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Abstract. We study the gonality and the existence of low degree pencils
on curves with a model on a weighted projective plane, when their singu-
larities are only ordinary nodes or ordinary cusps and they are general in
the weighted projective plane.
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1 Introduction

In this paper we consider the first steps of the Brill-Noether theory of curves on a
weighted projective plane ([7], [8], [1]) (a very classical topic, but as far as we know
the results of this note are new). See [2], [3], [4], [5], [6], [9] for smooth and singular
plane curves.

Fix positive integers a, b, c and let P := P(a, b, c) denote the weighted projective
space with weights a, b, c. Up to isomorphisms of the ambient weighted projective
plane we may assume that any 2 of the integer a, b, c are coprimes ([1, Proposition
3C.5], [7, Proposition 1.3]). We may assume a ≤ b ≤ c. Since (a, b) = (b, c) = (a, b) =
1, we are in one of the following cases:

1. a = b = c = 1;

2. a = b = 1, c > 1;

3. a < b < c, (a, b) = 1, (a, c) = 1, (b, c) = 1.

In the first case we have P ∼= P2. In the second case P is embedded as a cone over
a rational normal curve of Pc and the blowing up of the vertex of the cone gives the
Hirzebruch surface Fc ([1, page 124], [8, 1.2.3]). In this case it seems easier to work
directly on Fc (the case b = 1 of Theorem 1.2 is true by [10]). Hence from now on we
assume a < b < c and (a, b) = (a, c) = (b, c) = 1.

We fix variables x1, x2, x3 and give weight a to x1, b to x2 and c to x3. For all
integers t ≥ 0 let K[x1, x2, x3]a,b,c;t be the linear subspace of K[x1, x2, x3] generated
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by the monomials xa1
1 xa2

2 xa3
3 with ai ≥ 0 for all i and aa1 + ba2 + ca3 = t, i.e.

the monomials with weight t. We recall that P has only quotient singularities (if
a = 1 < b, Sing(P) = {(0 : 1 : 0), (0 : 0 : 1)}, if a > 1, then Sing(P) = {(1 : 0 : 0), (0 :
1 : 0), (0 : 0 : 1)}, that the set of all rational equivalence classes of Weil divisors is a free
abelian group of rank 1 ([1, Corollary 5.8]), that OP(t), t ∈ Z, is the set of all rank one
reflexive sheaves on P, that h1(OP(t)) = 0 for all t ∈ Z, h0(OP(t)) = K[x1, x2, x3]a,b,c;t
for all t ≥ 0, that OP(t) is locally free if and only if t ≡ 0 (mod abc). The line
bundle OP(abc) is very ample ([1, Remark 3]). Hence for all t > 0 a general element
of |OP(tabc)| is a smooth and connected curve. Fix a positive integer d and take
C ∈ |OP(dabc)| such that C is smooth. Since C is a Cartier divisor of P and C is

smooth, we have C ∩ Sing(P) = f� . Hence each OC(t), t ∈ Z, is a line bundle. We
have OP(1) · OP(1) =

1
abc in the rational Chow ring of P (use [11, Corollary A.2] or

that the covering map P2 → P is the quotient by the group µa ×µb ×µc and hence it
has degree abc). Since ωP ∼= OP(−a− b− c) ([1, Corollary 6B.8], [7, Theorem 5.2], [8,
3.3.4 and 3.5.2]), the adjunction formula gives ωC

∼= OC(dabc−a−b−c) ([1, Corollary
6.B9], [8, 3.5.2]) Hence C has genus 1 + d(dabc − a − b − c)/2. Since h1(OP(t)) = 0
for all t, for each integer w ≥ 0 the restriction map ρw : H0(OP(w)) → H0(OC(w)) is
surjective. Hence h0(OC(t)) = dim(K[x1, x2, x3]a,b,c;t) for all t < dabc. In particular
we have h0(OC(ab)) = 2. Hence C has gonality at most deg(OC(ab)) = dab (use again
that OP(1) · OP(1) =

1
abc ). The line bundle OC(ab) is spanned, because (0 : 0 : 1) is

the only base point of |OP(1)| and (0 : 0 : 1) /∈ C.
Our first result is non-trivial only if c ≫ ab.

