mu\{\theta(Y) \eta(X)-\theta(X) \eta(Y)\} \theta(P Z)
\end{align*}
$$

Theorem 4.1. Let $M$ be a lightlike hypersurface of an indefinite trans-Sasakian manifold $\bar{M}$ of quasi-constant curvature. Then $\alpha$ is a constant, and

$$
\beta=0, \quad \lambda=\alpha^{2}, \quad \mu=0
$$

Proof. Applying $\nabla_{Y}$ to (3.7) and using (3.1), (3.6) ~ (3.9) and (3.13), we have

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, U) & =\left(\nabla_{X} C\right)(Y, V)-2 \tau(X) C(Y, V) \\
& -\alpha^{2} u(Y) \eta(X)-\beta^{2} u(X) \eta(Y)+\alpha \beta\{u(X) v(Y)-u(Y) v(X)\} \\
& -g\left(A_{\xi}^{*} X, F\left(A_{N} Y\right)\right)-g\left(A_{\xi}^{*} Y, F\left(A_{N} X\right)\right) .
\end{aligned}
$$

Substituting this equation and (3.7) into (4.2) such that $Z=U$, we get

$$
\begin{aligned}
& \left(\nabla_{X} C\right)(Y, V)-\left(\nabla_{Y} C\right)(X, V)-\tau(X) C(Y, V)+\tau(Y) C(X, V) \\
& \quad=\left(\alpha^{2}-\beta^{2}\right)\{u(Y) \eta(X)-u(X) \eta(Y)\}+2 \alpha \beta\{u(Y) v(X)-u(X) v(Y)\} .
\end{aligned}
$$

Comparing this equation and (4.3) such that $P Z=V$, we obtain

$$
\begin{aligned}
& \left(\lambda-\alpha^{2}+\beta^{2}\right)\{u(Y) \eta(X)-u(X) \eta(Y)\} \\
& =2 \alpha \beta\{u(Y) v(X)-u(X) v(Y)\}
\end{aligned}
$$

Taking $X=\xi$ and $Y=U$, and then, $X=V$ and $Y=U$ to this, we have

$$
\begin{equation*}
\lambda=\alpha^{2}-\beta^{2}, \quad \alpha \beta=0 \tag{4.4}
\end{equation*}
$$

Applying $\nabla_{X}$ to $B(Y, \zeta)=-\alpha u(Y)$ and using (3.11) and (3.14), we have

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, \zeta) & =-(X \alpha) u(Y)-\beta B(X, Y) \\
& +\alpha\{u(Y) \tau(X)+B(X, F Y)+B(Y, F X)\}
\end{aligned}
$$

due to $\alpha \beta=0$. Substituting this equation into (4.2) such that $Z=\zeta$, we have

$$
(X \alpha) u(Y)=(Y \alpha) u(X)
$$

Replacing $Y$ by $U$ to this equation, we obtain

$$
\begin{equation*}
X \alpha=(U \alpha) u(X) \tag{4.5}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $\eta(Y)=\bar{g}(Y, N)$ and using (2.1) and (2.2) we have

$$
\left(\nabla_{X} \eta\right)(Y)=-g\left(A_{N} X, Y\right)+\tau(X) \eta(Y)
$$

Applying $\nabla_{Y}$ to $(3.13)_{2}$ and using (3.12), (3.13) and (3.14), we have

$$
\begin{aligned}
\left(\nabla_{X} C\right)(Y, \zeta) & =-(X \alpha) v(Y)-\alpha v(Y) \tau(X)+\alpha^{2} \theta(Y) \eta(X) \\
& +(X \beta) \eta(Y)+\beta \eta(Y) \tau(X)+\beta^{2} \theta(X) \eta(Y) \\
& +\alpha\left\{g\left(A_{N} X, F Y\right)+g\left(A_{N} Y, F X\right)\right\} \\
& -\beta\left\{g\left(X, A_{N} Y\right)+g\left(A_{N} X, Y\right)\right\}
\end{aligned}
$$

Substituting this equation into (4.3) such that $P Z=\zeta$ and using (4.4) ${ }_{1}$, we get

$$
\{X \beta+\mu \theta(X)\} \eta(Y)-\{Y \beta+\mu \theta(Y)\} \eta(X)=(X \alpha) v(Y)-(Y \alpha) v(X)
$$

