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Abstract. In this paper, we show the followings: (i) If a volume preserv-
ing diffeomorphism f belongs to the C1-interior of the set of all volume
preserving diffeomorphims having the ergodic shadowing property then
it is transitive Anosov. Moreover, (ii) if a C1-generic volume-preserving
diffeomorphism f has the ergodic shadowing property then it is transitive
Anosov.
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1 Introduction

A main research of dynamical systems is the behavior of the orbits. It is very close
to the shadowing theory. Roughly speaking, the shadowing theory means that for
given a pseudo orbit, there is a true orbit. So, the notion used to study of the
stability theory (see [23, 25]). From the fact, many researchers have been using
the various shadowing properties to investigate for the stability properties, that is,
structurally stable, hyperbolic, Axiom A, etc(see [6, 20, 21, 22]). For that, we consider
the volume-preserving diffeomorphism case. Recently, we can found the results of the
volume-preserving diffeomorphism which has the various shadowing properties(see
[4, 8, 11, 12, 13]). It is a motivation of the paper. We consider the special shadowing
property which is called the ergodic shadowing property. For the ergodic shadowing
property, many results published in [3, 7, 9, 10, 14, 15, 16]. Therefore, in this paper,
we study the relation between the ergodic shadowing and hyperbolcity.

The paper is constructed as follows: in section 2, we give the definitions and
introduce main theorems. In section 3, under the robust condition, we show that if
the system has the ergodic shadowing property then it is Anosov. In section 4, we
show that C1-generically, if the system has the ergodic shadowing property then it is
Anosov.
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2 Basic notions and main theorems

Let M be a d-dimensional (d ≥ 2) Riemannian closed and connected manifold and let
d(·, ·) denotes the distance on M inherited by the Riemannian structure. We endow
M with a volume-form (cf. [18]) and let µ denote the Lebesgue measure related
to it. Let Diff 1

µ (M) denote the set of volume-preserving diffeomorphisms defined on
M . Consider this space endowed with the C1 Whitney topology. The Riemannian
inner-product induces a norm ∥ · ∥ on the tangent bundle TxM . We will use the usual
uniform norm of a bounded linear map A given by ∥A∥ = sup∥v∥=1 ∥Av∥. We say that
a closed f -invariant set Λ is hyperbolic if the tangent bundle TΛM has a Df -invariant
splitting Es ⊕ Eu and there exist constants C > 0 and 0 < λ < 1 such that

∥Dxf
n|Es

x
∥ ≤ Cλn and ∥Dxf

−n|Eu
x
∥ ≤ Cλn

for all x ∈ Λ and n ≥ 0. If Λ = M then f is Anosov.
For a point x ∈ M, we say that x is a non-wandering point if for any neighborhood

U of x, there is n ∈ Z such that fn(U) ∩ U ̸= f� . Denote by Ω(f) the set of all non-
wandering points of f. It is clear P (f) ⊂ Ω(f), where P (f) is the set of periodic points
of f , and P (f) is the closure of P (f).We say that f satisfies Axiom A if Ω(f) = P (f) is
hyperbolic. In the volume preserving case, by Poincaré Recurrence Theorem, we have
Ω(f) = M . Thus if f satisfies the Axiom A then f is Anosov. Denote by Fµ(M) the
set of diffeomorphisms f ∈ Diffµ(M) which has a C1-neighborhood U(f) ⊂ Diffµ(M)
such that if for any g ∈ U(f), every periodic point of g is hyperbolic. Note that
Fµ(M) ⊂ F(M) (see [2, Corollary 1.2]). Arbieto and Catalan [2] proved that if a
volume preserving diffeomorphism is contained in Fµ(M) then it is Anosov. We can
restate as follows.

Theorem 2.1. [2, Theorem 1.1] If f ∈ Fµ(M) then f is Anosov.

