On the Brill-Noether theory of curves in a weighted projective plane

E. Ballico

Abstract

We study the gonality and the existence of low degree pencils on curves with a model on a weighted projective plane, when their singularities are only ordinary nodes or ordinary cusps and they are general in the weighted projective plane.

M.S.C. 2010: 14H51, 14 J 26.

Key words: weighted projective plane; gonality; ordinary singularity.

1 Introduction

In this paper we consider the first steps of the Brill-Noether theory of curves on a weighted projective plane ([7], [8], [1]) (a very classical topic, but as far as we know the results of this note are new). See [2], [3], [4], [5], [6], [9] for smooth and singular plane curves.

Fix positive integers a, b, c and let $\mathbb{P}:=\mathbb{P}(a, b, c)$ denote the weighted projective space with weights a, b, c. Up to isomorphisms of the ambient weighted projective plane we may assume that any 2 of the integer a, b, c are coprimes ($[1$, Proposition 3C.5], [7, Proposition 1.3]). We may assume $a \leq b \leq c$. Since $(a, b)=(b, c)=(a, b)=$ 1 , we are in one of the following cases:

1. $a=b=c=1$;
2. $a=b=1, c>1$;
3. $a<b<c,(a, b)=1,(a, c)=1,(b, c)=1$.

In the first case we have $\mathbb{P} \cong \mathbb{P}^{2}$. In the second case \mathbb{P} is embedded as a cone over a rational normal curve of \mathbb{P}^{c} and the blowing up of the vertex of the cone gives the Hirzebruch surface $F_{c}([1$, page 124], [8, 1.2.3]). In this case it seems easier to work directly on F_{c} (the case $b=1$ of Theorem 1.2 is true by [10]). Hence from now on we assume $a<b<c$ and $(a, b)=(a, c)=(b, c)=1$.

We fix variables x_{1}, x_{2}, x_{3} and give weight a to x_{1}, b to x_{2} and c to x_{3}. For all integers $t \geq 0$ let $K\left[x_{1}, x_{2}, x_{3}\right]_{a, b, c ; t}$ be the linear subspace of $K\left[x_{1}, x_{2}, x_{3}\right]$ generated

[^0]by the monomials $x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}}$ with $a_{i} \geq 0$ for all i and $a a_{1}+b a_{2}+c a_{3}=t$, i.e. the monomials with weight t. We recall that \mathbb{P} has only quotient singularities (if $a=1<b, \operatorname{Sing}(\mathbb{P})=\{(0: 1: 0),(0: 0: 1)\}$, if $a>1$, then $\operatorname{Sing}(\mathbb{P})=\{(1: 0: 0),(0:$ $1: 0),(0: 0: 1)\}$, that the set of all rational equivalence classes of Weil divisors is a free abelian group of rank 1 ([1, Corollary 5.8]), that $\mathcal{O}_{\mathbb{P}}(t), t \in \mathbb{Z}$, is the set of all rank one reflexive sheaves on \mathbb{P}, that $h^{1}\left(\mathcal{O}_{\mathbb{P}}(t)\right)=0$ for all $t \in \mathbb{Z}, h^{0}\left(\mathcal{O}_{\mathbb{P}}(t)\right)=K\left[x_{1}, x_{2}, x_{3}\right]_{a, b, c ; t}$ for all $t \geq 0$, that $\mathcal{O}_{\mathbb{P}}(t)$ is locally free if and only if $t \equiv 0(\bmod a b c)$. The line bundle $\mathcal{O}_{\mathbb{P}}(a b c)$ is very ample ([1, Remark 3$]$). Hence for all $t>0$ a general element of $\left|\mathcal{O}_{\mathbb{P}}(t a b c)\right|$ is a smooth and connected curve. Fix a positive integer d and take $C \in\left|\mathcal{O}_{\mathbb{P}}(d a b c)\right|$ such that C is smooth. Since C is a Cartier divisor of \mathbb{P} and C is smooth, we have $C \cap \operatorname{Sing}(\mathbb{P})=\varnothing$. Hence each $\mathcal{O}_{C}(t), t \in \mathbb{Z}$, is a line bundle. We have $\mathcal{O}_{\mathbb{P}}(1) \cdot \mathcal{O}_{\mathbb{P}}(1)=\frac{1}{a b c}$ in the rational Chow ring of \mathbb{P} (use [11, Corollary A.2] or that the covering map $\mathbb{P}^{2} \rightarrow \mathbb{P}$ is the quotient by the group $\mu_{a} \times \mu_{b} \times \mu_{c}$ and hence it has degree $a b c$). Since $\omega_{\mathbb{P}} \cong \mathcal{O}_{\mathbb{P}}(-a-b-c)$ ([1, Corollary 6B.8], [7, Theorem 5.2], [8, 3.3 .4 and 3.5.2]), the adjunction formula gives $\omega_{C} \cong \mathcal{O}_{C}(d a b c-a-b-c)$ ([1, Corollary 6.B9], [8, 3.5.2]) Hence C has genus $1+d(d a b c-a-b-c) / 2$. Since $h^{1}\left(\mathcal{O}_{\mathbb{P}}(t)\right)=0$ for all t, for each integer $w \geq 0$ the restriction map $\rho_{w}: H^{0}\left(\mathcal{O}_{\mathbb{P}}(w)\right) \rightarrow H^{0}\left(\mathcal{O}_{C}(w)\right)$ is surjective. Hence $h^{0}\left(\mathcal{O}_{C}(t)\right)=\operatorname{dim}\left(K\left[x_{1}, x_{2}, x_{3}\right]_{a, b, c ; t}\right)$ for all $t<d a b c$. In particular we have $h^{0}\left(\mathcal{O}_{C}(a b)\right)=2$. Hence C has gonality at most $\operatorname{deg}\left(\mathcal{O}_{C}(a b)\right)=d a b$ (use again that $\left.\mathcal{O}_{\mathbb{P}}(1) \cdot \mathcal{O}_{\mathbb{P}}(1)=\frac{1}{a b c}\right)$. The line bundle $\mathcal{O}_{C}(a b)$ is spanned, because $(0: 0: 1)$ is the only base point of $\left|\mathcal{O}_{\mathbb{P}}(1)\right|$ and $(0: 0: 1) \notin C$.

