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Abstract. We prove several Liouville-type non-existence theorems for
conformal mappings of complete Riemannian manifolds. As well, we pro-
vide applications of these results to General Relativity and to the theory
of conharmonic transformations.
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1 Subharmonic and superharmonic functions

Let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold. We recall that f ∈
C2M is subharmonic (resp. superharmonic or harmonic) if ∆f ≥ 0 (resp. ∆f ≤ 0
or ∆f = 0) for the Laplace-Beltrami operator ∆f = div (grad f). In particular, if
(M, g) is compact, then every harmonic (subharmonic or superharmonic) functions is
constant by Hopf’s theorem [1].

We prove the following Lemma on superharmonic functions, which consists of two
statements that are analogous to two Yau propositions on subharmonic functions
(see [2]). Yau has stated in [2, p. 660] that on a complete Riemannian manifold
(M, g), each subharmonic function u ∈ C2M , whose gradient has integrable norm on
(M, g), must be harmonic. Secondly, he has shown in [7, p. 663] that on a complete
Riemannian manifold, each non-negative subharmonic function u ∈ C2M such that∫
M

updV olg < ∞ for some 1 < p < ∞, must be constant. In particular, if the volume
of (M, g) is infinite, then u = 0.

Lemma 1.1. If (M, g) is a connected complete Riemannian manifold (without bound-
ary), then any superharmonic function φ ∈ C2M with ∥grad φ∥ ∈ L1(M, g) is
harmonic and each non-positive superharmonic function φ ∈ C2M such that φ ∈
Lp(M, g) for some 1 < p < ∞ must be constant. In particular, if the volume of
(M, g) is infinite, then φ = 0.
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Proof. On the one hand, if we assume that u = −φ for any superharmonic function
φ ∈ C2M then the conditions ∆φ ≤ 0 and ∥grad φ∥ ∈ L1(M, g), which must be
satisfy for the super-harmonic function φ can be written in the form ∆u ≥ 0 and
∥grad u∥ ∈ L1(M, g). In this case, using the Yau statement for subharmonic functions
we conclude that ∆u = 0 and hence φ = −u is a harmonic function. On the other
hand, the function u = −φ for any superharmonic function φ ∈ C2M which satisfies
the conditions φ ≤ 0, ∆φ ≤ 0 and

∫
M

|φ|p dV olg < ∞ for some 1 < p < ∞ must
be satisfied the following conditions u ≥ 0, ∆u ≥ 0 and

∫
M

updV olg < ∞ for some
1 < p < ∞. Therefore, u is a constant function and hence φ = −u is a constant
function too. It is obvious that if the volume of (M, g) is infinite, then φ = 0. �

2 Conformal diffeomorphisms of complete
Riemannian manifolds

Let (M, g) and
(
M̄, ḡ

)
be pseudo-Riemannian or Riemannian manifolds such that dim

M = dim M̄ = n for any n ≥ 3. Then a diffeomorphism f : (M, g) →
(
M̄, ḡ

)
is called

conformal if it preserves angles between any pair curves. In this case, ḡ = e2σg for
some scalar function σ (see [2, p. 663]). If the function σ is a constant then f is a
homothetic mapping. In particular, if σ = 0, f is an isometric mapping.

If σ ∈ C2M then for each pair of corresponding points x ∈ M and x = f (x) ∈ M̄
we have the equation (see [3, p. 90])

(2.1) e2σ s̄ = s− 2 (n− 1)∆σ − (n− 1) (n− 2) ∥grad σ∥2 ,

where s and s̄ denote the scalar curvatures of (M, g) and
(
M̄, ḡ

)
, respectively. In

the case when (M, g) and
(
M̄, ḡ

)
are Riemannian manifolds we can formulate the

following Liouville-type non-existence theorem.

Theorem 2.1. Let (M, g) be an n-dimensional (n ≥ 3) complete Riemannian man-
ifold and f : (M, g) →

(
M̄, ḡ

)
be a conformal diffeomorphism onto another Rieman-

nian manifold
(
M̄, ḡ

)
such that ḡ = e2σg and s̄ ≥ e−2σs for some function σ ∈ C2M

and the scalar curvatures s and s̄ of (M, g) and
(
M̄, ḡ

)
, respectively. Then the fol-

lowing propositions are true.

1. If ∥grad σ∥ ∈ L1(M, g), then f is a homothetic mapping.

2. If σ is non-positive function and σ ∈ Lp(M, g) for some 1 < p < ∞ then f is a
homothetic mapping. In particular, if the volume of (M, g) is infinite, then f is
an isometric mapping.

Proof. If f : (M, g) →
(
M̄, ḡ

)
is a conformal diffeomorphism a connected complete

Riemannian manifold (M, g) onto another Riemannian manifold
(
M̄, ḡ

)
such that

ḡ = e2σg for some function σ ∈ C2M , then from (2.1) we obtain

(2.2) 2 (n− 1)∆σ = s− e2σ s̄− (n− 1) (n− 2) ∥grad σ∥2 .

