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plane cubic curves with singularities. II
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Abstract. The singular points of an irreducible plane cubic curve are
quite limited: one knot/node, or one cusp. Our research starts originally
with the Descartes Folium, which has a knot/node, and is able to have
many group structures. The original results are concentrated in six di-
rections: (i) special structures on affine algebraic varieties, (ii) theory of
K-groups, (iii) isomorphisms of K-groups, (iv) canonic K-groups struc-
tures on subsets U ⊂ P1

K, (v) canonic K-groups structures on the subset
DFK \ {O} of the projective Descartes Folium DFK, (vi) geometric inter-
pretations.
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1 Motivation of problem

As in [2], we consider a field K with char. K ̸= 3 and the projective Descartes Folium
DF = DFK ⊂ P2

K over K, given by the homogeneous algebraic equation

DF = DFK : x3 + y3 − 3axyz = 0, a ∈ K \ {0},

where (x, y, z) are the natural homogeneous coordinates on P2
K. This curve having a

non-smooth point, namely O = (0, 0, 1) (see [2], Section 1, Comments 2), iii)), is of
interest in applied mathematics (code theory/cryptography).

We will address the following

Question. Are there ”good” group composition laws on ”nice” subsets U ⊆ DF
(as U = DF \ {0}, U = DF and other ones)?

In [2] we treated this Question in the case when K is algebraically closed with
char. K ̸= 3 and U = DF \ {0}.

In the following we will present some extensions of these results when K is an
arbitrary field (not necessarily algebraically closed) (see Sections 4 and 5).
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The main part of this exposition is the presentation of the notion of K − group
and some of its properties (Sections 2 and 3). The results from Sections 4 and 5
concerning some ”good” group composition laws on DF \ {0} over an arbitrary base
field K with char. K ̸= 3, represent mainly applications of the given properties of
K-groups. In a further paper ([2], III), we intend to present other such applications
of K-groups to ”good” group composition laws on other subsets U ⊆ DF .

2 K-structures on affine algebraic K-varieties

Let K be a field, K ⊇ K an algebraic closure of K and C an (irreducible) affine
algebraic K-variety.

We will use throughout this paper the notions of K-structure on C, K-rational
points of C and morphism of affine algebraic K-varieties with K-structure. The defi-
nitions of all these notions can be found in [1], §11 and §12.

Recall only the first from these definitions: a K-structure on the affine (irreducible)
algebraic K-variety is a finitely generated K-subalgebra A of the affine K-algebra K
[C] of C such that K[C] = K⊗KA; in this situation we say that the algebraic K-variety
C is defined over K (see [1], 12.1).

We can adopt an equivalent point of view for the definitions of the notions above
of K-structure, rational K-points and morphism of affine algebraic K-varieties with
K-structures, as follows.

a) The (irreducible) affine algebraic K-variety C is defined over K if there exists
a closed immersion C ⊆ An

K of algebraic K-varieties such that the ideal of definition

I(C) of C in An
K is generated by K-polynomials.

Then for the affine K-algebra K[C] of C we have K[C] = K[X1, . . . , Xn]/I(C)
= {f : V → K|f defined by a K-polynomial }. Let IK(C) = K[X1, . . . , Xn] ∩ I(C)
and A = K[X1, . . . , Xn]/IK(C). Then A = {f : V → K|f defined by a K-polynomial}
and A is the canonic K-structure of the algebraic K-variety C defined over K; it is a
K-structure on C in the meaning of [1].

If C,C ′ are algebraicK-varieties defined overK having A, resp. A′, asK-structures
then C × C ′ is also defined over K with A⊗K A′ as K-structure.

b) If C is an (irreducible) affine algebraic K-variety defined over K and C ⊆ An
K

is a closed immersion as in a), we can define the subset C(K) ⊆ C of all K-rational
points of C by

C(K) = An
K ∩ C ⊆ An

K

Then C(K) = {x = (x1, . . . , xn) ∈ C |x1, . . . , xn ∈ K}. We have a canonic bijection

C(K)
∼−→ HomK−alg(A,K)

x −→ [f −→ f(x)].

If K = K, then C(K) = C.
c) Suppose C ⊆ An

K = K n
, C ′ ⊆ Am

K = Km
two (irreducible) affine algebraic K-

varieties over K such that the ideals I(C), I(C ′) defining C, resp. C ′, are generated
by K-polynomials and let f = (f1, . . . , fm) : C → C ′ be a morphism of algebraic K-
varieties. We say that f is defined over K if its scalar components f1, . . . , fm : C → K
are all defined by K-polynomials.
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In this situation, f(C(K)) ⊆ C ′(K). Moreover, if f∗ : K[C ′] → K[C] is the dual

K-algebras morphism and A ⊆ K[C], A′ ⊆ K[C ′] are the K-structures on C, resp. C ′′,
then f∗(A′) ⊆ A. Now we will recall the notion of algebraic (Lie) K-group defined

over K, used throughout this exposition.

According to [1], Ch. I, 1.1, an algebraic (Lie) K-group is a pair (G, ·) such that

i) G is an algebraic K-variety,

ii) (G, ·) is a group,

iii) the maps m : G × G → G, where m(x, y) = x · y, and inv : G → G, where
inv(x) = x−1, are morphisms of algebraic K-varieties.