Theorem 1.1. Let C ∈ |OP(dabc)| be a smooth curve. Assume dabc− a− b− c > 0
and (a, b, d) ̸= (1, 2, 1). Let w : C → P1 be the morphism induced by |OC(ab)|. Let z
be any positive integer such that (z− 2)ab ≤ dabc− a− b− c. Then there is no degree
z morphism u : C → P1 such that u is not partially composed with w, i.e. such that
the morphism (w, u) : C → P1 × P1 is birational onto its image.

The condition “ dabc−a− b− c > 0 ” is equivalent to assuming that C has genus
≥ 2. The result is sharp, in the sense that it fails (just by 1) in the omitted case
(a, b, d) = (1, 2, 1) (see Remark 2.1).

In the case a = 1, we prove the following result.

Theorem 1.2. Assume a = 1 < b. Let C ∈ |OP(dac)| be a smooth curve. Then C
has gonality db and OC(b) is the unique line bundle L on C such that h0(L) ≥ 2 and
deg(L) ≤ db.

In section 3 we consider the case of singular curves. We consider both the spanned
line bundles of minimal degree on the singular curve and the case of the normalization
of an integral curve.

2 Proof of Theorems 1.1 and 1.2

Remark 2.1. Let C ∈ |OP(dabc)| be a smooth curve of genus g ≥ 2. Assume
(a, b, c) = (1, 2, 1) (the case excluded in the statement of Theorem 1.1). Since b = 2
and (b, c) = 1, c is odd. We have g = 1 + (c− 3)/2. The spanned line bundle OC(2)
has degree 2 and hence C is hyperelliptic. There is a degree z spanned line bundle
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whose associated morphism is not composed with the hyperelliptic involution if and
only if z ≥ g + 1 = 2 + (c− 3)/2.

Proof of Theorem 1.1: Assume the existence of such a morphism and take z minimal
for which it exists. Set R := u∗(OP1(1)). R is a spanned line bundle of degree z and
in particular h0(R) ≥ 2. Let g = 1 + d(dabc− a− b− c)/2 be the genus of C.

First assume z > g, i.e. z−2 ≥ g−1. We get d(dabc−a−b−c)ab/2 ≤ dabc−a−b−c.
Since dabc − a − b − c > 0, we get d = 1 and ab = 2, i.e. d = 1, a = 1, b = 2. We
excluded this case in the statement of Theorem 1.1.

Now assume z ≤ g and hence h1(R) > 0. Fix a general fiber of u. Since h1(R) > 0
and ωC

∼= OC(dabc − a − b − c), we have h1(IZ(dabc − a − b − c)) > 0. Assume for
the moment that Z is reduced (this is always the case in characteristic zero). Fix
an ordering P1, . . . , Pz of the points of the support of Z. Since R is spanned and
h1(R) > 0, we have h1(OC(Z

′)) = h1(OC(Z)) for each Z ′ ⊂ Z with deg(Z ′) = z − 1.
Take Z ′ = {P1, . . . , Pz−1}. Since u is not composed with w and Z is general, for each
Pi there is Di ∈ |OP(ab)| such that Z ∩Di = {Pi}. Since |OP(ab)| is spanned outside
Sing(P), P1 imposes one condition to |OP(ab)|. D1 shows that the set {P1, P2} imposes
2 independent conditions to |OP(ab)|. D2 shows that the set {P1, P2, P3} imposes 3
independent conditions to |OP(2ab)|. And so on. We get that Z ′ imposes z − 1
independent conditions to |OP(z − 2)(ab)|. Since (z − 2)ab ≤ dabc− a− b− c, we get
h1(IZ′(dabc− a− b− c)) = 0, a contradiction.