Our first result is non-trivial only if $c \gg a b$.
Theorem 1.1. Let $C \in\left|\mathcal{O}_{\mathbb{P}}(d a b c)\right|$ be a smooth curve. Assume dabc $-a-b-c>0$ and $(a, b, d) \neq(1,2,1)$. Let $w: C \rightarrow \mathbb{P}^{1}$ be the morphism induced by $\left|\mathcal{O}_{C}(a b)\right|$. Let z be any positive integer such that $(z-2) a b \leq d a b c-a-b-c$. Then there is no degree z morphism $u: C \rightarrow \mathbb{P}^{1}$ such that u is not partially composed with w, i.e. such that the morphism $(w, u): C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is birational onto its image.

The condition " $d a b c-a-b-c>0$ " is equivalent to assuming that C has genus ≥ 2. The result is sharp, in the sense that it fails (just by 1) in the omitted case $(a, b, d)=(1,2,1)$ (see Remark 2.1).

In the case $a=1$, we prove the following result.
Theorem 1.2. Assume $a=1<b$. Let $C \in\left|\mathcal{O}_{\mathbb{P}}(d a c)\right|$ be a smooth curve. Then C has gonality db and $\mathcal{O}_{C}(b)$ is the unique line bundle L on C such that $h^{0}(L) \geq 2$ and $\operatorname{deg}(L) \leq d b$.

In section 3 we consider the case of singular curves. We consider both the spanned line bundles of minimal degree on the singular curve and the case of the normalization of an integral curve.

2 Proof of Theorems 1.1 and 1.2

Remark 2.1. Let $C \in\left|\mathcal{O}_{\mathbb{P}}(d a b c)\right|$ be a smooth curve of genus $g \geq 2$. Assume $(a, b, c)=(1,2,1)$ (the case excluded in the statement of Theorem 1.1). Since $b=2$ and $(b, c)=1, c$ is odd. We have $g=1+(c-3) / 2$. The spanned line bundle $\mathcal{O}_{C}(2)$ has degree 2 and hence C is hyperelliptic. There is a degree z spanned line bundle
whose associated morphism is not composed with the hyperelliptic involution if and only if $z \geq g+1=2+(c-3) / 2$.

Proof of Theorem 1.1: Assume the existence of such a morphism and take z minimal for which it exists. Set $R:=u^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(1)\right)$. R is a spanned line bundle of degree z and in particular $h^{0}(R) \geq 2$. Let $g=1+d(d a b c-a-b-c) / 2$ be the genus of C.