Moreover, if G, m and inv are all defined over K, then (G, ·) is called an algebraic
(Lie) K-group defined over K (or an algebraic K-group).

In this last situation, m induces a group structure (G(K), ·) on the subset of all
K-rational points G(K) ⊆ G.

If (G, ·), (G′, ·) are algebraic K-groups, resp. defined over K, a map f : G→ G′ is
called a morphism of algebraic K-groups, resp. defined over K, if

i) f : G→ G′ is a morphism of algebraic K-varieties, resp. defined over K,

ii) f : (G, ·)→ (G′, ·) is a group morphism.

(see [1], Ch.I, 1.1)

3 K-groups

Let K be a field and K ⊇ K an algebraic closure of K.

We will introduce a notion, useful throughout this paper:

Definition 2.1 Let C be an (irreducible) affine smooth algebraic K-curve defined

over K. Suppose that the subset of all its K-rational points C(K) ̸= f� and it is
endowed with a group structure (C(K), ·).

We say that (C(K), ·) is a K-group (w.r.t. C) if one of the following equivalent
conditions is fulfilled:

i) the group composition law · on C(K) can be extended to a group composition
law · on C such that (C, ·) is an algebraic K-group defined over K,

ii) (C(K), ·) is a subgroup of an algebraic K-group (C, ·) defined over K.

Remarks 1) In Definition 2.1, if K = K is algebraically closed then C(K) = C
and (C(K), ·) is a K-group iff (C(K), · = (C, ·) is an algebraic K-group.

2) The above notion of K-group can be formulated in more general conditions, for
an (irreducible) smooth algebraic K-variety C defined over K, of arbitrary dimension.
A near idea of K-group is evoked in [7, 9.4].

We have the following

Examples.

1) Gm,K = (K \ {0}, ·) is a K-group (w.r.t. A1
K \ {0})

2) Ga,K = (K,+) is a K-group (w.r.t. A1
K).

In fact, for C = A1
K\{0}, resp. C = A1

K, we have C(K) = K\{0}, resp. C(K) = K,

and Gm,K, Ga,K are subgroups of (C, ·) = Gm,K, resp. (C,+) = Ga,K, with Gm,K,Ga,K
algebraic K-groups defined over K.
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We will call such a K-group structure on K \ {0}, resp. K, the canonic K-group
structure on K \ {0}, resp. K.

The following fact is a direct consequence of the Structure Theorem for 1-dimensional
connected affine algebraic K-groups ([1, Ch. II, Th. 10.9]).

Lemma 2.1 a) In the previous Definition 2.1, if (C(K), ·) is a K-group (w.r.t. C),
then (C, ·) w Gm,K or (C, ·) w Ga,K, as algebraic K-groups.

b) Each K-group is commutative.

In particular, from a) of the Lemma 2.1 it follows that C w A1
K \ {0} or C w A1

K
as algebraic K-varieties if (C(K), ·) is a K-group (w.r.t. C).

Definition 2.2 In the previous Definition 2.1, let us assume that (C(K), ·) is a K-
group (w.r.t. C). Then (C(K), ·) is called of type Gm,K, resp. Ga,K, if C is isomorphic

with A1
K \ {0}, resp. A

1
K, as algebraic K-variety.

We will give more

Examples. 3) Denote U = P1
K \ {P1, . . . , Pn} ̸= f� and C = P1

K \ {P1, . . . , Pn}.
C is an (irreducible) affine smooth algebraic K-curve with C(K) = U . According to
the definition, (U, ·) is a K-group (w.r.t. C) if the composition law · on U can be
extended to a group composition law · on C such that (C, ·) is an algebraic K-group
defined over K.

We will call such a K-group structure on U = P1
K\{P1, . . . , Pn}, a canonic K-group

structure on U .

Particular cases.

a) n = 2, P1 =∞, P2 = 0.

Then U = A1
K \ {0} = K \ {0} and we have the canonic K-group (U, ·) = Gm,K,

with · the underlying multiplication of the field K.

b) n = 1, P1 =∞.

Then U = A1
K = K and we have the canonic K-group (U,+) = Ga,K, with + the

underlying addition of the field K.

4) Suppose char. K ̸= 3 and F (X,Y, Z) = X3 + Y 3 − 3aXY Z ∈ K[X,Y, Z].
Consider the projective Descartes Folium DF = DFK ⊂ P2

K defined by the equation
F (x, y, z) = 0. Recall that the polynomial F (X,Y, Z)is irreducible (see, [2], Section
1, Prop. 1); then DFK ⊂ P2

K is an (irreducible) algebraic K-curve defined on K.

Let C = DFK \ {P1 = O,P2, ..., Pn} with O = (0, 0, 1) the unique non-singular
point of C and P2, ..., Pn ∈ DFK. Then C is an (irreducible) affine smooth algebraic
K-curve defined on K and C(K) = DFK \ {P1 = O,P2, ..., Pn}. Then the group
(C(K), ·) is a K-group (w.r.t. C) if the composition law · on C(K) can be extended
to a group composition law · on C such that (C, ·) is an algebraic K-group defined
over K.