For δ > 0, a sequence of points {xi}bi=a(−∞ ≤ a < b ≤ ∞) in M is called a
δ-pseudo-orbit of f if d(f(xi), xi+1) < δ for all a ≤ i ≤ b − 1. We say that f has the
shadowing property if for every ϵ > 0 there is δ > 0 such that for any δ-pseudo-orbit
{xi}bi=a of f(−∞ ≤ a < b ≤ ∞), there is a point y ∈ M such that d(f i(y), xi) < ϵ
for all a ≤ i ≤ b− 1. Now, we introduce the notion of the ergodic shadowing property
which was studied by [7]. For any δ > 0, a sequence ξ = {xi}i∈Z is a δ-ergodic
pseudo orbit of f if for Np+n (ξ, f, δ) = {i : d(f(xi), xi+1) ≥ δ} ∩ {0, 1, . . . , n− 1}, and
Np−n (ξ, f, δ) = {−i : d(f−1(x−i), x−i−1) ≥ δ} ∩ {−n+ 1, . . . ,−1, 0}

lim
n→∞

#Np+n (ξ, f, δ)

n
= 0 and lim

n→−∞

#Np−n (ξ, f, δ)

n
= 0.

Here #A is the number of elements of the set A. We say that f has the ergodic
shadowing property if for any ϵ > 0, there is a δ > 0 such that every δ-ergodic pseudo
orbit ξ = {xi}i∈Z of f there is a point z ∈ M such that for Ns+n (ξ, f, z, ϵ) = {i :
d(f i(z), xi) ≥ ϵ} ∩ {0, 1, . . . , n − 1}, and Ns−n (ξ, f, z, ϵ) = {−i : d(f−i(z), x−i) ≥
ϵ} ∩ {−n+ 1, . . . ,−1, 0},

lim
n→∞

#Ns+n (ξ, f, z, ϵ)

n
= 0 and lim

n→−∞

#Ns−n (ξ, f, z, ϵ)

n
= 0.
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We say that f is transitive if for any non-empty open sets U and V , there is n > 0
such that fn(U) ∩ V ̸= f� . Equivalently, there is x ∈ M such that ω(x) = M, where
ω(x) is the omega limit set of x. We say that f is mixing if for any non-empty open

sets U and V , there is n > 0 such that f i(U) ∩ V ̸= f� for all i ≥ n. Clearly, if f is
mixing then it is transitive.

Note that if f is a Morse-Smale diffeomorphism then it has the shadowing prop-
erty, and f has sinks and sources. But, if f has the ergodic shadowing property then
it does not contain sinks nor sources (see [7, Corollary 3.5]). A transitive diffeomor-
phism has the shadowing property if and only if the diffeomorphism has the ergodic
shadowing property (see [7, Theorem A]). For the ergodic shadowing property, Lee
[15] showed that if the homoclinic class satisfies a local star condition and which is
erogidc shadowing then it is hyperbolic. Here we say that a closed f -invariant set Λ
satisfies the local star condition if there are a C1-neighborhood U(f) and a neighbor-
hood U of Λ such that for any g ∈ U(f), every periodic points in Λg(U) =

∩
n∈Z g

n(U)
is hyperbolic.

Definition 2.1. We say that f has the C1-robustly ergodic shadowing property if
there is a C1-neighborhood U(f) of f such that for any g ∈ U(f), g has the ergodic
shadowing property.

Lee [14] showed that if f has the C1-robustly erogodic shadowing property then
it is structurally stable, Lee [16] and Barzanouniet al [3] showed that if f has the
C1-robustly erogodic shadowing property then it is transitive Anosov. For that, we
have

Theorem A. Let f ∈ Diffµ(M). If f has the C1-robustly ergodic shadowing prop-
erty then it is Anosov.

A subset R ⊂ Diffµ(M) is called residual if it contains a countable intersection
of open and dense subsets of Diffµ(M). A dynamic property is called C1generic if it
holds in a residual subset of Diffµ(M). We use the terminology for C1-generic f to
express there is a residual subset R ⊂ Diffµ(M), and f ∈ R. Lee [16] showed that if
C1-generically, f has the ergodic shadowing property then it is Anosov. For that, we
have

Theorem B. Let dimM ≥ 3. For C1-generic f ∈ Diffµ(M), if f has the ergodic
shadowing property, then f is mixing Anosov.