Taking $X=\xi$ and $Y=\zeta$, and then, $X=U$ and $Y=V$ to this, we get

$$
\begin{equation*}
\mu=-\zeta \beta \tag{4.6}
\end{equation*}
$$

and $U \alpha=0$. From (4.5) and the result $U \alpha=0$, we see that $\alpha$ is a constant.
As $\alpha$ is a constant and $\alpha \beta=0$, if $\alpha \neq 0$, then we have $\beta=0$.
Assume that $\alpha=0$. Then the equation (3.14) is reduced to

$$
\nabla_{Y} \zeta=\beta(Y-\theta(Y) \zeta)
$$

By straightforward calculations form this equation, we obtain

$$
\begin{aligned}
R(X, Y) \zeta & =(X \beta) Y-(Y \beta) X-\{(X \beta) \theta(Y)-(Y \beta) \theta(X)\} \zeta \\
& +\beta^{2}\{\theta(X) Y-\theta(Y) X\}-2 \beta d \theta(X, Y) \zeta
\end{aligned}
$$

Comparing this equation and (4.1) such that $Z=\zeta$, we obtain

$$
\begin{aligned}
& (X \beta) Y-(Y \beta) X-\{(X \beta) \theta(Y)-(Y \beta) \theta(X)\} \zeta \\
& \quad+\beta^{2}\{\theta(X) Y-\theta(Y) X\}-2 \beta d \theta(X, Y) \zeta \\
& =(\lambda+\mu)\{\theta(Y) X-\theta(X) Y\}
\end{aligned}
$$

Taking the scalar product with $\zeta$ to this, we get $\beta d \theta(X, Y)=0$, i.e.,

$$
\beta g(X, J Y)=0, \quad \forall X, Y \in \Gamma(T M)
$$

due to (3.3) ${ }_{2}$. Taking $X=U$ and $Y=\xi$ to this, we have $\beta=0$. As $\beta=0$, (4.4) and (4.6) are reduced to $\lambda=\alpha^{2}$ and $\mu=0$ respectively.

Corollary 4.2. Let $\bar{M}$ be an indefinite trans-Sasakian manifold of quasi-constant curvature, of type $(\alpha, \beta)$, endowed with a lightlike hypersurface. Then $\bar{M}$ is an indefinite $\alpha$-Sasakian manifold of constant positive curvature $\alpha^{2}$.

Definition 4.1. Let $\nabla_{X}^{\perp} N=\pi\left(\bar{\nabla}_{X} N\right)$ for any $X \in \Gamma(T M)$, where $\pi$ is the projection morphism of $T \bar{M}$ on $\operatorname{tr}(T M)$. Then $\nabla^{\perp}$ is a linear connection on the transversal vector bundle $\operatorname{tr}(T M)$ of $M$. We say that $\nabla^{\perp}$ is the transversal connection of $M$. We define the curvature tensor $R^{\perp}$ of $\operatorname{tr}(T M)$ by

$$
R^{\perp}(X, Y) N=\nabla_{X}^{\perp} \nabla_{Y}^{\perp} N-\nabla_{Y}^{\perp} \nabla_{X}^{\perp} N-\nabla_{[X, Y]}^{\perp} N
$$

The transversal connection $\nabla^{\perp}$ is called flat if $R^{\perp}$ vanishes identically [6].
As $\nabla_{X}^{\perp} N=\tau(X) N$, we show [6] that the transversal connection of $M$ is flat if and only if the 1 -form $\tau$ is closed, i.e., $d \tau=0$, on any $\mathcal{U} \subset M$.

In the sequel, we shall denote $\sigma$ and $\rho$ the 1 -forms defined by

$$
\sigma(X)=B(X, U)=C(X, V), \quad \rho(X)=B(X, V)
$$

Theorem 4.3. Let $\bar{M}$ be an indefinite trans-Sasakian manifold of quasi-constant curvature with a lightlike hypersurface $M$. If one of the following three conditions
(1) $F$ is parallel with respect to the induced connection $\nabla$,
(2) $U$ is parallel with respect to the induced connection $\nabla$, and
(3) $V$ is parallel with respect to the induced connection $\nabla$
is satisfied, then $\bar{M}$ is a flat manifold with indefinite cosymplectic structure and the transversal connection of $M$ is flat. In case (1), $M$ is also a flat manifold.