We call such a K-group structure a canonic K-group structure on C(K) = DFK \
{P1 = O,P2, ..., Pn}. We will see that only for n = 1, the set C(K) admits a canonic
K-structure (see the following Proposition 5.1)

Comment. The previous Definition 2.1 of K-groups uses the notion of algebraic
K-group. Now we will give a characterization of K-groups in terms of group K-scheme
(see [5]) as follows.
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Firstly we will make a short remark. Let C be an (irreducible) affine smooth
algebraic K-curve defined over K and A ⊆ K[C] the K-subalgebra defining its K-
structure. Denote by G = SpecA the algebraic K-scheme associated to A and by
G(K) = {m ⊂ A |m maximal ideal with A/m = K} ⊂ G the subset of all K-points of
G. Then we have the following canonical bijection

C(K)
∼−→ G(K)

defined as follows:
a) if we consider C ⊆ An

K as a closed algebraic K-subvariety such that the defining

ideal I ⊂ K[x1, ..., xn] is generated by K-polynomials, according to Section 1 we have
then

C(K) = An
K ∩ C = Kn ∩ C = {x = (x1, ..., xn) ∈ C |x1, ..., xn ∈ K}

and A = {f : C → K | f defined by a K− polynomial}; then the bijection is

C(K)
∼−→ G(K)

x −→ {f ∈ A | f(x) = 0} = ker[A→ K, defined by f → f(x)]

(see also the canonic bijection from b) of Section 2).
b) For an alternative definition, we consider C(K) ⊆ C = Spec.max.K[C] and the

integral faithful flat ring extension A ⊆ K[C]. Then the bijection is defined by

C(K)
∼−→ G(K) ⊂ G

n −→ n ∩A

nK[C] ←− n

Therefore, we can identify C(K) = G(K) via this canonical bijective correspon-
dence.

We have the following restatement of Definition 2.1:

Theorem 2.1′ Under the conditions and notations of Definition 2.1, let (C(K), ·) =
(G(K), ·) be a group. Then the following assertions are equivalent: (i) the pair
(C(K), ·) is a K-group (w.r.t. C); (ii) there exists a group K-scheme structure (G,m)
on G inducing the group composition law · on the subset G(K) ⊂ G.

Remark Theorem 2.1′ and the preparatory remark are also valid if we work with
the more general definition of K-group (according to the previous Remark 2), i.e.,
with C an (irreducible)affine smooth algebraic K-variety defined over K, of arbitrary
dimension.

In the following we will state two basic properties for K-groups.

Theorem 2.1 Let C be an (irreducible) smooth affine algebraic K-curve defined
over K. Then the canonic map

{algebraicK− group (C, ·) overK} ∼−→ {K− group (C(K), ·) (w.r.t. C)}

(C, ·) −→ (C(K), ·)
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is bijective.

Definition 2.3 In the bijective correspondence from Theorem 2.1, we say that
the algebraic K-group (C, ·) defined over K is induced by the K-group (C(K), ·) and
conversely.

Comment. Using the groups K-schemes frame for the characterization of K-
groups (Theorem 2.1′), then Theorem 2.1 above can be easily restated in terms of
group K-scheme ([5]) as follows:

Corollary 2.1′ Let C be an (irreducible) affine smooth algebraic K-curve defined
over K and G = Spec A, with A ⊂ K[C] its structural K-subalgebra. Then the
canonic map

{groupK− scheme (G,m)} ∼−→ {K− group (C(K), ·) = (G(K), ·)w.r.t. C}

(G,m) −→ induced group (G(K),m)

is bijective.

Theorem 2.2 Let C be an (irreducible) affine smooth algebraic K-curve defined
over K, let (C(K), ·) be a K-group (w.r.t C) and E ∈ C(K). Then: (i) there exists
a unique K-group (C(K), ·E) (w.r.t. C) having the neutral element E; (ii) for each
P,Q ∈ C(K), we have P · Q = P · Q · E−1, with E−1 the inverse of E in the group
(C(K), ·).

Remark If K = K is algebraically closed, then C(K) = C and in Theorem 2.2
above we can replace the condition ”K-group” with ”algebraic K-group”.

There exists a similarity of Theorem 2.2 above with the following one. For this,
let us firstly recall that for any smooth algebraic C-variety C one associates a natural
analytic C-manifold C an on the set C; if (C, ·) is an algebraic C-group then (C an, ·)
is a Lie C-group, denoted also by (C, ·)an and called the associated C-group.

Theorem 2.3 LetK = C, let C be an (irreducible) affine smooth C-curve, let (C, ·)
be an algebraic C-group and E ∈ C. Denote by (C, ·E) the unique algebraic C-group
having the neutral element E. Then: (i) there exists a unique Lie C-group on C having
the neutral element E; it is the associated Lie C-group (C, ·E) an = (C an, ·E); (ii) for
each P,Q ∈ C an = C, we have P ·E Q = P ·Q · E−1, with E−1 the inverse/opposite
of E in the group (C an, ·E) = (C, ·E).

It follows

Corollary 2.2 Let K = C, let C be an (irreducible) affine algebraic C-curve, let
(C, ·) be an algebraic C-group. Then for each Lie C-group (C an,⊙), the group (C,⊙)
is an algebraic C-group.

Indeed, we apply Theorem 2.3 for E ∈ C the neutral element of the group
(C an,⊙); then (C an,⊙) = (C, ·E) an, i.e., (C an,⊙) is the associated Lie C-group
with the algebraic C-group (C, ·E). It follows (C,⊙) = (C, ·E).

