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Abstract. In this paper, we study (n+ 1)-dimensional real submanifolds
M with (n − 1)-contact CR dimension. On these manifolds there ex-
ists an almost contact structure F which is naturally induced from the
ambient space. Also, we study the condition h(FX, Y ) − h(X,FY ) =
g(FX, Y )ϕ, ϕ ∈ TM⊥, on the almost contact structure F and on the
second fundamental form h of these submanifolds and we characterize
certain model spaces in contact odd-dimensional unit sphere.
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1 Introduction

Let M be a (2m+ 1)-dimensional Sasakian manifold with Sasakian structure tensors
(φ, ξ, η, g). The structure tensors satisfy:

(1.1) φ2X = −X + η(X)ξ, φξ = 0, η(ξ) = 1, η(φX) = 0,

(1.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

for any vector fields X and Y on M [11]. Let M be a submanifold tangent to the
structure vector field ξ isometrically immersed in the Sasakian manifold M . Then M
is called a contact CR-submanifold of M if there exists a differentiable distribution
D : x −→ Dx ⊂ TxM on M satisfying:

• D is invariant with respect to φ, i.e., φDx ⊂ Dx

• The complementary orthogonal distribution D⊥ : x −→ D⊥x ⊂ TxM is anti-
invariant with respect to φ, i.e., φD⊥x ⊂ T⊥x M
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for x ∈ M . If dimD = 0, then the contact CR-submanifold M is called an anti-
invariant submanifold of M tangent to ξ. If dimD⊥ = 0, then M is an invariant
submanifold of M [12]. Contact CR-submanifold of maximal CR-dimension in an odd-
dimensional unit sphere satisfying the condition h(FX, Y ) + h(X,FY ) = 0 has been
studied in [7], [8] and [9]. In the present article we study connected (n+1)-dimensional
real submanifolds of codimension (p = 2m − n) of the odd-dimensional unit sphere
S2m+1 which are contact CR-submanifolds of contact CR-dimension (n− 1), that is,
dimD⊥ = 2. In Section 2 we collect some basic relations concerning submanifolds, in
particular we discuss the notion of contact CR-submanifolds of the Sasakian manifold
S2m+1. Section 3 is devoted to the study of contact CR-submanifolds which satisfy
the condition h(FX, Y )−h(X,FY ) = g(FX, Y )ϕ, ϕ ∈ TM⊥ on the structure tensor
F naturally induced from the almost contact structure φ of the ambient manifold and
on the second fundamental form h of a submanifold M . M. Djoric studied this relation
for complex Euclidean space and complex projective space in [2] and [3]. In Section
4, using the codimension reduction theorem in [5], we obtain codimension reduction
result for contact CR-submanifolds of an odd-dimensional unit sphere. Also in [10],
Takagi showed that if M is a complete connected hypersurface of S2m+1 having 4
constant principal curvatures with the one multiplicity of 1, then M is congruent to
M2n(t) for a number t with 0 < t < π

4 . And in [6], Nakagawa and Yokote proved:
Theorem : For a complete orientable hypersurface with constant principal curvature
in S2n+1, we assume that for a (f, g, u, v, λ)- structure on M , there exists a constant
φ such that Hi

kf
k
j + f ikH

k
j = 2φf ij or equivalently fkj Hki − f ikHkj = 2φfji, where

Hi
j denotes the second fundamental tensor in M . Then either of the following two

assertions (a) and (b) is true:
(a) M is isometric to one of the following spaces:

• the great sphere S2n+1(1);

• the small sphere S2n(c), where c = 1 + φ2;

• the product manifold S2n−1(c1)× S1(c2), where c1 = 1 + φ2 and c2 = 1 + 1
φ2 ;

• the product manifold Sn(c1) × Sn(c2), where c1 = 2(1 + φ2 + φ
√

1 + φ2) and

c2 = 2(1 + φ2 − φ
√

1 + φ2)

(b) M has exactly four distinct constant principal curvatures of multiplicities n −
1, n− 1, 1 and 1, respectively.
Finally in Section 5 we provide a sufficient condition in order for such a submanifold
to be the model space of S2n1+1(c1)×S2n2+1(c2), where c1 and c2 will be introduced
in Section 5.

