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Abstract. In this paper, we prove an inequality between the normalized
scalar curvature and the generalized normalized d-Casorati curvatures for
slant submanifolds of generalized complex space form. Moreover, we char-
acterize those submanifolds for which the equality case holds.
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1 Introduction

The theory of Chen invariants, one of the most interesting research area of differential
geometry is to establish the simple relationships between the main intrinsic invari-
ants and the main extrinsic invariants of the submanifolds started in 1993 by Chen
[6]. In the initial paper Chen established inequalities between the scalar curvature
and the sectional curvature(intrinsic invariants) and the squared norm of the mean
curvature(the main extrinsic invariant) of a submanifold in a real space form. The
same author obtained the inequalities for submanifolds between the k-Ricci curva-
ture, the squared mean curvature and the shape operator in the real space form with
arbitrary codimension [5]. Since then different geometers proved similar inequalities
for different submanifolds and ambient spaces [3, 4, 11, 15, 16].

The Casorati curvature(extrinsic invariant) of a submanifold of a Riemannian
manifold introduced by Casorati defined as the normalized square length of the sec-
ond fundamental form [2]. The concept of Casorati curvature extends the concept
of the principal direction of a hypersurface of a Riemannian manifold [10]. The ge-
ometrical meaning and the importance of the Casorati curvature discussed by some
distinguished geometers [12, 20, 21, 7, 8]. Therefore it attracts the attention of geome-
ters to obtain the optimal inequalities for the Casorati curvatures of the submanifolds
of different ambient spaces [13, 14, 17].
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The purpose of the present paper is to establish two sharp inequalities for the gen-
eralized normalized d-Casorati curvature for slant submanifolds of generalized complex
space form.

2 Preliminaries

Let M be an almost Hermitian manifold with an almost complex structure .J and a
Riemannian metric g. An almost Hermitian manifold is said to be a nearly Kaehler
manifold if (Vx.J)X = 0 and becomes a Kaehler manifold if V.J = 0 for all X € TM,
where V is the Levi-Civita connection of the Riemannian metric g.

Gray [9] introduced the concept of constant type for the nearly Kaehler manifold,
which led to the definition of RK-manifolds. An almost Hermitian manifold for which
the Riemannian curvature tensor R is J-invariant, that is

R(JX,JY,JZ,JW)=R(X,Y,Z,W), VXY, Z,WeTM

is called an RK-manifold. All nearly Kaehler manifolds belong to the class of RK-
manifolds. An almost Hermitian manifold M is said to have pointwise constant type
if for each p € M and for vector field X, Y, Z € T, M such that

g(XaY) :g(XaZ) :g(XaJY) :g(XaJZ) =0 and g(Y’Y) :g(ZaZ) =1,

we have

R(X,Y,X,Y) - R(X,Y,JX,JY)=R(X,Z,X,7) - R(X,Z,JX, ] 7).

An RK—manifoEM has pointwise constant type if and only if there is a differentiable
function a on M satisfying [19]

(2.1) R(X,Y, X.)Y) - R(X,)Y,JX,JY) = afg(X, X)g(Y,Y)
_gz(X’ Y) - QQ(X’ ']Y)}7

for all X,Y € TM. M has global constant type if and only if (2.1) holds with a
constant function a.

An RK-manifold of constant holomorphic sectional curvature ¢ and constant type
«a is denoted by M (e, ). For M(c, ), we have [19]

AR(X,Y)Z = (c+3a){g9(V,2)X — 9(X, Z)Y} + (c — a){9(X,JZ2)JY
—g(Y,JZ)JX +29(X,JY)JIZ},

for all X,Y,Z € TM. If ¢ = o then M(c,a) is a space of constant curvature. A
complex space form M (c) belongs to the class of almost Hermitian manifolds M (c, a)
with constant type zero.