Corollary 2.2 above extends Corollary 4.1 from the paper [2].
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4 Isomorphisms of K-groups

Let K be a field and K ⊇ K an algebraic closure of K.

Definition 3.1 Let C,C ′ be two (irreducible) affine smooth algebraic K-curves
defined over K and (C(K), ·), (C ′(K), ·) two K-groups (w.r.t. C, resp. C ′).

A map f : C(K) → C ′(K) is called isomorphism of K-groups if (i) the function
f : (C(K), ·) → (C ′(K, ·) is a group isomorphism and (ii) the function f can be
extended to an isomorphism f : C

∼−→ C ′ of algebraic K-curves defined over K.
Then the extended f : (C, ·) ∼−→ (C ′, ·) is even an isomorphism of algebraic K-

groups defined over K, according to the following

Proposition 3.1 Let f : C
∼−→ C ′ be an isomorphism of (irreducible) affine

smooth algebraic K-curves defined over K, let (C, ·) and (C ′, ·) two algebraic K-
groups defined over K and (C(K), ·), (C ′(K, ·) the induced K-groups. Denote by
E ∈ C(K), E′ ∈ C ′(K) the neutral elements of the groups above. Then the following
assertions are equivalent: (i) the induced map f : (C(K), ·) ∼−→ (C ′(K), ·) is a group
isomorphism; (i′) the function f : (C, ·) ∼−→ (C ′, ·) is a group isomorphism; (i′′)
f(E) = E′.

Remarks. 1) IfK = K is algebraically closed, then (C(K), ·) = (C, ·), (C ′(K), ·) =
(C ′, ·) and f : (C(K), ·) ∼−→ (C ′(K), ·) is a K-group isomorphism iff f : (C, ·) ∼−→
(C ′, ·) is an isomorphism of algebraic K-groups (see also Section 2, Remarks, 1)).

2) If f : (C(K), ·) ∼−→ (C ′(K), ·) and g : (C ′(K), ·) → (C ′′(K), ·) are K-groups
isomorphisms, then g ◦ f and f−1, as 1C(K), are also K-groups isomorphisms.

3) Using the group K-schemes frame for characterization of K-groups (Theorem
2.1′), we can state easily the following equivalence:

Theorem 3.1′ Let C and C ′ be two (irreducible) affine smooth algebraic K-
curves defined over K, let (C(K), ·) and (C ′(K), ·) be two K-groups (w.r.t. C, resp.
C ′). Let A ⊆ K[C] and A′ ⊆ K[C ′] be the K-structures on C and C ′, and let
G = SpecA, G′ = SpecA′. Then the following assertions are equivalent: (a) the
map f : (C(K), ·) ∼−→ (C ′(K), ·) is an isomorphism of K-groups; (b) the map f :
(C(K), ·) = (G(K), ·) ∼−→ (C ′(K), ·) = (G′(K), ·) is a group isomorphism and it can
be extended to an isomorphism f : G

∼−→ G′ of K-schemes.
The Definition 3.1 of the isomorphism between K-groups is based on extensions

to isomorphisms between their induced algebraic K-groups (see Proposition 3.1).
To formulate the next Theorem we recall that the cardinal of the set C(K) is

usually denoted by |C(K)|.

Theorem 3.1 Let C, C ′ be two (irreducible) affine smooth algebraic K-curves
defined over K. Let f : (C, ·) ∼−→ (C ′, ·) be an isomorphism of algebraic K-groups
defined over K and f : (C(K), ·) ∼−→ (C ′(K), ·) be an isomorphism of K-groups. Then
the (surjective) canonic map {f}−→{f} is bijective if (a) the group (C(K), ·) is of
type Gm,K and |C(K| ≥ 3 or (b) the group (C(K), ·) is of type Ga,K and |C(K| ≥ 2.

Remark. The condition |C(K| ≥ 3 in the case (a) of the previous Theorem 3.1
is necessary, according to the following

Example. Let K = Z2 or Z3 and C = A1
K \ {O} = K \ {0}. Then C(K) =

K \ {0}. Now, we consider the K-group (C(K), ·) = (K \ {0}, ·) = Gm,K and the map
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f = 1C(K) : (C(K), ·) ∼−→ (C(K), ·). The induced algebraic K-group of the group

(C(K), ·) is (C, ·) = (K\{0}, ·) = Gm,K. Then there exists two different isomorphisms

(C, ·) ⇒ (C, ·) of algebraic K-groups defined over K inducing the previous map f ,
namely t→ t and t→ t−1.

Corollary 3.1 In the previous Theorem 3.1 assume that (a) K is separably closed
field and (C(K), ·) is of type Gm,K or (b) K is a perfect field and (C(K), ·) is of type
Ga,K. Then the canonic map of Theorem 3.1 is bijective.

For the proof of Corollary 3.1 we can use the Structure Theorem of connected 1-
dimensional affine algebraic K-groups from [1] (Ch. III, Th. 10.9) and its subsequent
Remark: there exists an isomorphism C

∼−→ Gm,K = (K \ {0}, ·) resp. C ∼−→ Ga,K =

(K,+) of algebraic K-groups defined over K and then |C(K)| = |K \ {0}| ≥ 3, resp.
|C(K)| = |K| ≥ 2.

Definition 3.2 In Theorem 3.1 above, if the canonic map is bijective, we say that
the map f : (C, ·) ∼−→ (C ′, ·) is induced by f : (C(K), ·) ∼−→ (C(K), ·) and conversely.