Now assume that Z is not reduced, i.e. that u is not separable. We get that the
base field has characteristic p > 0. Since the base field is algebraically closed, we also
get that it is composed with a Frobenius of P1, contradicting the minimality of z. �

Proof of Theorem 1.2: We have Sing(P) = {(0 : 1 : 0), (0 : 0 : 1)}. Since C ∈
|OP(dbc)|, it is a Cartier divisor of P. Since C is smooth, then (0 : 0 : 1) /∈ C.
Hence OC(b) is a spanned line bundle of degree db. Since h1(OP(b − dbc)) = 0,
we have h0(OC(b)) = 2. Take a line bundle L with minimal degree z ≤ db with
h0(L) ≥ 2 and assume L ̸= OC(b). Fix a general Z ∈ |L|. As in last part of
the proof of Theorem 1.1 we reduce to the case in which Z is reduced. Since L
is spanned, we may assume Z ∩ {z0 = 0} = f� . We fix an ordering P1, . . . , Pz

of the points of Z and set Z ′ := {P1, . . . , Pz−1}. As in the proof of Theorem 1.1
to get a contradiction it is sufficient to prove that h1(IZ′(dbc − 1 − b − c)) = 0.
Since z ≤ db, we have (z − 2)c ≤ (db − 2)c ≤ dbc − 1 − b − c and so it is sufficient
to find Di ∈ |OP(c)|, 1 ≤ i ≤ z − 2, such that Pi ∈ Di and Pi+1 /∈ Di. Fix
i ∈ {1, . . . , z − 2}. If there is T ∈ |OP(b)| with Pi ∈ T and Pi+1 /∈ T , say T with
equation u(z0, z1) ∈ K[z0, z1, z2], then we take as Di the divisor with zc−b

0 u(z0, z1)
as its equations. Now assume that Di+1 is contained in every element of |IPi(b)|
and fix T ∈ |IPi(b)|. Since Pi /∈ {(0 : 1 : 0), (0 : 0 : 1)}, T is the only element
of |OP(b)| containing Pi. Let M be a general element of |IPi(c)|. Set e := ⌊c/b⌋.
We have dim(K[x0, x1, x2]1,b,c;c−b) = e and dim(K[x0, x1, x2]1,b,c;c) = e + 2 and so
h0(OP(c−b)) ≤ h0(OP(c)−2. Hence T is not a component of M . We have Pi ∈ T ∩M .
Since OP(b) · OP(c) = 1, Pi is a smooth point of P and Pi ∈ T ∩ M , Pi is the only
element of P \ Sing(P) contained in M ∩ T . Hence Pi+1 /∈ M . Take Di := M . �

To check the key assumption of Theorem 1.1 the following well-known result may
be useful.
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Lemma 2.1. Take a smooth and connected curve C ⊂ P such that (0 : 0 : 1) /∈ C
and assume the existence of D ∈ |OP(ab)|, D ̸= C, such that the scheme C ∩D has 1
connected component with multiplicity 2 and deg(w) − 2 connected components with
multiplicity 1. Let w : C → P1 be the morphism induced by |OP(ab)|. Then w is not
composed with an involution, i.e. there are no triple (X,w1, w2) with X a connected
smooth curve, w1 : C → X, w2 : X → P1, w = w2 ◦w1, deg(w1) ≥ 2 and deg(w2) ≥ 2.

Proof. If ab = 2 (i.e. if (a, b) = (1, 2)), then w is not composed. In the general
case we use that the monodromy group of w is the full symmetric group (see [12,
Proposition 2.1] for a characteristic free proof, but remember that the monodromy
group is 1-transitive just because C is an integral curve). �

3 Singular curves

We only look at integral curves T , which are contained in the smooth locus of P and
hence that are Cartier divisors of P. Let T be any such curve. There are many different
Brill-Noether theories for integral singular curves. If we only look at spanned line
bundles, then the proofs of Theorems 1.1 and 1.2 only require minimal modifications.

Theorem 3.1. Let C ∈ |OP(dabc)| be an integral curve. Assume dabc−a−b−c > 0,
i.e. assume that C has arithmetic genus ≥ 2, and (a, b, d) ̸= (1, 2, 1). Let w : C → P1

be the morphism induced by |OC(ab)|. Fix a positive integer z such that (z − 2)ab ≤
dabc− a− b− c and there is a degree z spanned line bundle R on C. Let u : C → Py,
y := h0(R)−1, be the morphism induced by H0(R). In positive characteristic assume
that either u is separable or that the algebraic group Pic0(C) has no unipotent part.
Then the morphism (w, u) : C → Py × P1 is not birational onto its image.