Proof. (1) If $F$ is parallel, then, from (3.10) and the fact that $\beta=0$, we get

$$
\begin{equation*}
u(Y) A_{N} X-B(X, Y) U+\alpha\{g(X, Y) \zeta-\theta(Y) X\}=0 \tag{4.7}
\end{equation*}
$$

Taking $X=U$ and $Y=V$ to (4.7), we have $\sigma(V) U=\alpha \zeta$. Taking the scalar product with $\zeta$ to this result, we get $\alpha=0$. Therefore, $\lambda=0$ and $\bar{M}$ is a flat manifold with indefinite cosymplectic structure. Replacing $Y$ by $U$ to (4.7), we obtain

$$
\begin{equation*}
A_{N} X=\sigma(X) U \tag{4.8}
\end{equation*}
$$

Taking the scalar product with $V$ to (4.7), we get $B(X, Y)=u(Y) \sigma(X)$, i.e.,

$$
g\left(A_{\xi}^{*} X, Y\right)=g(\sigma(X) V, Y)
$$

As $A_{\xi}^{*} X$ and $V$ belong to $S(T M)$, and $S(T M)$ is non-degenerate, we get

$$
\begin{equation*}
A_{\xi}^{*} X=\sigma(X) V \tag{4.9}
\end{equation*}
$$

Substituting (4.8) and (4.9) into (4.1) with $\lambda=\mu=0$, we get

$$
R(X, Y) Z=\{\sigma(Y) \sigma(X)-\sigma(X) \sigma(Y)\} u(Z) U=0
$$

for all $X, Y, Z \in \Gamma(T M)$. Therefore $R=0$ and $M$ is also flat.
Substituting (4.8) into (3.8) and using the fact that $F U=0$, we get

$$
\nabla_{X} U=\tau(X) U
$$

Substituting this into $\nabla_{X} \nabla_{Y} U-\nabla_{Y} \nabla_{X} U-\nabla_{[X, Y]} U=0$, we get $d \tau=0$. Thus the transversal connection of $M$ is flat.
(2) If $U$ is parallel, then, from (3.6), (3.8) and the fact that $\beta=0$, we have

$$
J\left(A_{N} X\right)-u\left(A_{N} X\right) N+\tau(X) U-\alpha \eta(X) \zeta=0
$$

Taking the scalar product with $\zeta$ to this equation, we get $\alpha=0$. Thus $\lambda=0$ and $\bar{M}$ is a flat manifold with indefinite cosymplectic structure. Taking the scalar product with $V$ to the last equation, we have $\tau=0$. As $\tau=0$, we obtain $d \tau=0$ and the transversal connection of $M$ is flat.
(3) If $V$ is parallel, then, from (3.6), (3.9) and the fact that $\beta=0$, we have

$$
\begin{equation*}
J\left(A_{\xi}^{*} X\right)-u\left(A_{\xi}^{*} X\right) N-\tau(X) V=0 \tag{4.10}
\end{equation*}
$$

Taking the scalar product with $U$ to (4.10), we have $\tau=0$. Thus $d \tau=0$ and the transversal connection of $M$ is flat. Applying $J$ to (4.10) and using (3.13), we have

$$
A_{\xi}^{*} X=-\alpha u(X) \zeta+\rho(X) U
$$

Taking the scalar product with $U$ to this equation, we obtain $B(X, U)=0$ for all $X \in \Gamma(T M)$. Replacing $X$ by $\zeta$ to this result and using $(3.13)_{1}$, we get

$$
\alpha=\alpha u(U)=-B(U, \zeta)=0
$$

Thus $\lambda=0$ and $\bar{M}$ is a flat manifold with indefinite cosymplectic structure.

## 5 Two types lightlike hypersurfaces

Definition 5.1. The canonical structure vector field $U$ is called principal [7], with respect to the shape operator $A_{\xi}^{*}$, if there exists a smooth function $f$ such that

$$
\begin{equation*}
A_{\xi}^{*} U=f U \tag{5.1}
\end{equation*}
$$

A lightlike hypersurface $M$ of an indefinite almost complex manifold $\bar{M}$ is said to be a Hopf lightlike hypersurface [7] if it admits a principal canonical structure vector field $U$, with respect to the shape operator $A_{\xi}^{*}$.