Comment. In terms of group K-schemes, according Theorem 2.1′, it is easy to
establish the following equivalent form of the previous Theorem 3.1

Corollary 3.1′ Let C, C ′ be two (irreducible) affine smooth algebraic K-curves
defined over K, let A ⊆ K[C] and A′ ⊆ K[C ′] be their K-structures and G = SpecA,
G′ = SpecA′. Let f : (G,m)

∼−→ (G′,m) be an isomorphism of group K-schemes and
let the map f : (C(K)·) ∼−→ (C ′(K), ·) be an isomorphism of K-groups. Then the
(surjective) canonic map

{f}−→{f}, f −→ [f : (G(K),m)
∼−→ (G′(K),m)]

is bijective if (a) G⊗K K ≃ K \ {0} as K-schemes and |G(K)| ≥ 3, or
(b) G⊗K K ≃ K as K-schemes and |G(K)| ≥ 2.

In fact C(K) = G(K), C ′(K) = G′(K) and G⊗K K is the K-scheme associated to
the algebraic K-variety C, because K⊗K A = K[C].

Examples. 1) The group isomorphisms

(K \ {0}, ·) ∼−→ (K \ {0}, ·)

t −→ tϵ

with ϵ ∈ {−1, 1} are automorphisms of the K-group Gm,K = (K \ {0}, ·) (w.r.t.
A1

K \ {0} = K \ {0}).
These represent all automorphisms of the K-group Gm,K.
2) The group isomorphisms

(K,+)
∼−→ (K,+)

t −→ at,

with a ∈ K \ {0}, are automorphisms of the K-group Ga,K = (K,+) (w.r.t. A1
K).

These represent all automorphisms of the K-group Ga,K.



26 A. Constantinescu , C. Udrişte, S. Pricopie

3) Let (C(K, ·) be a K-group, (w.r.t. C). Let E ∈ C(K) and (C(K, ·E) the
unique K-group (w.r.t. C), with neutral element E (Theorem 2.2). Then the group
isomorphism

tE : (C(K), ·) ∼−→ (C(K), ·E), A −→ E ·A

is an isomorphism of K-groups (w.r.t. C).

4) Let K be a separably closed field and (C(K), ·) a K-group (w.r.t C) of type Gm,K.

Then there exists an isomorphism of K-groups (C(K), ·) ∼−→ Gm,K = (K \ {0}, ·).
5) Let K be a perfect field and (C(K), ·) a K-group (w.r.t. C) of type Ga,K. Then

there exists an isomorphism of K-groups (C(K, ·) ∼−→ Ga,K = (K,+).

In Examples 4) and 5) above, we can use the Structure Theorem of connected
affine 1-dimensional algebraic K-groups from [1, Ch. III, Th. 10.9] and its subsequent
Remark.

Now we can state some properties of isomorphisms of K-groups.

Theorem 3.2 Let C, C ′ be two (irreducible) affine smooth K-curves defined
over K and (C(K), ·), (C ′(K), ·) two K-groups (w.r.t. C, resp. C ′). Then: (i) if
(C(K), ·), (C ′(K, ·) are isomorphic K-groups of type Gm,K, there exist at most two

such isomorphisms of K-groups, f, g : (C(K), ·) ⇒ (C ′(K), ·); if |C(K| = |C ′(K)| ≥ 3,
then there exist exactly two such isomorphisms f ̸= g; we have g(P ) = [g(P )]−1,
for each P ∈ C(K); (ii) if (C(K), ·), (C ′(K), ·) are isomorphic K-groups of type Ga,K
and A ∈ C(K), A′ ∈ C ′(K) are non-neutral elements, then there exists at most one
isomorphism of K-groups, f : (C(K), ·) ∼−→ (C ′(K), ·) such that f(A) = A′; if K is a
perfect field, there exists a unique such an isomorphism.

5 Application I: canonic K-groups structures on
subsets U ⊂ P1

K

The following statements are extensions of Theorem 3.1 from [2] for arbitrary (not
necessarily algebraically closed) base fields.

Theorem 4.1 Let K be an arbitrary field and U = P1
K \ {P1, ..., Pn} ̸= ∅ a K-

open subset of P1
K. Then U admits a canonic K-group structure (i.e., as in Section 2,

Example 3)) if and only if n = 1 or n = 2.

In particular, if K = K is algebraically closed, the set U admits an algebraic
K-group structure iff n = 1 or n = 2 (cf. Section 3, Remark 1).

In Theorem 4.1 above, if n = 1 or n = 2, then the set U admits in general
many canonic K-structures, namely, for each E ∈ U there exists a unique K-group
structure on U having the neutral element E (cf. Theorem 2.2). But all these K-group
structures are always related by automorphisms of the projective line P1

K, as follows:

Proposition 4.1 LetK be a field and U,U ′ ⊂ P1
K some non-emptyK-open subsets.