First assume $z>g$, i.e. $z-2 \geq g-1$. We get $d(d a b c-a-b-c) a b / 2 \leq d a b c-a-b-c$. Since $d a b c-a-b-c>0$, we get $d=1$ and $a b=2$, i.e. $d=1, a=1, b=2$. We excluded this case in the statement of Theorem 1.1.

Now assume $z \leq g$ and hence $h^{1}(R)>0$. Fix a general fiber of u. Since $h^{1}(R)>0$ and $\omega_{C} \cong \mathcal{O}_{C}(d a b c-a-b-c)$, we have $h^{1}\left(\mathcal{I}_{Z}(d a b c-a-b-c)\right)>0$. Assume for the moment that Z is reduced (this is always the case in characteristic zero). Fix an ordering P_{1}, \ldots, P_{z} of the points of the support of Z. Since R is spanned and $h^{1}(R)>0$, we have $h^{1}\left(\mathcal{O}_{C}\left(Z^{\prime}\right)\right)=h^{1}\left(\mathcal{O}_{C}(Z)\right)$ for each $Z^{\prime} \subset Z$ with $\operatorname{deg}\left(Z^{\prime}\right)=z-1$. Take $Z^{\prime}=\left\{P_{1}, \ldots, P_{z-1}\right\}$. Since u is not composed with w and Z is general, for each P_{i} there is $D_{i} \in\left|\mathcal{O}_{\mathbb{P}}(a b)\right|$ such that $Z \cap D_{i}=\left\{P_{i}\right\}$. Since $\left|\mathcal{O}_{\mathbb{P}}(a b)\right|$ is spanned outside $\operatorname{Sing}(\mathbb{P}), P_{1}$ imposes one condition to $\left|\mathcal{O}_{\mathbb{P}}(a b)\right|$. D_{1} shows that the set $\left\{P_{1}, P_{2}\right\}$ imposes 2 independent conditions to $\left|\mathcal{O}_{\mathbb{P}}(a b)\right|$. D_{2} shows that the set $\left\{P_{1}, P_{2}, P_{3}\right\}$ imposes 3 independent conditions to $\left|\mathcal{O}_{\mathbb{P}}(2 a b)\right|$. And so on. We get that Z^{\prime} imposes $z-1$ independent conditions to $\left|\mathcal{O}_{\mathbb{P}}(z-2)(a b)\right|$. Since $(z-2) a b \leq d a b c-a-b-c$, we get $h^{1}\left(\mathcal{I}_{Z^{\prime}}(d a b c-a-b-c)\right)=0$, a contradiction.

Now assume that Z is not reduced, i.e. that u is not separable. We get that the base field has characteristic $p>0$. Since the base field is algebraically closed, we also get that it is composed with a Frobenius of \mathbb{P}^{1}, contradicting the minimality of z.