Taking the scalar product with $X$ to (5.1) and using (3.7), we get

$$
\begin{equation*}
B(X, U)=f v(X), \quad C(X, V)=f v(X), \quad \sigma(X)=f v(X) \tag{5.2}
\end{equation*}
$$

Theorem 5.1. Let $\bar{M}$ be an indefinite trans-Sasakian manifold of quasi-constant curvature with a Hopf lightlike hypersurface $M$. Then $\bar{M}$ is a flat manifold with indefinite cosymplectic structure.

Proof. Replacing $X$ by $U$ to (3.13) ${ }_{1}$, we have $B(U, \zeta)=-\alpha$. Also, replacing $X$ by $\zeta$ to $(5.2)_{1}$, we have $B(U, \zeta)=f v(\zeta)=-f \theta(J N)=0$. Therefore $\alpha=0$. By Theorem 4.1, $\lambda=0$ and $\bar{M}$ is a flat manifold with indefinite cosymplectic structure.

Theorem 5.2. Let $M$ be a Hoph lightlike hypersurfaces of an indefinite trans-Sasakian manifold $\bar{M}$ of quasi-constant curvature. If $F$ is parallel with respect to the induced connection $\nabla$ of $M$, then $f=0$ and $S(T M)$ is totally geodesic in $M$.

Proof. As $M$ is Hopf lightlike hypersurface, from (4.8) and (5.2) $3_{3}$, we have

$$
\begin{equation*}
A_{N} X=f v(X) U \tag{5.3}
\end{equation*}
$$

Taking the scalar product with $Y$ to (4.9) and using (5.2) ${ }_{3}$, we have

$$
B(X, Y)=f v(X) u(Y)
$$

Taking $X=V, Y=U$ and $X=U, Y=V$ to this equation by turns, we obtain

$$
B(V, U)=f, \quad B(U, V)=0
$$

Thus $f=0$. From (5.3), we get $A_{N}=0$ and $S(T M)$ is totally geodesic in $M$.
Theorem 5.3. Let $M$ be a Hopf lightlike hypersurface of an indefinite trans-Sasakian manifold $\bar{M}$ of quasi-constant curvature. If $U$ is parallel with respect to the induced connection $\nabla$ of $M$, then $S(T M)$ is an integrable distribution.

Proof. As $M$ is Hopf lightlike hypersurface, from (4.8) and (5.2) $)_{3}$, we obtain

$$
A_{N} X=f v(X) U
$$

Taking the scalar product with $Y$ to this equation, we see that

$$
g\left(A_{N} X, Y\right)=f v(X) v(Y)
$$

It follow that $A_{N}$ is self-adjoint linear operator with respect to $g$. Consequently, $C$ is symmetric on $S(T M)$ due to (2.6). By using (2.3) we obtain

$$
\eta([X, Y])=C(X, Y)-C(Y, X)=0, \quad \forall X, Y \in \Gamma(S(T M))
$$

which implies that $[X, Y] \in \Gamma(S(T M))$ for any $X, Y \in \Gamma(S(T M))$. Therefore, $S(T M)$ is an integrable distribution.

Definition 5.2. The structure tensor field $F$ on $M$ is said to be recurrent if there exists a 1 -form $\vartheta$ on $M$ such that

$$
\left(\nabla_{X} F\right) Y=\vartheta(X) F Y, \quad \forall X, Y \in \Gamma(T M)
$$

Theorem 5.4. Let $M$ be a lightlike hypersurface of an indefinite trans-Sasakian manifold $\bar{M}$ of quasi-constant curvature. If $F$ is recurrent, then $\bar{M}$ is a flat manifold with indefinite cosymplectic structure, $M$ is flat and the transversal connection is flat.

Proof. As $M$ is recurrent, from (3.10) and the fact that $\beta=0$, we get

$$
\vartheta(X) F Y=u(Y) A_{N} X-B(X, Y) U+\alpha\{g(X, Y) \zeta-\theta(Y) X\}
$$

Replacing $Y$ by $\xi$ to this, we get $\vartheta(X) V=0$ for all $X \in \Gamma(T M)$. Taking the scalar product with $U$ to this result, we obtain $\vartheta=0$. Therefore, $F$ is parallel with respect to $\nabla$. By (1) of Theorem 4.3, we have our assertion.