Suppose that (i) U = P1
K \ {P1, P2}, U ′ = P1

K \ {P ′
1, P

′
2} and (U, ·), (U ′, ·) are canonic

K-groups, or (ii) U = P1
K \ {P1}, U ′ = P1

K \ {P ′
1} and (U, ·), (U ′, ·) are canonic K-

groups. Then there exists an automorphism α : P1
K

∼−→ P1
K such that α(U) = U ′ and

α : (U, ·) ∼−→ (U ′, ·) is an isomorphism of K-groups.
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In fact, let E ∈ U , E′ ∈ U ′ be the neutral elements of the corresponding K-groups.
In situation (i), there exists only two required automorphisms α of P1

K, completely
determined by the conditions

α(P1) = P ′
1, α(P2) = P ′

2, α(E) = E′

or
α(P1) = P ′

2, α(P2) = P ′
1, α(E) = E′.

In the situation (ii), for P ∈ U , P ̸= E and P ′ ∈ U ′, P ′ ̸= E′, the map α is uniquely
determined by the conditions

α(P1) = P ′
1, α(E) = E′, α(P ) = P ′.

By Definition 3.1 and Proposition 3.1,all these automorphisms α of P1
K induces

maps α|U : (U, ·) ∼−→ (U ′, ·) which are isomorphisms of K-groups.

6 Application II: canonic K-groups structures on the subset
DFK \ {O} of the projective Descartes Folium DFK

Let K be a field with char.K ̸= 3 and K ⊇ K an algebraic closure of K.
Recall some facts concerning the Descartes Folium ([2], Sections 1 and 2).
Let F (X,Y, Z) = X3 +Y 3− 3aXY Z ∈ K[X,Y, Z], with a ∈ K \ {0}; according to

the paper [2], Prop. 1.1, F is irreducible.
The projective Descartes Folium (over K) is the algebraic subset of P2

K, denoted by
DF or by DFK, defined by the homogeneous equation F (x, y, z) = 0, where (x, y, z)
are the canonic homogeneous coordinates on P2

K.
If we consider the subset DFK ⊂ P2

K defined by the same equation F (x, y, z) = 0,

then DF = DFK ⊂ DFK and DFK is an (irreducible) algebraic K-subvariety of P2
K

defined over K, having a unique non-smooth (non-regular) point, namely O = (0, 0, 1).
Concerning the subset of all K-rational points DFK(K) of DFK, we have DFK(K) =
DFK = DF ([2], Comments 2), ii)).

There exists a natural map (parametrization of DF = DFK)

DF (3at, 3at2, 1 + t3) O = (0, 0, 1) (x, y, z) ∈ DF \ {O}
p ↑ ↑ ↑ ↓

P1
K = A1

K ∪ {∞} t ∈ A1
K ∞ t = y

x

where we indicated the definition of p and of a partial inverse of p. We have p(∞) =
p(0) = O = (0, 0, 1), p(1) = (3, 3, 2) = V (the vertex of DF ) and p(−1) = (1,−1, 0) =
I (one of the infinity points of DF ).

We have a similar map p in the case of the base field K, as well as a commutative
diagram

DF = DFK ↪→ DFK
p ↑ p ↑
P1
K ↪→ P1

K

where the right vertical map p is a morphism of algebraic K-varieties defined over K
it is even a normalization morphism of the algebraic K-curve DFK ([2], Section 2;
hence it is uniquely determined up to an automorphism of P1

K).
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For the vertical maps p, we introduce two restrictions

p = p|P1
K\{0,∞} : P1

K \ {0,∞} = K \ {0} → DF \ {O}

resp.
p = p|P1

K\{0,∞}
: P1

K \ {0,∞} = K \ {0} → DFK \ {O}.

From the previous diagram it follows the following commutative diagram with
bijective vertical maps:

DF \ {O} = DFK \ {O} ↪→ DFK \ {O}
p ↑∼ ∼↑ p

P1
K \ {0,∞} = K \ {0} ↪→ P1

K \ {0,∞} = K \ {0}

where the right vertical map p is an isomorphism of algebraic K-varieties defined over
K.

If we transport by the vertical bijections p the natural group multiplicative laws
from K\{0} and K\{0}, then we obtain the group composition laws · on DF \{O} =
DFK \ {0} and DFK \ {O}, defined by

(3at, 3at2, 1 + t3) · (3at′, 3a(t′)2, 1 + (t′)3)
def
= (3a(tt′), 3a(t′)2, 1 + (tt′)3)

for each t, t′ ∈ K \ {0}, resp. t, t′ ∈ K \ {0}.
We have that both vertical map p from the last diagram are group isomorphisms.

Since the right vertical map p is an isomorphism of algebraic K-varieties defined over
K and (K \ {0}, ·) = Gm,K is an algebraic K-group defined over K, it follows that

(DFK \ {0}, ·) is an algebraic K-group defined over K and the right map p is an
isomorphism of such algebraic K-groups.

We have DF \ {O} = (DFK \ {O})(K) and (DF \ {O}, ·) is a subgroup of (DFK \
{O}, ·), because (K \ {0}, ·) is a subgroup of (K \ {0}, ·).

According to the previous Definitions 2.1 and 3.1, it follows that: (i) the pair
(DF \ {O}, ·) is a canonic K-group (i.e., a K-group w.r.t DFK \ {O}, according to
Section 2, Example 4) and (ii) the map

p : Gm,K = (K \ {0} ∼−→ (DF \ {O}, ·)

is an isomorphism of (canonic) K-groups (see also Section 2, Example 1).
Therefore (DF \ {O}, ·) ≃ Gm,K is a K-group of type Gm,K.