Theorem 3.2. Assume a = 1 < b. Let C ∈ |OP(dac)| be a integral curve such that

C ∩ Sing(P) = f� . In positive characteristic assume that either u is separable or that
the algebraic group Pic0(C) has no unipotent part. Then OC(b) is the unique line
bundle R on C such that h0(R) ≥ 2, R is spanned and deg(R) ≤ db.

Proofs of Theorems 3.1 and 3.2: Take any spanned line bundle R on C with h0(R) ≥
2 and call Z the zero-locus of a general section of R. Set z := deg(Z). Since R is

spanned, we have Z ∩ Sing(C) = f� . In characteristic zero Z is reduced and we may
continue the proofs of Theorems 1.1 and 1.2. Now assume p := char(K) > 0 and that
Z is not reduced. Set B := Zred. Let u : C → Py, y := h0(R) − 1, be the morphism
induced by H0(R). Since Z is general, it is not reduced if and only if u is not separable
and, if pe, e > 0, is the inseparable degree of u, then each connected component of
Z has degree pe and Z = peB (this equality is non-ambiguous, because B ⊂ Creg).
Varying Z in |L| we get infinitely many effective divisors B which, multiplied by pe,
are linearly equivalent. By assumption the pe-torsion of Pic0(C) is finite. Hence C
has a line bundle A of degree z/pe with h0(A) ≥ 2, a contradiction. �

Let Y ⊂ P be an integral curve with Y ∩ Sing(P) = f� and only ordinary nodes
and ordinary cusps as its singularities. Set S := Sing(Y ) and s := ♯(S). Since

Y ∩Sing(P) = f� , Y is a Cartier divisor of P and hence there is an integer d > 0 such
that Y ∈ |OP(dabc)|. The adjunction formula, gives ωY

∼= OY (dabc−a− b− c). Since
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h1(OP(−a − b − c)) = 0, the restriction map H0(OP(dabc)) → H0(ωY ) is surjective.

Let f : C → Y be the normalization map. Since Y ∩Sing(P) = f� , for each x ∈ Z the
sheaf OC(x) := f∗(OY (x)) is a line bundle. Since Y have only nodes and ordinary
cusps as its singularities, we have pa(C) = pa(Y ) − s and H0(ωC) is induced by the
linear system |IS(dabc−a−b−c)| on P. Since OY (ab) is a spanned line bundle, C has
gonality at most dab. Let w : C → P1 denote the morphism induced by f∗(OY (ab)).
We have h0(OC(ab)) = 2 if and only if h1(IS(dabc− a− b− c− ab)) = 0.

Theorem 3.3. Assume (z− 2)ab ≤ dabc−a− b− c, s+ z ≤ 2+d(dabc−a− b− c)/2
and that S ⊂ P is a general subset with cardinality s. Then there is no degree z
morphism u : C → P1 such that the morphism (w, u) : C → P1 × P1 is birational onto
its image.

Theorem 3.4. Assume a = 1 < b, s + db ≤ 2 + d(dabc − a − b − c)/2 and that S
is general in P. Then OC(b) is the only line bundle L on C with deg(L) ≤ db and
h0(L) ≥ 2.

Proofs of Theorems 3.3 and 3.4: Fix a spanned line bundle L on C with z := deg(L) ≥
2 and call w : C → P1 the morphism induced by f∗(H0(OY (ab)). Take a general

Z ∈ |L|. Since L is spanned, we have Z ∩ f−1(Sing(Y )) = f� . Hence f induces an
isomorphism between Z and f(Z). We assume that Z is a reduced (see the last part
of the proof of Theorem 1.1). We fix an ordering the points P1, . . . , Pz of f(Z). Set
Z ′ := {P1, . . . , Pz−1}. As in the proof of Theorem 1.1 to get a contradiction it is suf-
ficient to prove that h1(IS∪Z′(dabc−a− b− c)) > 0. Since S is general, it is sufficient
to prove that h1(IZ′(dabc − a − b − c)) = 0 and that h0(IZ′(dabc − a − b − c)) ≥ s.
The vanishing of h1(IZ′(dabc − a − b − c)) is done as in the proof of Theorem 3.1.
Since h1(IZ′(dabc−a− b− c)) = 0, we have h0(IZ′(dabc−a− b− c)) = pa(Y )−z+1.
Hence it is sufficient to assume s ≤ pa(Y )− z + 1 �
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