Let s ≤ e2σ s̄ then (2) shows ∆σ ≤ 0. It means that σ is a superharmonic function.
By the condition of our theorem, the gradient of σ has integrable norm on (M, g) and
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we obtain from (2.2) that ∆σ = 0 (see our Lemma). In this case, σ is a harmonic
function. Since n ≥ 3, we see from (2.2) that σ is constant. In the other hand, if σ
is a non-positive function such that s ≤ e2σ s̄ and σ ∈ LP (M, g) for some 1 < p < ∞
then using the Lemma we can conclude that σ is a constant function. It is obvious
that if the volume of (M, g) is infinite, then σ = 0 (see our Lemma). The proof of the
theorem is complete. �

In particular, if we assume that s ≥ 0 and s̄ ≤ 0 in the condition of our theorem,
then the inequality s ≥ λ2s̄ must be satisfied. Then, as a result the proofs of the
theorem, we can conclude that s = s̄ = 0. Therefore we have

Corollary 2.2. Let (M, g) be an n-dimensional (n ≥ 0) complete Riemannian man-
ifold and f : (M, g) →

(
M̄, ḡ

)
be a conformal diffeomorphism onto another Rieman-

nian manifold
(
M̄, ḡ

)
such that ḡ = e2σg for some function σ ∈ C2M , s ≥ 0 and

s̄ ≤ 0 for the scalar curvatures s and s̄ of (M, g) and
(
M̄, ḡ

)
, respectively. If the one

of the following conditions holds:

1. ∥grad σ∥ ∈ L1(M, g),

2. σ ∈ Lp(M, g) for some 1 < p < ∞ and σ ≤ 0,

then f is a homothetic mapping and s = s̄ = 0. If in the second case the volume of
(M, g) is infinite, then f is an isometric mapping.

Let σ = log λ for some positive scalar function λ ∈ C2M then

∆σ = λ−1∆λ− λ−2 ∥grad λ∥2 , ∥grad σ∥2 = λ−2 ∥grad λ∥2 .

In this case, (2.2) can be rewritten in the following equivalent form

(2.3) 2 (n− 1)λ∆λ = λ2
(
s− λ2s̄

)
− (n− 1) (n− 4) ∥grad λ∥2 .

If s ≥ λ2s̄ for n ≤ 4 then from (2.3) we obtain that λ∆λ ≥ 0. On the other hand,
Yau has proved in [2, p. 664] that if a smooth function λ ∈ C2M on a complete
Riemannian manifold (M, g) such that λ∆λ ≥ 0, then either

∫
M

|λ|pdVg = ∞ for all

p ̸= 1 or λ = constant. Therefore, in the case when (M, g) and
(
M̄, ḡ

)
are Riemannian

manifolds we have

Theorem 2.3. Let (M, g) be an n-dimensional (n = 3, 4) complete Riemannian
manifold and f : (M, g) →

(
M̄, ḡ

)
be a conformal diffeomorphism onto another Rie-

mannian manifold
(
M̄, ḡ

)
such that ḡ = λ2g and s ≥ λ2s̄ for some positive function

λ ∈ C2M and for the scalar curvatures s and s̄ of (M, g) and
(
M̄, ḡ

)
, respectively. If

λ ∈ Lp(M, g) for some p ̸= 1, then f is a homothetic mapping.

In particular, if we assume that s ≥ 0 and s̄ ≤ 0 in the condition of Theorem
2.3, then one can verify that in this case f is a homothetic mapping and s = s̄ = 0.
Therefore, we have

Corollary 2.4. Let (M, g) be an n-dimensional (n = 3, 4) complete Riemannian
manifold and f : (M, g) →

(
M̄, ḡ

)
be a conformal diffeomorphism onto another Rie-

mannian manifold
(
M̄, ḡ

)
such that ḡ = λ2g for some positive function λ ∈ C2M and

λ ∈ Lp(M, g) for some p ̸= 1. If s ≥ 0 and s̄ ≤ 0 for the scalar curvatures s and s̄ of
(M, g) and

(
M̄, ḡ

)
, respectively, then f is a homothetic mapping and s = s̄ = 0.
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If we assume that λ = u
2

n−2 , then (2.3) immediately gives

(2.4)
4(n− 1)

n− 2
∆u = s u− s̄ u

n+2
n−2 .

In the case of the Riemannian manifolds (M, g) and (M̄, ḡ), the equation (2.4) is the
classical Yamabe equation (see [5, p. 39]). The equation (2.4) can be written in the
form

(2.5)
4 (n− 1)

n− 2
∆u = u

(
s− λ2s̄

)
.

Then for s ≥ λ2s̄, from (2.4) we obtain that ∆u ≥ 0. On the other hand, Yau
has shown in [2, p. 663] that if u is a non-negative subharmonic function defined
on a complete Riemannian manifold (M, g), then

∫
M

updVg = ∞ for all p > 1, un-
less u =constant. Therefore, in the case when (M, g) and (M̄, ḡ) are Riemannian
manifolds, we have the following Liouville-type non-existence theorem.