For any p ∈ P (f), we have the followings: (i) p is hyperbolic saddle, (ii) p is an
elliptic points, that is, nonreal eigenvalues are conjugated and of norm 1, and (iii)
p is a parabolic point, that is, the eigenvalues equal 1 or -1. Robinson [24] showed
that if dimM = 2 then there is a residual set in Diffµ(M) such that any elementary
in this residual displays all its elliptic points of elementary type. Here, we say that
p is an elementary point if Dpf has simple spectrum, and non of eigenvalues are
root of unity or equal to 1. Newhouse [19] showed that C1-generic volume-preserving
diffeomorphisms in two dimensional manifold are either Anosov or the elliptic points
are dense. For the results, we suggest the following problem: For C1-generic f ∈
Diffµ(M

2), if f has the ergodic shadowing property then is it Anosov?
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3 Proof of Theorem A

Let M be as before, and let f ∈ Diffµ(M). The following version of the Franks’ lemma
for the conservative case which is stated and proved in [5, Proposition 7.4].

Lemma 3.1. Let f ∈ Diffµ(M), and U(f) be a C1-neighborhood of f in Diff1
µ(M).

Then there exist a C1-neighborhood U0(f) ⊂ U(f) of f and ϵ > 0 such that if g ∈
U0(f), any finite f -invariant set E = {x1, . . . , xm}, any neighborhood U of E and any
volume-preserving linear maps Lj : TxjM → Tg(xj)M with ∥Lj − Dxjg∥ ≤ ϵ for all
j = 1, . . . ,m, there is a conservative diffeomorphism g1 ∈ U(f) coinciding with f on
E and out of U, and Dxjg1 = Lj for all j = 1, . . . ,m.

Remark 3.1. By the definition of the ergodic shadowing property, we have the
followings:

(a) The identity map does not have the ergodic shadowing property.

(b) Let Λ ⊂ M . If f has the ergodic shadowing property then f has the ergodic
shadowing property on Λ.

From the Moser’s Theorem (see [18]), there is a smooth conservative change of

coordinates φx : U(x) → TxM such that φx(x) =
−→
0 , where U(x) is a small neighbor-

hood of x ∈ M.

Lemma 3.2. Suppose that f has the C1-robustly ergodic shadowing property. Then
there is a C1-neighborhood U(f) of f such that for any g ∈ U(f), every periodic points
of g is hyperbolic.

Proof. Suppose that f has the C1-robustly ergodic shadowing property. Let U(f) ⊂
Diffµ(M) be a C1-neighborhood of f. Then for any g ∈ U(f), g has the ergodic
shadowing property. To derive a contradiction, we may assume that there is g ∈ U(f)
such that g has a nonhyperbolic periodic point p. For simplicity, we assume that
g(p) = p.

Then there is at least one eigenvalue λ of Dpg such that |λ| = 1, and TpM =
Es

p ⊕ Eu
p ⊕ Ec

p, where Es
p is the eigenspace corresponding to the eigenvalues of the

smaller than 1, and Eu
p is the eigenspace corresponding to the eigenvalues of the

greater than 1, and Ec
p the eigenspace corresponding to λ. Then we see that if λ ∈ R

then dimEc
p = 1, and if λ ∈ C then dimEc

p = 2.
First, we consider dimEc

p = 1. For simplicity, we may assume that λ = 1 (the
other case is similar). By Lemma 3.1, we linearize g at p with respect to Moser’s
Theorem; that is, by choosing α > 0 sufficiently small we construct g1 C1-nearby g
such that

g1(x) =

{
φ−1
p ◦Dpg ◦ φp(x) if x ∈ Bα(p),

g(x) if x /∈ B4α(p).

Then g1(p) = g(p) = p. Since the eigenvalue λ of Dpg1 is 1, we can take η = α/4 such
that Dpg1(v) = v for any v ∈ Ec

p(η). Take v0 ∈ Ec
p(η) such that ∥v0∥ = η/4. We set

Iv0 = {t · v0 : 1 ≤ t ≤ 1 + η/4} ⊂ φp(Bη(p)),

and φ−1
p (Iv0) = Jp. Since g1(Jp) = Jp is the identity map, φ−1

p (Iv0) = Jp is g1-
invariant and by the construction of Jp is normally hyperbolic. Since g1 has the
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ergodic shadowing property, by Remark 3.1(a) g1 must have the ergodic shadowing
property on Jp. Since g1 : Jp → Jp is the identity map, by Remark 3.1(b) g1 does
not have the ergodic shadowing property on Jp. This is a contradiction.

Finally, if λ ∈ C, then dimEc
p = 2. For simplicity, we may assume that g(p) = p.