Proof of Theorem 1.2: We have $\operatorname{Sing}(\mathbb{P})=\{(0: 1: 0),(0: 0: 1)\}$. Since $C \in$ $\left|\mathcal{O}_{\mathbb{P}}(d b c)\right|$, it is a Cartier divisor of \mathbb{P}. Since C is smooth, then $(0: 0: 1) \notin C$. Hence $\mathcal{O}_{C}(b)$ is a spanned line bundle of degree $d b$. Since $h^{1}\left(\mathcal{O}_{\mathbb{P}}(b-d b c)\right)=0$, we have $h^{0}\left(\mathcal{O}_{C}(b)\right)=2$. Take a line bundle L with minimal degree $z \leq d b$ with $h^{0}(L) \geq 2$ and assume $L \neq \mathcal{O}_{C}(b)$. Fix a general $Z \in|L|$. As in last part of the proof of Theorem 1.1 we reduce to the case in which Z is reduced. Since L is spanned, we may assume $Z \cap\left\{z_{0}=0\right\}=\varnothing$. We fix an ordering P_{1}, \ldots, P_{z} of the points of Z and set $Z^{\prime}:=\left\{P_{1}, \ldots, P_{z-1}\right\}$. As in the proof of Theorem 1.1 to get a contradiction it is sufficient to prove that $h^{1}\left(\mathcal{I}_{Z^{\prime}}(d b c-1-b-c)\right)=0$. Since $z \leq d b$, we have $(z-2) c \leq(d b-2) c \leq d b c-1-b-c$ and so it is sufficient to find $D_{i} \in\left|\mathcal{O}_{\mathbb{P}}(c)\right|, 1 \leq i \leq z-2$, such that $P_{i} \in D_{i}$ and $P_{i+1} \notin D_{i}$. Fix $i \in\{1, \ldots, z-2\}$. If there is $T \in\left|\mathcal{O}_{\mathbb{P}}(b)\right|$ with $P_{i} \in T$ and $P_{i+1} \notin T$, say T with equation $u\left(z_{0}, z_{1}\right) \in K\left[z_{0}, z_{1}, z_{2}\right]$, then we take as D_{i} the divisor with $z_{0}^{c-b} u\left(z_{0}, z_{1}\right)$ as its equations. Now assume that D_{i+1} is contained in every element of $\left|\mathcal{I}_{P_{i}}(b)\right|$ and fix $T \in\left|\mathcal{I}_{P_{i}}(b)\right|$. Since $P_{i} \notin\{(0: 1: 0),(0: 0: 1)\}, T$ is the only element of $\left|\mathcal{O}_{\mathbb{P}}(b)\right|$ containing P_{i}. Let M be a general element of $\left|\mathcal{I}_{P_{i}}(c)\right|$. Set $e:=\lfloor c / b\rfloor$. We have $\operatorname{dim}\left(K\left[x_{0}, x_{1}, x_{2}\right]_{1, b, c ; c-b}\right)=e$ and $\operatorname{dim}\left(K\left[x_{0}, x_{1}, x_{2}\right]_{1, b, c ; c}\right)=e+2$ and so $h^{0}\left(\mathcal{O}_{\mathbb{P}}(c-b)\right) \leq h^{0}\left(\mathcal{O}_{\mathbb{P}}(c)-2\right.$. Hence T is not a component of M. We have $P_{i} \in T \cap M$. Since $\mathcal{O}_{\mathbb{P}}(b) \cdot \mathcal{O}_{\mathbb{P}}(c)=1, P_{i}$ is a smooth point of \mathbb{P} and $P_{i} \in T \cap M, P_{i}$ is the only element of $\mathbb{P} \backslash \operatorname{Sing}(\mathbb{P})$ contained in $M \cap T$. Hence $P_{i+1} \notin M$. Take $D_{i}:=M$.

To check the key assumption of Theorem 1.1 the following well-known result may be useful.

Lemma 2.1. Take a smooth and connected curve $C \subset \mathbb{P}$ such that $(0: 0: 1) \notin C$ and assume the existence of $D \in\left|\mathcal{O}_{\mathbb{P}}(a b)\right|, D \neq C$, such that the scheme $C \cap D$ has 1 connected component with multiplicity 2 and $\operatorname{deg}(w)-2$ connected components with multiplicity 1. Let $w: C \rightarrow \mathbb{P}^{1}$ be the morphism induced by $\left|\mathcal{O}_{\mathbb{P}}(a b)\right|$. Then w is not composed with an involution, i.e. there are no triple $\left(X, w_{1}, w_{2}\right)$ with X a connected smooth curve, $w_{1}: C \rightarrow X, w_{2}: X \rightarrow \mathbb{P}^{1}, w=w_{2} \circ w_{1}, \operatorname{deg}\left(w_{1}\right) \geq 2$ and $\operatorname{deg}\left(w_{2}\right) \geq 2$.

Proof. If $a b=2$ (i.e. if $(a, b)=(1,2))$, then w is not composed. In the general case we use that the monodromy group of w is the full symmetric group (see [12, Proposition 2.1] for a characteristic free proof, but remember that the monodromy group is 1-transitive just because C is an integral curve).

3 Singular curves

We only look at integral curves T, which are contained in the smooth locus of \mathbb{P} and hence that are Cartier divisors of \mathbb{P}. Let T be any such curve. There are many different Brill-Noether theories for integral singular curves. If we only look at spanned line bundles, then the proofs of Theorems 1.1 and 1.2 only require minimal modifications.

Theorem 3.1. Let $C \in\left|\mathcal{O}_{\mathbb{P}}(d a b c)\right|$ be an integral curve. Assume dabc $-a-b-c>0$, i.e. assume that C has arithmetic genus ≥ 2, and $(a, b, d) \neq(1,2,1)$. Let $w: C \rightarrow \mathbb{P}^{1}$ be the morphism induced by $\left|\mathcal{O}_{C}(a b)\right|$. Fix a positive integer z such that $(z-2) a b \leq$ $d a b c-a-b-c$ and there is a degree z spanned line bundle R on C. Let $u: C \rightarrow \mathbb{P}^{y}$, $y:=h^{0}(R)-1$, be the morphism induced by $H^{0}(R)$. In positive characteristic assume that either u is separable or that the algebraic group Pic ${ }^{0}(C)$ has no unipotent part. Then the morphism $(w, u): C \rightarrow \mathbb{P}^{y} \times \mathbb{P}^{1}$ is not birational onto its image.