Tricerri and Vanhecke [18] introduced the concept of generalized complex space
form as a generalization of the complex space form. An almost Hermitian manifold M
is called the generalized complex space form, denoted by M (fi, f2), if the Riemannian
curvature tensor R satisfies

(2.2) RX,Y)Z = fi{g(Y, 2)X — g(X, 2)Y} + fo{9(X, T Z)JY
—g(Y,JZ)JX +29(X,JY)JZ},
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for all X,Y,Z € TM. Where f; and f, are smooth functions on M(fi, f2).

Let M be an n-dimensional submanifold of a generalized complex space form
M(f1, f2) of dimension m. Let V and V be the Levi-Civita connection on M and M
respectively. The Gauss and Weingarten formulae are defined as

VxY =VxY +h(X,Y),

Vxé=—5:X +VyY,

for the vector fields X,Y € TM and & € T+ M, where h, S and V= is the second
fundamental form, the shape operator and the normal connection respectively. The
second fundamental form and the shape operator are related by the following equation

g(M(X,Y),§) = g(Se X, Y),

for vector fields X, Y € TM and £ € T+ M.
The equation of Gauss is given by

_g(h(X7 W)’ h’(}/a Z))

for X, Y, Z, W € TM, where R and R represent the curvature tensor of M (f1, f2) and
M respectively.

Let M be an n-dimensional submanifold of a generalized complex space form
M (f1, f2) of dimension m. For any tangent vector field X € TM, we can write
JX = PX 4+ QX, where P and @) are the tangential and normal components of JX
respectively. If P = 0, the submanifold is said to be an anti-invariant submanifold
and if Q = 0, the submanifold is said to be an invariant submanifold. The squared
norm of P at p € M is defined as

(2.4) IPI* =" g*(Jei ),

4,j=1

where {ei,...,e,} is any orthonormal basis of the tangent space T, M.

A submanifold M of an almost Hermitian manifold M is said to be a slant sub-
manifold if for any p € M and a non zero vector X € T,M, the angle between JX
and T,M is constant, i.e., the angle does not depend on the choice of p € M and
X € T,M. The angle 6 € [0, 3] is called the slant angle of M in M.

The slant submanifolds with slant angle = 0 and 6§ = 7 respectively are invariant
and anti-invariant submanifolds, and when 0 < § < 7, then the slant submanifold is

called proper slant submanifold.

If M is a #-slant submanifold in a generalized complex space form M (f1, f2), then

n
IPI* =" g°(Pei,e;) = ncos® .

4,3



44 Mehraj Ahmad Lone

Let M be a Riemannian manifold and K (7) denotes the sectional curvature of M of
the plane section m C T,M at a point p € M. If {e1,...,e,} and {ep+1,...,€em} be
the orthonormal basis of T, M and TPLM at any p € M, then the scalar curvature 7
at that point is given by

Tp)= Y. Kleine))
1<i<j<n
and the normalized scalar curvature p is defined as

2T

P 1)

The mean curvature vector denoted by H is defined as
=13 b
= - €i, €4
n =
1,7=1
and also we put
h;y] = g(h’(ela ej)? 67)7 Z7.7 S ]-7 27 Ty, Y € {TL + ].,’ﬂ + 27 7m}
The norm of the squared mean curvature of the submanifold is defined by
1 m n 2
= > ()
y=n+1 =1
and the squared norm of second fundamental form A is denoted by C defined as
=5 2 2 (W)
y=n-+117,j=1

known as Casorati curvature of the submanifold.
If we suppose that L is an r-dimensional subspace of TM, r > 2, and {ej, ea,...,e,}
is an orthonormal basis of L, then the scalar curvature of the r-plane section L is given

T(L) = Z K(ey Neg)

1<y<B<r

and the Casorati curvature C of the subspace L is as follows

=1 > 3 ()

y=n-+1l1,j=1

A point p € M is said to be an invariantly quasi-umbilical point if there exist m —n
mutually orthogonal unit normal vectors &,41,...,&, such that the shape operators
with respect to all directions &, have an eigenvalue of multiplicity n — 1 and that
for each &, the distinguished eigendirection is the same. The submanifold is said to
be an invariantly quasi-umbilical submanifold if each of its points is an invariantly
quasi-umbilical point [1].
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The normalized §-Casorati curvature d.(n — 1) and gc(n — 1) are defined as

1 n—|—1

(2.5) [be(n—1)], = icp inf{C(L)|L : a hyperplane of T,M}

and

~ 2n —1
(2.6)  [0c(n—1)], =2C, + " sup{C(L)|L : a hyperplane of T,M}.