2 Preliminaries

Let S2m+1 be a (2m+ 1)-unit sphere and Z ∈ S2m+1. We put ξ = JZ where J is the
complex structure of the complex (m + 1)-space Cm+1. We consider the orthogonal
projection π : TZCm+1 → TZS

2m+1, and put φ = π ◦ J . Then we see that (φ, ξ, η, g)
is a Sasakian structure on S2m+1, where η is a 1-form dual to ξ and g is the standard
metric tensor field on S2m+1. Hence, S2m+1 can be regarded as a Sasakian manifold
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of constant φ-sectional curvature 1 [1],[12]. Consider M , an (n + 1)-dimensional
contact CR-submanifold in S2m+1 which is tangent to the structure vector field ξ.
The subspace Dx is the φ-invariant subspace TxM ∩φTxM of the tangent space TxM
of M at x ∈M . Then ξ is not in Dx at any x in M . Let D⊥x denote the complementary
orthogonal subspace to Dx in TxM . For any nonzero vectors U orthogonal to ξ and
contained in D⊥x , we have φU normal to M which we denote by N , that is,

(2.1) N = φU.

It is clear that φTM ⊂ TM ⊕ span{N}. In the following we assume that dimDx =
n − 1 and dimD⊥x = 2, at each point x in M . We denote by ν(M) the comple-
mentary orthogonal subbundle of φD⊥ in the normal bundle TM⊥. We have the
following orthogonal direct sum decomposition TM⊥ = φD⊥ ⊕ ν(M). It is easy to
see that ν(M) is φ-invariant. For vector field X tangent to M and for a local frame
{N,Nα}α=1,...,p−1, we have the following decomposition into tangential and normal
parts

(2.2) φX = FX + u(X)N,

(2.3) φNα = PNα, φN = −U α = 1, . . . , p− 1,

where F and P are skew-symmetric linear endomorphisms acting on TxM and T⊥x M
and u is a 1-form on M . Since ξ is tangent to M , from (1.1), (1.2) and (2.1), we
conclude

(2.4) g(X,U) = u(X),

(2.5) Fξ = 0, u(ξ) = 0, FU = 0, u(U) = 1.

Using (2.1) again, we get

(2.6) F 2X = −X + η(X)ξ + u(X)U,

also,

(2.7) u(FX) = 0.

Let us denote by ∇ and ∇ the Riemannian connection of S2m+1 and M , respectively
and by ∇⊥ the normal connection induced from ∇ in the normal bundle of M . Then
the Gauss and Weingarten formulae for M are given by

(2.8) ∇XY = ∇XY + h(X,Y ),

(2.9) ∇XN = −ANX +∇⊥XN,

for any vector fields X,Y tangent to M and any vector field N normal to M , where
h denotes the second fundamental form and AN denotes the shape operator (second
fundamental tensor) corresponding to N .



Certain condition on the second fundamental form 17

Since ν(M) is φ-invariant we can take a local orthonormal frame {N,Nα, Nα∗}α=1,...,q

of normal vectors to M , such that N1∗ = φN1, . . . , Nq∗ = φNq then we have

(2.10) ∇XN = −AX +

q∑
α=1

{Sα(X)Nα + Sα∗(X)Nα∗},

(2.11) ∇XNα = −AαX − Sα(X)N +

q∑
β=1

{Sαβ(X)Nβ + Sαβ∗(X)Nβ∗},

(2.12) ∇XNα∗ = −Aα∗X − Sα∗(X)N +

q∑
β=1

{Sα∗β(X)Nβ + Sα∗β∗(X)Nβ∗},

where q = p−1
2 and S’s are the coefficients of the normal connection∇⊥ andA,Aα, Aα∗ ,

are the shape operators corresponding to the normals N,Nα, Nα∗ , respectively. In ad-
dition the second fundamental form h and the shape operators A,Aα, Aα∗ are related
by

(2.13) h(X,Y ) = g(AX,Y )N +

q∑
α=1

{g(AαX,Y )Nα + g(Aα∗X,Y )Nα∗}.

Differentiating covariantly relations (2.1), (2.2), using (2.10) and comparing the tan-
gential and normal parts, we get

(2.14) (∇Y F )X = −g(X,Y )ξ + η(X)Y − g(AY,X)U + u(X)AY,

(2.15) ∇Y U = FAY,

(2.16) (∇Y u)X = g(FAY,X).

Since the ambient space is Sasakian, then

(2.17) (∇Y φ)X = −g(X,Y )ξ + η(X)Y.

Moreover,

(2.18) ∇Xξ = φX.