Definition 5.3. The structure tensor field $F$ of $M$ is said to be Lie recurrent [7] if there exists a 1 -form $\omega$ on $M$ such that

$$
\begin{equation*}
\left(\mathcal{L}_{X} F\right) Y=\omega(X) F Y, \quad \forall X, Y \in \Gamma(T M) \tag{5.4}
\end{equation*}
$$

where $\mathcal{L}_{X}$ denotes the Lie derivative on $M$ with respect to $X$, that is,

$$
\begin{align*}
\left(\mathcal{L}_{X} F\right) Y & =[X, F Y]-F[X, Y]  \tag{5.5}\\
& =\left(\nabla_{X} F\right) Y-\nabla_{F Y} X+F \nabla_{Y} X
\end{align*}
$$

The structure tensor field $F$ is called Lie parallel $[7]$ if $\mathcal{L}_{X} F=0$.
A lightlike hypersurface $M$ of an indefinite almost complex manifold $\bar{M}$ is called Lie recurrent [7] if it admits a Lie recurrent structure tensor field $F$.

Theorem 5.5. Let $M$ be a lightlike hypersurface of an indefinite trans-Sasakian manifold $\bar{M}$ of quasi-constant curvature. If $F$ is Lie recurrent, then it is Lie parallel, and $\bar{M}$ is a flat manifold with indefinite cosymplectic structure.

Proof. As $F$ is Lie recurrent, from (3.10), (5.4) and (5.5) we get

$$
\begin{align*}
\omega(X) F Y & =u(Y) A_{N} X-B(X, Y) U-\nabla_{F Y} X+F \nabla_{Y} X  \tag{5.6}\\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}
\end{align*}
$$

Replacing $Y$ by $\xi$ to (5.6) and using (2.4), (3.5) and $F \xi=-V$, we have

$$
\begin{equation*}
-\omega(X) V=\nabla_{V} X+F \nabla_{\xi} X \tag{5.7}
\end{equation*}
$$

Taking the scalar product with $V$ and $\zeta$ to this equation by turns, we get

$$
\begin{equation*}
u\left(\nabla_{V} X\right)=g\left(\nabla_{V} X, V\right)=0, \quad \theta\left(\nabla_{V} X\right)=0 \tag{5.8}
\end{equation*}
$$

On the other hand, taking $Y=V$ to (5.6) and using (3.5), we have

$$
\omega(X) \xi=-B(X, V) U-\nabla_{\xi} X+F \nabla_{V} X+\alpha u(X) \zeta
$$

due to $F V=\xi$. Applying $F$ to this equation and using (3.15) $)_{1},(5.8)$ and the facts that $F U=0$ and $F \zeta=0$, we have

$$
\omega(X) V=\nabla_{V} X+F \nabla_{\xi} X
$$

Comparing this with (5.7), we obtain $\omega=0$. Therefore, $F$ is Lie parallel.
Replacing $X$ by $U$ to (5.6) and using (3.4), (3.5), (3.8) and (3.13) $)_{2}$, we get

$$
u(Y) A_{N} U-F\left(A_{N} F Y\right)-\tau(F Y) U-A_{N} Y+\alpha\{v(Y) \zeta-\theta(Y) U\}=0
$$

Taking $Y=V$ to this and using (3.5) and the fact that $F V=\xi$, we get

$$
F\left(A_{N} \xi\right)+\tau(\xi) U+A_{N} V-\alpha \zeta=0
$$

Taking the scalar product with $\zeta$ to this equation, we see that $\alpha=0$. Thus $\lambda=0$ and $\bar{M}$ is a flat manifold with indefinite cosymplectic structure.

## References

[1] C. Cǎlin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania, 1998).
[2] B.Y. Chen and K.Yano, Hypersurfaces of a conformally flat space, Tensor (N.S.) 26, 1972, 318-322.
[3] K.L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[4] K.L. Duggal and D.H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
[5] K.L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhäuser, 2010.
[6] D.H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. of Pure and Applied Math. 41(4), 2010, 569-581.
[7] D.H. Jin, Lightlike hypersurfaces of an indefinite generalized Sasakian space form, submitted in J. Korean Math. Soc.
[8] D.H. Jin, Geometry of lightlike hypersurfaces of indefinite trans-Sasakian manifolds, submitted in Bull. Korean Math. Soc.
[9] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32, 1985, 187-193.

Author's address:
Dae Ho Jin
Department of Mathematics, Dongguk University,
Gyeongju 780-714, Korea.
E-mail: jindh@dongguk.ac.kr


[^0]:    Balkan Journal of Geometry and Its Applications, Vol.20, No.1, 2015, pp. 65-75.
    (c) Balkan Society of Geometers, Geometry Balkan Press 2015.