2n

Some authors use the coefficient Zn?:ll) instead of 22=1 in the equation(2.6). It was

pointed out that the coefficient 2n( 1) is not sultable and therefore modified by the
coefficien (n—1), put

1
(2.7) a(t) = —(n—1)(n+t)(n* —nt),

nt

then the generalized normalized §-Casorati curvatures 6.(t;n — 1) and 8,(t;n — 1) are
given as

[0c(t;m — 1)), = tCp + a(t)inf{C(L)|L : a hyperplane of T,M},
if 0 <t <n?—n,and
[0e(t;n —1)], = 7Cp + a(t)sup{C(L)|L : a hyperplane of T, M},

ift >n?—n.

3 The main Theorem

Theorem 3.1. Let M be a n-dimensional 6-slant submanifold of a generalized com-
plex space form M(f1, f2) of dimension m. Then
(i) The generalized normalized 0-Casorati curvature §.(t;n — 1) satisfies

Oc(t;m — 1) 3f2
n(n—1) (n—1)

for any real number t such that 0 <t < n(n —1).

(3.1) cos? 0

+ i+

(ii) The generalized normalized §-Casorati curvature d.(t;n — 1) satisfies

Seltin — 1) 3f2
nin—1) (n—1)

for any real number t > n(n — 1). Moreover, the equality holds in (3.1) and (3.2) iff
M s an invariantly quasi-umbilical submanifold with trivial normal connection in M,
such that with respect to suitable tangent orthonormal frame {e1,...,e,} and normal
orthonormal frame {en41,...,em}, the shape operator S, = Se,, r € {n+1,...,m},
take the following form

(3.2) p < +fi+ cos? 0

a0 0 0
Oa 0 . 0 0
00a .. 0
(33) Sn+1 = P . . 5 Sn+2 == Om =0.
000 a 0

000 .. 02D,
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Proof. Let {e1,...,e,} and {ent1,...,em} be the orthonormal basis of T,M and
TPLM respectively at any point p € M. Putting X =W =¢;, Y =7 =¢;j,1 # j
from (2.2), we have

(3.4) Rei,ej,e5,¢) = fi{glej, ej)glei, ei) — gleisej)gles, ei)}
+fa{glei, Jej)g(Jej, ei) — gles, Jej)g(Jei, i) + 2g(ei, Jej)g(Jej, eq)}.

From Gauss equation and (3.4), we infer

(3.:5)  filg(ej,ej)gles, i) + 3f2{glei, Jej)g(Jej, ei)} = Riei, ej, €5, €i)
+g(h(ei,e;), hej,ei)) — g(h(ei, i), hiej, e;)).

By taking summation 1 < ¢,5 < n and using (2.4) and (3.5), we get
(3.6) 21 = n?|H||? — nC + n(n — 1) f1 + 3ncos®0f,.
Define the following function, denoted by Q, a quadratic polynomial in the compo-
nents of the second fundamental form
(3.7) Q =tC+a(t)C(L) — 27 +n(n — 1) f1 + 3ncos6 f,

where L is the hyperplane of T, M. Without loss of generality, we suppose that L is
spanned by eq,...,e,_1, it follows from (3.7) that

m m n—1 m n 2
0=t 3t Sugr+ M S S wyr- 3 (L)
y=n+114,j=1 n y=n+1l1i,j=1 y=n+1 “i=1

which can be easily written as

(35) - e S j(_“l)(m W(hmﬂ

y=n+1 =1

+Z{ <n+t :(_t)l) zn: 2_9 Z LR+ - )2].

n+1 (i<j)=1 (i<jy)=1

From(3.8), we can see that the critical points

he = (Wt Rt R R R

»y'¥nn »'nn

of @ are the solutions of the following system of homogenous equations:

ghQ?i_2(M+Z(t))( 5) =22 b =0

0Q _ 2 n—1
(3.9) o = Ay, — 23 hy =0

48 =4+ ”_1)<h2j> =0
6(21% = 4( (hzn) =0,
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where i,5 ={1,2,...,n—1}i#j,and y € {n+1,n+2,...,m}.