Using (2.2), the last relation gives

(2.19) ∇Xξ = FX,

and
g(Aξ,X) = u(X),

that is

(2.20) Aξ = U,

(2.21) Aαξ = Aα∗ξ = 0, α = 1, . . . , q.
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3 Contact CR-submanifolds of an odd-dimensional
unit sphere

In this section we consider (n+ 1)-dimensional contact CR-submanifold M satisfying
in the condition

(3.1) h(FX, Y )− h(X,FY ) = g(FX, Y )ϕ, ϕ ∈ T⊥M

for all X,Y tangent to M . Using (2.13) and setting

ϕ = ρN +

q∑
α=1

(ραNα + ρα
∗
Nα∗),

we obtain
h(FX, Y )− h(X,FY ) = g((AF + FA)X,Y )N

+

q∑
α=1

{g((AαF + FAα)X,Y )Nα + g((Aα∗F + FAα∗)X,Y )Nα∗}

= g(FX, Y )(ρN +

q∑
α=1

(ραNα + ρα
∗
Nα∗)).

Then,

(3.2) AFX + FAX = ρFX,

(3.3) AαFX + FAαX = ραFX,

(3.4) Aα∗FX + FAα∗X = ρα
∗
FX,

for all X tangent to M .
By (2.2), (2.17) and the relation

φ(∇XNα) = ∇X(φNα)− (∇Xφ)Nα

we have
φ(∇XNα) = ∇XNα∗ .

From a direct computation and comparing the tangential and normal parts, we get

(3.5) Aα∗X = FAαX − Sα(X)U,

(3.6) Sαβ(X) = Sα∗β∗(X),

(3.7) Sαβ∗(X) = −Sα∗β(X),

(3.8) Sα∗(X) = u(AαX).
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Similarly we obtain

(3.9) AαX = −FAα∗X + Sα∗(X)U,

(3.10) Sα(X) = −u(Aα∗X).

Also using (3.5), (3.8), (3.9) and (3.10)

(3.11) g((AαF + FAα)X,Y ) = Sα(X)u(Y )− Sα(Y )u(X),

(3.12) g((Aα∗F + FAα∗)X,Y ) = Sα∗(X)u(Y )− Sα∗(Y )u(X).

Lemma 3.1. Let M be a (n+1)-dimensional contact CR-submanifold of CR-dimension
(n− 1) of S2m+1. If (3.1) is satisfied then

AαF + FAα = 0,

Aα∗F + FAα∗ = 0 , that is, ρα = ρα
∗

= 0.

Proof. Since (3.1) is equivalent to (3.3) and (3.4), then using (3.11) and (3.12) we
have

g(ραFX, Y ) = Sα(X)u(Y )− Sα(Y )u(X),

g(ρα
∗
FX, Y ) = Sα∗(X)u(Y )− Sα∗(Y )u(X).

Then

(3.13) ραg(FX, Y ) = Sα(X)u(Y )− Sα(Y )u(X),

(3.14) ρα
∗
g(FX, Y ) = Sα∗(X)u(Y )− Sα∗(Y )u(X).

Putting Y = U in (3.13) and (3.14) we have

(3.15) Sα(X) = Sα(U)u(X),

(3.16) Sα∗(X) = Sα∗(U)u(X).

Substituting (3.15) and (3.16) in (3.13) and (3.14) respectively, we obtain

ρα = ρα
∗

= 0.

Hence,

(3.17) AαF + FAα = 0,

(3.18) Aα∗F + FAα∗ = 0.

�
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Further, using (3.2), (2.5) and (2.6) we get

(3.19) AU = ξ + αU, such that α = g(AU,U) = u(AU).

Lemma 3.2. Let M be a complete (n + 1)-dimensional contact CR-submanifold of
CR-dimension (n − 1) of S2m+1. If the condition (3.1) is satisfied, then U is an
eigenvector of the shape operator Aα with respect to the normal vector field Nα at any
point of M . Also the same result holds for the shape operator Aα∗ .

Proof.
F 2(AαU) = F (FAαU) = F ((ραF −AαF )U).

Using (2.5) and (2.6) we have

−AαU + η(AαU)ξ + u(AαU)U = 0.

With (2.21) the last relation reads

(3.20) AαU = βU,

where β = u(AαU).
Similarly

(3.21) Aα∗U = γU,

where γ = u(Aα∗U). �

Also, from (3.8) and (3.10) we get

(3.22) AαU = Sα∗(U)U,

(3.23) Aα∗U = −Sα(U)U.

Since S2m+1 is of constant curvature 1,

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y.