Theorem 3.2. Assume $a=1<b$. Let $C \in\left|\mathcal{O}_{\mathbb{P}}(d a c)\right|$ be a integral curve such that $C \cap \operatorname{Sing}(\mathbb{P})=\varnothing$. In positive characteristic assume that either u is separable or that the algebraic group $\operatorname{Pic}^{0}(C)$ has no unipotent part. Then $\mathcal{O}_{C}(b)$ is the unique line bundle R on C such that $h^{0}(R) \geq 2, R$ is spanned and $\operatorname{deg}(R) \leq d b$.

Proofs of Theorems 3.1 and 3.2: Take any spanned line bundle R on C with $h^{0}(R) \geq$ 2 and call Z the zero-locus of a general section of R. Set $z:=\operatorname{deg}(Z)$. Since R is spanned, we have $Z \cap \operatorname{Sing}(C)=\varnothing$. In characteristic zero Z is reduced and we may continue the proofs of Theorems 1.1 and 1.2. Now assume $p:=\operatorname{char}(K)>0$ and that Z is not reduced. Set $B:=Z_{\text {red }}$. Let $u: C \rightarrow \mathbb{P}^{y}, y:=h^{0}(R)-1$, be the morphism induced by $H^{0}(R)$. Since Z is general, it is not reduced if and only if u is not separable and, if $p^{e}, e>0$, is the inseparable degree of u, then each connected component of Z has degree p^{e} and $Z=p^{e} B$ (this equality is non-ambiguous, because $B \subset C_{\mathrm{reg}}$). Varying Z in $|L|$ we get infinitely many effective divisors B which, multiplied by p^{e}, are linearly equivalent. By assumption the p^{e}-torsion of $\operatorname{Pic}^{0}(C)$ is finite. Hence C has a line bundle A of degree z / p^{e} with $h^{0}(A) \geq 2$, a contradiction.

Let $Y \subset \mathbb{P}$ be an integral curve with $Y \cap \operatorname{Sing}(\mathbb{P})=\varnothing$ and only ordinary nodes and ordinary cusps as its singularities. Set $S:=\operatorname{Sing}(Y)$ and $s:=\sharp(S)$. Since $Y \cap \operatorname{Sing}(\mathbb{P})=\varnothing, Y$ is a Cartier divisor of \mathbb{P} and hence there is an integer $d>0$ such that $Y \in\left|\mathcal{O}_{\mathbb{P}}(d a b c)\right|$. The adjunction formula, gives $\omega_{Y} \cong \mathcal{O}_{Y}(d a b c-a-b-c)$. Since
$h^{1}\left(\mathcal{O}_{\mathbb{P}}(-a-b-c)\right)=0$, the restriction map $H^{0}\left(\mathcal{O}_{\mathbb{P}}(d a b c)\right) \rightarrow H^{0}\left(\omega_{Y}\right)$ is surjective. Let $f: C \rightarrow Y$ be the normalization map. Since $Y \cap \operatorname{Sing}(\mathbb{P})=\varnothing$, for each $x \in \mathbb{Z}$ the sheaf $\mathcal{O}_{C}(x):=f^{*}\left(\mathcal{O}_{Y}(x)\right)$ is a line bundle. Since Y have only nodes and ordinary cusps as its singularities, we have $p_{a}(C)=p_{a}(Y)-s$ and $H^{0}\left(\omega_{C}\right)$ is induced by the linear system $\left|\mathcal{I}_{S}(d a b c-a-b-c)\right|$ on \mathbb{P}. Since $\mathcal{O}_{Y}(a b)$ is a spanned line bundle, C has gonality at most $d a b$. Let $w: C \rightarrow \mathbb{P}^{1}$ denote the morphism induced by $f^{*}\left(\mathcal{O}_{Y}(a b)\right)$. We have $h^{0}\left(\mathcal{O}_{C}(a b)\right)=2$ if and only if $h^{1}\left(\mathcal{I}_{S}(d a b c-a-b-c-a b)\right)=0$.