As in the first case, by Lemma 3.1, there are α > 0 and g1 ∈ V(f) such that g1(p) =
g(p) = p and

g1(x) =

{
φ−1
p ◦Dpg ◦ φp(x) if x ∈ Bα(p),

g(x) if x /∈ B4α(p).

With a C1-small modification of the map Dpg, we may suppose that there is l > 0
(the minimum number) such that Dpg

l(v) = v for any v ∈ φp(Bα(p)) ⊂ TpM. Take
v0 ∈ φp(Bα(p)) such that ∥v0∥ = α/4, and set

Lp = φ−1
p ({t · v0 : 1 ≤ t ≤ 1 + α/4}).

Then Lp is an arc such that

· gi1(Lp) ∩ gj1(Lp) = f� for 0 ≤ i ̸= j ≤ l − 1,

· gl1(Lp) = Lp, and

· gl1|Lp is the identity map.

Note that g1 has the ergodic shadowing property if and only if gk1 has the ergodic
shadowing property, for all k ∈ Z (see [7, Proposition 3.3]). As in the previous ar-
guments, we can show that gl1 does not have the ergodic shadowing property on Lp,
which contradicts the fact that g1 ∈ U(f). Thus, if f has the C1-robustly ergodic
shadowing property, every periodic point of f is hyperbolic. �

Proof of Theorem A. Since f has the C1-robustly ergodic shadowing property, By
Lemma 3.2, there is a C1-neighborhood U(f) of f such that for any g ∈ U(f), every
p ∈ P (g) is hyperbolic. This means that f ∈ Fµ(M). Thus by Theorem 2.1, f is
Anosov. �

4 Proof of Theorem B.

Let dimM ≥ 3. Denote by ESµ(M) ⊂ Diffµ(M) the set of all volume preserving
diffeomorphisms having the ergodic shadowing property.

If f is transitive, f does not contains sinks nor sources. Thus every p ∈ P (f) is
saddle. Let p be a hyperbolic periodic point of f. Then there are a C1-neighborhood
U(f) of f and a neighborhood U of p such that for any g ∈ U(f), there is an unique
pg, where pg called the continuation of p. Let p ∈ P (f) be a hyperbolic saddle with
period π(p) > 0, then there are the local stable manifold W s

ϵ (p) and the local unstable
manifold Wu

ϵ(p)(p) for some ϵ = ϵ(p) > 0. Then we see that if x ∈ W s
ϵ (p), then

d(f i(x), f i(p)) ≤ ϵ, for i ≥ 0 and if x ∈ Wu
ϵ (p) then d(f−i(x), f−i(p)) ≤ ϵ for i ≥ 0.

The stable manifold W s(p) and the unstable manifold Wu(p) of p are defined as usual.
The dimension of the stable manifold W s(p) is called index of p, and we denote it
by index(p). The following was proved by [16, Lemma 2.4] for diffeomorphisms. For
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the volume-preserving diffeomorphisms, the proof is analogue. By [7, Corollary 3.5],
If f ∈ ESµ(M) then it is mixing. Then, we have the following.

Lemma 4.1. Let p, q ∈ P (f) be hyperbolic. If f ∈ ESµ(M) then W s(p) ∩Wu(q) ̸=f� , and Wu(p) ∩W s(q) ̸= f� .

A diffeomorphism f ∈ Diffµ(M) is said to be Kupka-Smale if any element of P (f)
is hyperbolic, and its invariant manifolds intersect transversely. The Kupka-Smale
volume preserving diffeomorphisms given by Robinson’s theorem (see [24]). Denote
by KSµ the set of all Kupka-Smale volume preserving diffeomorphisms.

Lemma 4.2. There is a residual set R1 ⊂ Diffµ(M) such that any f ∈ R1, if
f ∈ ESµ(M) then for any hyperbolic p, q ∈ P (f), index(p) = index(q).

Proof. Let f ∈ R1 = KSµ have the ergodic shadowing property, and let p, q ∈ P (f)
be hyperbolic. Suppose, by contradiction, that index(p) ̸= index(q). Then we have

dimW s(p) + dimWu(q) < dimM or dimWu(p) + dimW s(q) < dimM.

Without loss of generality, we assume that dimW s(p)+dimWu(q) < dimM(other

case is similar). Since f ∈ R1, we can see W s(p) ∩Wu(q) = f� . This is a contradic-
tion by Lemma 4.1. �

The following was proved by [4]. However, the paper is still not published yet.
For convenience, we give a sketch of proof.