From a direct computation and from the equation above, the Codazzi equation implies
that

(3.24) (∇XA)Y − (∇YA)X =

q∑
α=1

{Sα(X)AαY − Sα(Y )AαX + Sα∗(X)Aα∗Y − Sα∗(Y )Aα∗X},

(3.25) (∇XAα)Y − (∇YAα)X = Sα(X)AY − Sα(Y )AX

+

q∑
β=1

{Sαβ(X)AβY − Sαβ(Y )AβX + Sαβ∗(X)Aβ∗Y − Sαβ∗(Y )Aβ∗X},
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(3.26) (∇XAα∗)Y − (∇YAα∗)X = Sα∗(X)AY − Sα∗(Y )AX

+

q∑
β=1

{Sαβ∗(X)AβY − Sαβ∗(Y )AβX + Sα∗β∗(X)Aβ∗Y − Sα∗β∗(Y )Aβ∗X}.

In addition from a direct calculation, the Ricci equation is

(3.27) g((AαA−AAα)X,Y ) + (∇XSα)Y − (∇Y Sα)X

+

q∑
β=1

{Sαβ(Y )Sβ(X)− Sαβ(X)Sβ(Y )}

+

q∑
β=1

{Sαβ∗(Y )Sβ∗(X)− Sαβ∗(X)Sβ∗(Y )} = 0.

Lemma 3.3. Let M be an (n + 1)-dimensional CR-submanifold of CR-dimension
(n− 1) of S2m+1. If (3.1) is satisfied, then the unit normal vector field N is parallel
with respect to the normal connection. Furthermore Aα = 0 = Aα∗ , where Aα, Aα∗ ,
are the shape operators for the normals Nα, Nα∗ , respectively.

Proof. Differentiating (3.22) and using (2.15) we get

(3.28) g((∇XAα)Y − (∇YAα)X,U) + g(AαAFX, Y )− g(AαAFY,X) =

X(Sα∗(U))u(Y )− Y (Sα∗(U))u(X) + Sα∗(U)g((FA+AF )X,Y ).

Substituting (3.25) in the above relation and using (3.15), (3.16), (3.19), (3.22), (3.23)
we obtain

(3.29) Sα(U)η(X)u(Y )− Sα(U)η(Y )u(X) +

q∑
β=1

{Sαβ(Y )Sβ∗(X)− Sαβ(X)Sβ∗(Y )}

+

q∑
β=1

{Sαβ∗(Y )Sβ(X)− Sαβ∗(X)Sβ(Y )}+ g(AαAFX, Y )− g(AαAFY,X) =

X(Sα∗(U))u(Y )− Y (Sα∗(U))u(X) + Sα∗(U)ρg(FX, Y ).

Taking Y = U and X = U in the last relation we obtain

(3.30) −g(FAαAX,Y ) + ρg(FAαX,Y )− g(FAAαX,Y )− Sα(U)η(Y )u(X)

= Sα∗(U)ρg(FX, Y ).

Replacing Y with FY and using (2.6)we get

(3.31) −g((AαA+AAα)X,Y ) + 2αSα∗(U)u(X)u(Y )

+Sα∗(U)η(X)u(Y ) + Sα∗(U)u(X)η(Y )

+ρ{g(AαX,Y )− Sα∗(U)g(X,Y ) + Sα∗(U)η(X)η(Y )} = 0.



22 M. Asadollahzadeh, E. Abedi, G. Haghighatdoost

Now, differentiating relation (3.15), we have

(∇XSα)(Y ) = X(Sα(U))u(Y ) + Sα(U)g(FAY,X).

Replacing X with Y and subtracting the two equations, we get

(3.32) (∇XSα)(Y )− (∇Y Sα)(X) = X(Sα(U))u(Y )− Y (Sα(U))u(X)

+ρSα(U)g(FAX, Y ).

Now from relations (3.27) and (3.32) we conclude

(3.33) g((AαA−AAα)X,Y )+X(Sα(U))u(Y )−Y (Sα(U))u(X)+ρSα(U)g(FAX, Y )

q∑
β=1

{Sαβ(Y )Sβ(X)− Sαβ(X)Sβ(Y )}+

q∑
β=1

{Sαβ∗(Y )Sβ∗(X)− Sαβ∗(X)Sβ∗(Y )} = 0.

For Y = U and X = U , using (3.15) and (3.16) the last relation gives

(3.34) g((AAα−AαA)X,Y ) = ρSα(U)g(FX, Y )−Sα∗(U)(η(X)u(Y )− η(Y )u(X)).