Now, we can recall a second group composition law ◦ on DF \ {O} = DFK \ {O}
or on DFK\{O} defined in a similar way as · by means of another map p′ : P1

K → DF ,
resp. p′ : P1

K → DFK, defined by p′(t) = (3at2, 3at, 1 + t3) for each t ∈ K \ {0}, resp.
t ∈ K \ {0} and p′(∞) = O = (0, 0, 1).

Let us introduce two restrictions

p = p′|P1
K\{0,∞} : P1

K \ {0,∞} = K \ {0} → DF \ {O}

resp.
p = p′|P1

K\{0,∞}
: P1

K \ {0,∞} = K \ {0} → DFK \ {O}.
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The second composition law ◦ is defined by the following formula

(3at2, 3at, 1 + t3) ◦ (3a(t′)2, 3a(t′), 1 + (t′)3)

def
= (3a(tt′)2, 3a(tt′), 1 + (tt′)3).

As for the previous composition law ·, it follows that: (i) the pair
(DF \ {O}, ◦) is a canonic K-group (i.e., w.r.t. DFK \ {O}); (ii) the map

p : Gm,K = (K \ {0}, ·) ∼−→ (DF \ {O}, ◦)

is a K-group isomorphisms.
Now we can apply Theorem 2.2: on the set DF \ {O} there exist two canonic K-

group structures, (DF \ {O}, ·) and (DF \ {O}, ◦), having the same neutral element
p(1) = p(1) = (3, 3, 2) = V , (the vertex of DF ). According to Theorem 2.2, these two
groups must coincide, i.e., they have the same composition law · = ◦.

Two results concerning K-groups (Theorems 2.2 and 3.2. (i)) permit to describe
all canonic K-group structures on DF \ {O} = DFK \ {O} (in particular all algebraic
K-groups on DF \ {O} = DFK \ {O}) in the case when K = K is algebraically closed
(cf.Section 2, Remark (1)), as well as their ”nice” parametrizations.

Theorem 5.1 Let K be an arbitrary field (not necessarily algebraically closed)
with char. (K) ̸= 3 and E ∈ DF \ {O} = DFK \ {O}. Then (i) there exists a unique
canonic K-group (DF \ {O}, ·E) having the neutral element E; (ii) for each pair
P,Q ∈ DF \ {O}, we have P · Q = P · Q · E−1, with E−1 the symmetric/opposite
of E in the group (DF \ {O}, ·); (iii) there exists at most two parametrizations of
DF \ {O}

pE , pE : Gm,K ⇒ (DF \ {O}, ·E)

which are isomorphisms of canonic K-groups. These parametrizations are distinct iff
K ̸= Z2. For each t ∈ K \ {0}, we have

pE(t) = p(t) · E, pE(t) = p(t) · E

(with p, p : K \ {0}⇒ DF \ {O} previously considered).

We can obtain explicit formulae for ·E , pE , PE . For instance, if

E = (3aλ, 3aλ2, 1 + λ3) = (
3a

λ2
,
3a

λ
,
1

λ3
+ 1) ∈ DFK \ {O},

with λ ∈ K \ {0} (uniquely determined), then, for each t, t′ ∈ K \ {0}, we have

(3at, 3at2, 1 + t3) ·E (3at′, 3at′
2
, 1 + t′

3
)

=

(
3a

tt′

λ
, 3a

(
tt′

λ

)2

, 1 +

(
tt′

λ

)3
)

= (3aλ2(tt′), 3aλ(tt′)2, λ3 + (tt′)3,

pE(t) = (3aλt, 3a(λt)2, 1 + (λt)3),

pE(t) =

(
3at2

λ2
,
3at

λ
, 1 +

t3

λ3

)
= (3aλt2, 3aλ2t, λ3 + t3).
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Remarks. (1) We have λ = 1 iff E = V = (3a, 3a, 2) (the ”vertex” of DF ).
Then (DF \ {O}, ·V ) is the previous K-group (DF \ {O}, ·). (2) We have λ = −1 iff
E = I = (−1, 1, 0) (one of the infinity point of DF ). Then (DF \{O}, ·I) is the group
considered in the paper [9].

Now let P1, ..., Pn ∈ DF \ {O} = DFK \ {O} and Qi = p−1(Pi) ∈ K \ {0} ⊂ P2
K,

for each i = 1, ..., n. For the rational K-points subset, we have

(DFK \ {O,P1, ..., Pn})(K) = DFK \ {O,P1, ..., Pn}

and a commutative diagram

DFK \ {O,P1, ..., Pn} ↪→ DFK \ {O,P1, ..., Pn}
∼↑ p ∼↑ p

P1
K ⊃ K \ {O,Q1, ..., Qn} ↪→ K \ {O,Q1, ..., Qn} ⊂ P1

K

According to Theorem 4.1, the set K \ {O,Q1, ..., Qn} does not admit a K-group
structure, w.r.t. C = K \ {O,Q1, ..., Qn} = P1

K \ {O,Q1, ..., Qn}, called canonic K-
group structure, cf. Section 2, Example (3). It follows

Proposition 5.1 Let K be a field with char.K ̸= 3 and n ∈ N \ {0}. Then
for P1, ..., Pn ∈ DFK \ {0}, the subset DFK \ {O,P1, ..., Pn} does not admit a
structure of canonic K-group (i.e., a K-group w.r.t. the algebraic K-curve C =
DFK \ {O,P1, ..., Pn}).