Theorem 2.5. Let (M, g) be a n-dimensional (n ≥ 3) complete Riemannian manifold
and f : (M, g) →

(
M̄, ḡ

)
be a conformal diffeomorphism onto another Riemannian

manifold
(
M̄, ḡ

)
such that ḡ = λ2g and λ(n−2)/2 ∈ Lp(M, g) for some positive function

λ ∈ C2M and for some p ̸= 1. If s ≥ λ2s̄ for the scalar curvatures s and s̄ of (M, g)
and

(
M̄, ḡ

)
, respectively, then f is a homothetic mapping.

In particular, if we assume that s ≥ 0 and s̄ ≤ 0 in the condition of Theorem 2.5,
then we can prove that f is a homothetic mapping and s = s̄ = 0. Therefore we have

Corollary 2.6. Let (M, g) be a n-dimensional (n ≥ 3) complete Riemannian manifold
and f : (M, g) →

(
M̄, ḡ

)
be a conformal diffeomorphism onto another Riemannian

manifold
(
M̄, ḡ

)
such that ḡ = λ2g and λ(n−2)/2 ∈ Lp(M, g) for some positive function

λ ∈ C2M for some p ̸= 1. If s ≥ 0 and s̄ ≤ 0 for the scalar curvatures s and s̄ of
(M, g) and

(
M̄, ḡ

)
, respectively, then f is a homothetic mapping and s = s̄ = 0.

3 An application to the theory of conharmonic
transformations

A mapping f : (M, g) → (M, ḡ) is called conharmonic transformation (Ishi, [4]) if
it is a conformal transformation, i.e., ḡ = e2σg for some scalar function σ ∈ C2M
satisfying the equation

(3.1) ∆σ = −n− 2

2
∥grad σ∥2

for any n ≥ 3. The conharmonic transformations introduced by Ishi are a subgroup
of the group of conformal transformations which preserve the harmonicity of certain
class of smooth functions (see [5]). From (3.1) we conclude that σ is a superharmonic
function. Then the following Corollary is obvious from Theorem 2.1.

Corollary 3.1. Let f : (M, g) → (M, ḡ) be a conharmonic transformation of an
n-dimensional (n ≥ 3) complete Riemannian manifold (M, g), i.e. ḡ = e2σg for
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some function σ ∈ C2M which satisfies the equation (3.1). If σ has a gradient with
integrable norm on (M, g), then the function σ is constant and f is a homothetic
transformation.

Let σ = log λ for some positive scalar function λ ∈ C2M then (3.1) can be
rewritten in the following equivalent form

(3.2) 2λ∆λ = (n− 4) ∥grad λ∥2 .

In this case, we can formulate a proposition that is an analogue of Theorem 2.5.

Corollary 3.2. Let f : (M, g) → (M, ḡ) be a conharmonic transformation of an n-
dimensional (n ≥ 4) complete Riemannian manifold (M, g), i.e. ḡ = λ2g for some
positive function λ ∈ C2M which satisfies the equation (3.2). If λ ∈ Lp(M, g) for
some p ̸= 1, then f is a homothetic mapping.

In particular, for n = 4 from (3.2) we obtain that ∆λ = 0. Then λ is a positive
harmonic function on a complete Riemannian manifold (M, g). We can easily state
the following

Theorem 3.3. Let f : (M, g) → (M, ḡ) be a conharmonic transformation of a n-
dimensional Riemannian manifold (M, g) such that ḡ = λ2g, then for the case n = 4
the function λ is harmonic.

Remark 3.1. Corollaries 3.1 and 3.2 generalize Proposition 4.7 from [6] on conhar-
monic transformations of compact manifolds.

4 An application to General Relativity

In this paragraph we give an application of our results to General Relativity using
the classical Bochner technique for Lorentzian geometry (see, for example, [7]). Let
(M, g) be a compact space-time, i.e. a four-dimensional compact Lorentzian manifold
(M, g). For n = 4, the equation (2.3) can be rewritten in the form

(4.1) 6∆λ = λ
(
s− λ2s̄

)
.

In this case, using Green’s divergence theorem from (4.1), we obtain the integral
formula

(4.2)

∫
M

λ
(
s− λ2s̄

)
dVg = 0.

It’s obvious that the conditions s > λ2s̄, or s < λ2s̄ contrast with (4.1). Therefore,
we can formulate the following non-existence theorem.

Theorem 4.1. Let (M, g) be a compact space-time. There does not exist any confor-
mal transformation f : (M, g) → (M, ḡ) such that ḡ = λ2g and s > λ2s̄ (or s < λ2s̄)
for some positive function λ ∈ C2M and the scalar curvatures s and s̄ of (M, g) and
(M, ḡ), respectively.

Moreover, we have the following
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Corollary 4.2. Let (M, g) be a compact space-time. There does not exist any con-
formal transformation f : (M, g) → (M, ḡ) such that ḡ = λ2g, s > 0 and s̄ < 0 (or
s > 0 and s̄ < 0) for some positive function λ ∈ C2M and the scalar curvatures s
and s̄ of (M, g) and (M, ḡ), respectively.
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