Now adding equations (3.31) and (3.34) gives

− 2g(AαAX,Y ) + 2αSα∗(U)u(X)u(Y ) + 2Sα∗(U)u(X)η(Y ) + ρSα(U)g(FX, Y )

+ ρ{g(AαX,Y )− Sα∗(U)g(X,Y ) + Sα∗(U)η(X)η(Y )} = 0

Taking Y = U and (3.19) in the last relation we conclude

−2βg(X, ξ) + (−2αβ + 2αSα∗(U) + ρβ − ρSα∗(U))g(X,U) = 0.

Finally,

(3.35) −2βξ + (−2αβ + 2αSα∗(U) + ρβ − ρSα∗(U))U = 0.

Since with (3.20) and (3.22), β = Sα∗(U) then the last relation shows

(3.36) β = Sα∗(U) = 0 and Aα(U) = 0.

By (3.16) we get

(3.37) Sα∗(X) = 0,

Finally,

(3.38) Aα(X) = g(AαX,U)U = 0.

In a similar manner

(3.39) Sα(X) = 0,

(3.40) Aα∗(X) = 0.

�
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4 Codimension reduction of contact
CR-submanifolds in odd-dimensional unit sphere

In this section, we apply the Erbacher’s reduction of codimension theorem to contact
CR-submanifold in an odd-dimensional unit sphere. Let M be a connected subman-
ifold in a Riemannian manifold. The first normal space N1(x) is defined to be the
orthogonal complement of the set N0(x) = {ζ ∈ T⊥x M |Aζ = 0} in T⊥x M [12]. Er-
bacher proved the following theorem [5]:

Theorem 4.1. Let ψ : Mn −→M
n+p

(c̃) be an isometric immersion of a connected n-
dimensional Riemannian manifold into an (n+ p)-dimensional Riemannian manifold

M
n+p

(c̃) of constant sectional curvature c̃. If N ⊃ N1 and N is a subbundle of TM⊥

invariant with respect to the normal connection and l is the dimension of N , then there

exists a totally geodesic submanifold Nn+l of M
n+p

(c̃) such that ψ(Mn) ⊂ Nn+l.

Let M be a connected contact CR-submanifold of S2m+1 whose contact CR-
dimension is (n− 1), i.e, dimD⊥ = 2. For any orthogonal direct sum decomposition
TM⊥ = V1 ⊕ V2, it is easy to see that V1 is invariant with respect to the normal
connection if and only if V2 is invariant with respect to the normal connection. Using
the results of the previous section and Theorem 4.1, we have the following result

Theorem 4.2. Let M be an (n+ 1)-dimensional contact CR-submanifold of contact
CR-dimension (n − 1) of S2m+1. If the condition (3.1) is satisfied, then there exists
a totally geodesic unit sphere of dimension (n+ 2) of S2m+1 such that M ⊂ Sn+2.

Proof. By Lemma 3.3, the first normal space N1(x) = φD⊥x . Hence, by Theorem 4.1
we can conclude that there exists a (n + 2)-dimensional totally geodesic unit sphere
Sn+2 such that M ⊂ Sn+2. �

Lemma 4.3. Let M be a (n+1)-dimensional contact CR-submanifold of CR-dimension
(n− 1) of S2m+1. If (3.1) is satisfied, then α defined in relation (3.19) is constant.

Proof. Differentiating equation (3.19) and using (2.15)

(∇XA)U = (Xα)U + αFAX + FX −AFAX.

Since A is self-adjoint then ∇XA is symmetric, so

g((∇XA)Y,U) = g((∇XA)U, Y ) = (Xα)u(Y ) + αg(FAX, Y ) + g(FX, Y )

− g(AFAX,Y ).

Interchanging X with Y and subtracting the last two equations, we get

g((∇XA)Y − (∇YA)X,U) = (Xα)u(Y )− (Y α)u(X) + αρg(FX, Y )

+ 2g(FX, Y )− 2g(AFAX,Y ) = 0,

from Lemma 3.3, equations (3.2) and (3.24). Taking Y = U we have

(4.1) Xα = (Uα)u(X).
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Then we conclude that

(4.2) gradα = λU, which λ = Uα.