Hence, every solution h¢ has hZJ = ( for i # j and the corresponding determinant
to the first two equations of the above system is zero. Moreover, the Hessian matrix
of Q is of the following form

H O O
H(Q) = O Hy, O |,
O O H3

where

+t . a(t)
-2 2<"n+nl) -2 .. -2 -2
H, =
+t , a(t)
-2 -2 2(”n+n_1) -2 -2

-2 -2 -2 2t

Hy and Hj are the diagonal matrices and O is the null matrix of the respective
dimensions. Hs and Hg are respectively given as

H, = dz’ag(4<n:t + ;@1),40;’5 + n“g)1>,...,4<7? + Tf(_t)l»

and

Hgzdiag(4(nn+t),4(n+t)7... 4(n+t)>.

n " on
Hence, we find that H(Q) has the following eigenvalues

2t t t t
AL =0, >\22:2<n+a()1)7 )\33:...:)\nn:2<n+ N a())

n n n—1

n n—1

4
)\ij:4(n+t+ alt) ),)\mz(n:—t), Vije{lL2,. .. n—1}, i #j.

Thus, Q is parabolic and reaches a minimum Q(h¢) = 0 for the solution h° of the
system (3.9). Hence Q > 0 and

21 < tC + a(t)C(L) +n(n — 1) f1 + 3ncos? O fa,

whereby we obtain
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for every tangent hyperplane L of M. If we take the infimum over all tangent hyper-
planes L, the result trivially follows. Moreover the equality sign holds iff

(3.10) hi;=0,Vije{l,....n}, i#jandy € {n+1,...,m}

and

n(n—1)

n(n—1)
——hj; == fhz,ln,l,w e{n+1,...,m}.

t
From (3.10) and (3.11), we obtain that the equality holds if and only if the sub-
manifold is invariantly quasi-umbilical with normal connections in M, such that the
shape operator takes the form (3.3) with respect to the orthonormal tangent and
orthonormal normal frames. In the same way, we can prove (ii). g

(3.11) b}, =

Corollary 3.2. Let M be a n-dimensional 6-slant submanifold of a generalized com-
plex space form M. Then
(i) The normalized §-Casorati curvature 6.(n — 1) satisfies

3fa

2
(- 1)003 0.

p<d(n—1)+fi +

Moreover, the equality sign holds iff M s an invariantly quasi-umbilical submani-
fold with trivial normal connection in M, such that with respect to suitable tangent

orthonormal frame {e1,...,e,} and normal orthonormal frame {e,41,...,em}, the
shape operator S, =S, r € {n+1,...,m}, take the following form
a 0 0O 0 O
0 a O 0 O
0 0 a ... 00
Sn+1: . . . . . . aSTH-Q:"':Sm:O-
000 ... a O
00 0 ... 0 2a

(ii) The normalized §-Casorati curvature gc(n — 1) satisfies

3f2

2
0.
n—1) cos

pggc(n71)+f1+

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold
with trivial normal connection in M, such that with respect to suitable tangent or-

thonormal frame {e1,...,e,} a and normal orthonormal frame {ep41,...,em}, the
shape operator Sy = S.,., r € {n+1,...,m}, take the following form
2¢ 0 0 ... 0 O
0O 2 0 ... 0 O
0 0 2a 0 0
Sn+1: . . . . 7Sn+2:"':Sm:0
0O 0 0 ... 2a¢a O

0O 0 0 ... 0 a
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