Theorem 3.3. Assume $(z-2) a b \leq d a b c-a-b-c, s+z \leq 2+d(d a b c-a-b-c) / 2$ and that $S \subset \mathbb{P}$ is a general subset with cardinality s. Then there is no degree z morphism $u: C \rightarrow \mathbb{P}^{1}$ such that the morphism $(w, u): C \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ is birational onto its image.

Theorem 3.4. Assume $a=1<b, s+d b \leq 2+d(d a b c-a-b-c) / 2$ and that S is general in \mathbb{P}. Then $\mathcal{O}_{C}(b)$ is the only line bundle L on C with $\operatorname{deg}(L) \leq d b$ and $h^{0}(L) \geq 2$.

Proofs of Theorems 3.3 and 3.4: Fix a spanned line bundle L on C with $z:=\operatorname{deg}(L) \geq$ 2 and call $w: C \rightarrow \mathbb{P}^{1}$ the morphism induced by $f^{*}\left(H^{0}\left(\mathcal{O}_{Y}(a b)\right)\right.$. Take a general $Z \in|L|$. Since L is spanned, we have $Z \cap f^{-1}(\operatorname{Sing}(Y))=\varnothing$. Hence f induces an isomorphism between Z and $f(Z)$. We assume that Z is a reduced (see the last part of the proof of Theorem 1.1). We fix an ordering the points P_{1}, \ldots, P_{z} of $f(Z)$. Set $Z^{\prime}:=\left\{P_{1}, \ldots, P_{z-1}\right\}$. As in the proof of Theorem 1.1 to get a contradiction it is sufficient to prove that $h^{1}\left(\mathcal{I}_{S \cup Z^{\prime}}(d a b c-a-b-c)\right)>0$. Since S is general, it is sufficient to prove that $h^{1}\left(\mathcal{I}_{Z^{\prime}}(d a b c-a-b-c)\right)=0$ and that $h^{0}\left(\mathcal{I}_{Z^{\prime}}(d a b c-a-b-c)\right) \geq s$. The vanishing of $h^{1}\left(\mathcal{I}_{Z^{\prime}}(d a b c-a-b-c)\right)$ is done as in the proof of Theorem 3.1. Since $h^{1}\left(\mathcal{I}_{Z^{\prime}}(d a b c-a-b-c)\right)=0$, we have $h^{0}\left(\mathcal{I}_{Z^{\prime}}(d a b c-a-b-c)\right)=p_{a}(Y)-z+1$. Hence it is sufficient to assume $s \leq p_{a}(Y)-z+1$

Acknowledgements. The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

[1] M. Beltrametti, L. Robbiano, Introduction to the theory of weighted projective spaces, Exposition. Math. 4, 2 (1986), 111-162.
[2] M. Coppens, The gonality of general smooth curves with a prescribed plane nodal model, Math. Ann. 289, 1 (1991), 89-93.
[3] M. Coppens, Free linear systems on integral Gorenstein curves, J. Algebra 145 (1992), 209-218.
[4] M. Coppens, The existence of base point free linear systems on smooth plane curves, J. Algebraic Geom. 4, 1 (1995), 1-15.
[5] S. Greco, G. Raciti, The Lüroth semigroup of plane algebraic curves, Pacific J. Math. 151, 1 (1991), 43-56.
[6] S. Greco, G. Raciti, Gap orders of rational functions on plane curves with few singular points, Manuscripta Math. 70, 4 (1991), 441-447.
[7] C. Delorme, Espaces projectifs anisotropes, Bull. Soc. Math. France 103, 2 (1975), 203-223.
[8] I. Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981), 34-71, Lecture Notes in Math., 956, Springer, Berlin, 1982.
[9] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), 375-386.
[10] G. Martens, The gonality of curves on a Hirzebruch surface, Arch. Math. (Basel) 67, 4 (1996), 349-352.
[11] S. Mori, On a generalization of complete intersections, J. Math. Kyoto Univ. 15, 3 (1975), 619-646.
[12] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276, 4 (1987), 565-579.

Author's address:
Edoardo Ballico
Dept of Mathematics, University of Trento, via Sommarive 14, Trento (TN), 38123, Italy.
E-mail: ballico@science.unitn.it

[^0]: Balkan Journal of Geometry and Its Applications, Vol.21, No.2, 2016, pp. 21-26.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2016.