Lemma 4.3. Let U(f) ⊂ Diffµ(M) be a C1-neighborhood of f. If p ∈ P (f) is not
hyperbolic then there is g ∈ U(f) such that g has two hyperbolic periodic points q, r
with index(q) ̸= index(r).

Proof. Let p ∈ P (f) be the non-hyperbolic with the period π(p). Then we have
TpM = Es

p ⊕ Es
p ⊕ Eu

p , where Es
p is the eigenspace corresponding to the eigenvalues

with modulus less than 1, Ec
p is the eigenspace corresponding to the eigenvalues with

modulus equal 1, and Eu
p is the eigenspace corresponding to the eigenvalues with

modulus grater than 1. Using Lemma 3.1, there is g C1-close to f such that an gπ(p)-
invariant small curve Lp. Take two points q, r ∈ Lp such that the points q, r are the
endpoints of the curve Lp. Since p is not hyperbolic,

Dqg
π(p)
|Ec

p

= Drg
π(p)
|Ec

p

= Dpf
π(p)
|Ec

p

= 1.

Again use Lemma 3.1, there is g1 C1-close to f(also, g1 C1-close to g) such that g1
has two hyperbolic periodic points qg1 , rg1 with index(qg1) ̸= index(rg1). �

The following due to [17, Lemma 2.2] for diffeomorphisms case and [12, Lemma
8] for conservative systems case.

Lemma 4.4. There is a residual set R2 ⊂ Diff(M) such that for any f ∈ R2, if
for any C1-neighborhood U(f) of f , there exists g ∈ U(f) such that two hyperbolic
periodic points pg, qg ∈ P (g) with index(pg) ̸= index(qg), then f has two hyperbolic
periodic points p, q ∈ P (f) with index(p) ̸= index(q).
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Let p be a periodic point of f. For any δ ∈ (0, 1), we say that p has a δ-weak
eigenvalue if Dpf

π(p) has an eigenvalue λ such that (1 − δ)π(p) < |λ| < (1 + δ)π(p).
The following is due to Arbieto [1, Lemma 5.1]

Lemma 4.5. There is a residual set R3 ⊂ Diffµ(M) such that for any f ∈ R3, for
any δ > 0, if for any C1-neighborhood U(f) there is g ∈ U(f) such that g has a
hyperbolic periodic point pg with a δ-weak eigenvalue then f has a hyperbolic periodic
point p with a 2δ-weak eigenvalue.

Lemma 4.6. There is a residual set R4 ⊂ Diffµ(M) such that for any f ∈ R4, if f
has the ergodic shadowing property then there is δ > 0 such that for any p ∈ P (f), p
does not have a δ-weak eigenvalue.

Proof. Let R4 = R1 ∩R2 and let f has the ergodic shadowing property. To derive a
contradiction, we assume that for any δ > 0 there is p ∈ P (f) such that p has a δ-weak
eigenvalue. By lemma 3.1, there is g C1-close to f such that g has a non-hyperbolic
periodic point q. Then by Lemma 4.3, there is g1 C

1-close to g(also, C1-close to f) such
that g1 has tow hyperbolic periodic points r, s with index(r) ̸= index(s). Since f ∈ R2,
by Lemma 4.4, f has two hyperbolic periodic points rf , sf with index(rf ) ̸= index(sf ).
This is a contradiction by Lemma 4.2. �
as To prove Theorem B, it is enough to show that f ∈ Fµ(M).

Lemma 4.7. There is a residual set R5 ⊂ Diffµ(M) such that for any f ∈ R5, if f
has the ergodic shadowing property, then f ∈ Fµ(M).

Proof. Let R5 = R3 ∩ R4 have the erogodic shadowing property. To derive a
contradiction, we assume that f ̸∈ Fµ(M). Then for any δ > 0 there is g C1-close to
f such that p has a δ/2-weak eigenvalue. By Lemma 4.6, f has a periodic point pf
with a δ-weak eigenvalue. This is a contradiction by Lemma 4.6. �

Proof of Theorem B. Let f ∈ R5 have the ergodic shadowing property. Then by
Lemma 4.7, f ∈ Fµ(M). By Theorem 2.1, f is transitive Anosov. �
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