Taking the covariant derivative of the last equation and reversing X and Y and
subtracting the two relations we get,

(4.3) (Y λ)u(X) + λg(FAY,X)− (Xλ)u(Y )− λg(FAX, Y ) = 0;

since g(∇X(gradα), Y ) = g(∇Y (gradα), X).
With (3.2) the last relation reads:

(4.4) (Y λ)u(X)− (Xλ)u(Y )− ρλg(FX, Y ) = 0.

Replacing X and Y with U and putting in (4.4) we have:

(4.5) ρλg(FX, Y ) = 0.

Since ρ 6= 0 then, λ = Uα = 0, which means that α is constant. �

5 Model space of contact CR-submanifolds
satisfying h(FX, Y )− h(X,FY ) = g(FX, Y )ϕ, ϕ ∈ T⊥M

Let X be an eigenvector of the shape operator A corresponding to the eigenvalue β.
Since A is symmetric, using (2.20) we have:

(5.1) u(X) = βη(X).

Also using (3.19) we get:

(5.2) βu(X) = η(X) + αu(X).

Substituting (5.1) in (5.2) we have:

(5.3) β2η(X)− αβη(X)− η(X) = 0.

From the last equation, we have two cases:

• β2 − αβ − 1 = 0;

• η(X) = 0 which shows that X is orthogonal to ξ and from (5.1) is also orthonor-
mal to U .

Theorem 5.1. Let M be an (n + 1)-dimensional contact CR-submanifold of CR-
dimension (n− 1) of an odd-dimensional unit sphere. Also let X be an eigenvector of
the shape operator A corresponding to the eigenvalue β. If X is not orthogonal to U
and ξ and (3.1) is satisfied, then A has exactly two distinct principal curvatures.
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Proof. From the first case we have:

β2 − αβ − 1 = 0,

so A has exactly two principal curvatures which are;

β1 =
α+
√
α2 + 4

2
;

and

β2 =
α−
√
α2 + 4

2
.

�

Theorem 5.2. Let M be an (n + 1)-dimensional contact CR-submanifold of CR-
dimension (n− 1) of an odd-dimensional unit sphere. Also let X be an eigenvector of
the shape operator A corresponding to the eigenvalue β. If X is orthogonal to U and
ξ and (3.1) is satisfied, then A has at most two distinct principal curvatures.

Proof. Since α is constant, by equation (4.4) we have:

(5.4) αρg(FX, Y ) + 2g(FX, Y )− 2g(AFAX,Y ) = 0;

or,

(5.5) (αρ+ 2)FX − 2AFAX = 0.

Applying F to the last relation, using (2.6) and the fact that X is orthogonal to ξ we
get:

(5.6) 2A2X − 2ρAX + (αρ+ 2)AX = 0.

Since X is an eigenvector then the last relation reads:

2β2 − 2ρβ + (αρ+ 2) = 0,

and consequently A has at most two principal curvatures which are:

β1 =
ρ+

√
ρ2 − 2(αρ+ 2)

2
;

and

β2 =
ρ−

√
ρ2 − 2(αρ+ 2)

2
.

�

Now let us denote the eigenspace by

Tk = {X ∈ TM |AX = βkX}, k = 1, 2.

Lemma 5.3. Let M be an (n + 1)-dimensional contact CR-submanifold of CR-
dimension (n− 1) of an odd-dimensional unit sphere. Also let X be an eigenvector of
the shape operator A corresponding to the eigenvalues β1 and β2. Then,
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1. Tk is parallel ;i.e. for X,Y ∈ Tk we have ∇XY ∈ Tk;

2. For β1 6= β2 we have ∇XY ⊥ Tk.

Lemma 5.4. Tk are involutive for k = 1, 2.

Since Tk are involutive then they are integrable. Let Mk be the integral subman-
ifold of Tk.

Lemma 5.5. Mk are totally geodesic submanifolds for k = 1, 2.

Now using the above lemmas we can conclude that:

Theorem 5.6. Let M be a (n + 1)-dimensional CR-submanifold of CR-dimension
(n − 1) of an odd-dimensional unit sphere. If (3.1) is satisfied then either of the
following two assertions (a) and (b) is true:
M is isometric to one of the following spaces:

• the product manifold S2n1+1(c1)×S2n2+1(c2), where n1+n2 = n−1
2 and c1 = 1

β1

and c2 = 1
β2

which β1 and β2 are defined in Theorem 5.1;

• the product manifold S2n1+1(c1)×S2n2+1(c2), where n1+n2 = n−1
2 and c1 = 1

β1

and c2 = 1
β2

which β1 and β2 are defined in Theorem 5.2.
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