6.1 Geometric interpretations

The algebraic subset DF = DFK ⊂ P2
K has ”few” points if the base field is ”small”.

For instance, if K = Z2 and a = 1 = −1 ∈ Z2, thenDF = {O = (0, 0, 1), I = (1, 1, 0)}.
However we can consider the intersections of DF = DFK = V(F ), where F =

X3 + Y 3 − 3aXY Z ∈ K[X,Y, Z] and a ∈ K \ {0}, with a straight line dK ⊂ P2
K,

together their multiplicities. Namely, if P ∈ DFK ∩ dK ⊆ DFK ∩ dK, where dK ⊂ P2
K

is the projective closure of dK in P2
K, we define the multiplicity m(P ;DFK, dK) of the

point P in the intersection DFK ∩ dK by

m(P ;DFK, dK)
def
= m(P ;DFK, dK),

where the last term is the multiplicity of P in the intersection of the algebraic K-
subvarieties DFK, dK ⊂ P2

K.

Comment. The number m(P ;DFK, dK) could be more correctly denoted by
m(P ;F, dK) because it depends on the polynomial F . In fact, by definitionm(P ;F, dK)
depends on the subset DFK ⊂ P2

K and the determination of this subset is equivalent

with determination of the polynomial F ∈ K[X,Y, Z] up to a multiplicative constant,
because K is algebraically closed (cf. Hilbert Nullstellensatz).

In the previous conditions, if P ∈ DFK∩dK, we have m(P ;DFK, dK) ≤ 3, accord-
ing to the classic multiplicity theory in P2

K. If m(P ;DFK, dK) ≥ 2, we will say that

the straight line dK is tangent to DFK at the point P .
The following intersection property is true.
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Proposition 5.2 Let K be an arbitrary field (not necessarily algebraically closed)
with char.K ̸= 3. If ℓ ⊂ K2

K is a straight line intersecting DFK in two points (counted
with multiplicities), then ℓ intersectsDFK in a third point (counted with multiplicity).

The intersection property permits to state the following Theorem which establishes
the close relation between the canonicK-group structures onDF\{O} and a geometric
rule of defining its composition law like the well known classic geometric rule defining
the group composition laws on elliptic curves (see [12]).

Theorem 5.2 Let K be an arbitrary field with char.K ̸= 3, a composition law ⊥
on DFK \{O} and E ∈ DFK \{O}. Then the following two assertions are equivalent:
(i) the pair (DFK \ {O},⊥) is a canonic K-group and E is its neutral element; (ii)
the composition law ⊥ is defined by the following geometric rule: for each P1, P2 ∈
DFK \{O} distinct (resp. not distinct) points; (ii1) let ℓ = P1P2 ⊂ P2

K be the straight
line passing through P1, P2 (resp. tangent line to DFK at the point P1 = P2) and
P3 ∈ DFK \ {O} the third intersection point of ℓ with DFK \ {O} (counted with
multiplicity); (ii2) let ℓ′ = EP3 ⊂ P2

K be the straight line passing through E,P3

if P3 ̸= E, or tangent line to DFK at P3 = E if P3 = E, and let P be the third
intersection point of ℓ′ with DFK \ {O}; (iii3) then P1⊥P2 = P .

Particular cases. In Theorem 5.2 above, suppose that K = K is algebraically
closed, resp. K = K = C. Then we can replace the assertion (i) of the Theorem with
”the pair (DFK \{O},⊥) is an algebraic K-group and E is its neutral element”, resp.
”the pair (DF

an

C \ {O},⊥) is a Lie C-group and E is its neutral element”.
In fact, if K is algebraically closed, then (DFK \ {O},⊥) is a canonic K-group iff

it is an algebraic K-group (cf. Section 2, Remark 1)). If K = C, then (DFC \ {O},⊥)
is an algebraic C-group iff (DF

an

C \ {O},⊥) is a Lie C-group (cf. Corollary 2.2).

7 Comments

Group structures on Descartes Folium, invoked in this lecture, are of practical interest
in Codes Theory / Cryptography. In affine coordinates, we mention that the family
of generalized Hessians Ha,b,c : bx

3+y3+ c = axy include both the Descartes Folium
Ha,1,0, a ̸= 0 and other cubical curves Ha,b,c, regular or not. The applications of
such curves in cryptography are of recent date, but, a serious research, must involve
our results published in the papers [2] [3] [9] [14], regarding the rich group structure
of Descartes Folium. The unified multiplication formulas make generalized Hessian
curves interesting against ”side-channel attacks”.

The proofs of the statements from this exposition are presented in the manuscript
[3], which will appear soon in ArXiv. It is expected that some analogous results
concerning ”good” group composition laws on other plane projective non-smooth
cubics could be establish with similar methods over an arbitrary base field K with
char.K ̸= 3.

Acknowledgements. This exposition is based on our invited lecture at ”The 12-
th International Workshop on Differential Geometry and Its Applications (DGA2015)”
held at Petroleum-Gas University of Ploieşti, Romania, September 23-26, 2015. This
lecture has been dedicated to the memory of Prof. Dr. Doc. Leon Livovschi (1921-
2012)- one of the founder professors of the Petroleum-Gas Institute - Ploieşti, Roma-
nia.
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