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Abstract. In this paper, we describe the group SpinT (n) and give some
properties of this group. We construct SpinT spinor bundle S by means
of the spinor representation of the group SpinT (n) and define covari-
ant derivative operator and Dirac operator on S. Finally, Schrödinger-
Lichnerowicz type formula is derived by using these operators.
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1 Introduction

Spin and Spinc structures is effective tool to study the geometry and topology of
manifolds, especially in dimension four. Spin and Spinc manifolds have been studied
extensively in [1, 2, 3, 4]. For any compact Lie group G the SpinG structure have
been studied in [5, 6]. However, the spinor representation is replaced by a hyperkahler
manifold, also called target manifold. In this paper, we define the Lie group SpinT (n)
as a quotient group. The groups Spin(n) and Spinc(n) are the subset of SpinT (n).
We define SpinT structure on any Riemannian manifold. The spinor representation of
SpinT (n) is defined by the help of the spinor representation of Spin(n). By using the
spinor representation of SpinT (n) we construct the SpinT spinor bundle S. Finally,
we give Schrödinger-Lichnerowicz type formula by using covariant derivative operator
and Dirac operator on S.

This paper is organized as follows. We begin with a section introducing the group
SpinT (n). The following section is dedicated to the construction of the spinor bundle
S, the study the Dirac operator associated to Levi-Civita connection ∇. In the final
section we obtain Schrödinger-Lichnerowicz type formula.
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2 The group SpinT (n)

Definition 2.1. The group SpinT (n) is defined as

SpinT (n) := (Spin(n)× S1 × S1)/{±1}.

The elements of SpinT (n) are thus classes [g, z1, z2] of pairs (g, z1, z2) ∈ Spin(n)×
S1 × S1 under the equivalence relation

(g, z1, z2) ∼ (−g,−z1,−z2).

We can define the following homomorphisms:

a. The map λT : SpinT (n) −→ SO(n) is given by λT ([g, z1, z2]) = λ(g) where the
map λ : Spin(n) → SO(n) is the two-fold covering map given by λ(g)(v) =
gvg−1.

b. i : Spin(n) −→ SpinT (n) is the natural inclusion map i(g) = [g, 1, 1].

c. j : S1 × S1 −→ SpinT (n) is the inclusion map j(z1, z2) = [1, z1, z2].

d. l : SpinT (n) −→ S1 × S1 is given by l([g, z1, z2]) = (z2
1 , z1z2).

e. p : SpinT (n) −→ SO(n) × S1 × S1 is given by p([g, z1, z2]) = (λ(g), z2
1 , z1z2).

Hence, p = λT × l. Here p is a 2-fold covering.

Thus, we obtain the following commutative diagram where the row and the column
are exact.

1

��
S1 × S1

j

�� &&
1 // Spin(n)

i //

λ

&&

SpinT (n)
l //

λT

��

S1 × S1 // 1

SO(n)

��
1

Moreover, we have the following exact sequence:

1 −→ Z2 −→ SpinT (n)
p−→ SO(n)× S1 × S1 −→ 1.

Theorem 2.1. The group SpinT (n) is isomorphic to Spinc(n)× S1.
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Proof. We define the map ϕ in the following way:

Spin(n)× S1 × S1 ϕ→ Spinc(n)× S1

(g, z1, z2) 7→ ([g, z1], z1z2)

It can be easily shown that ϕ is a surjective homomorphism and the kernel of ϕ is
{(1, 1, 1), (−1,−1,−1)}. Thus, the group SpinT (n) is isomorphic to Spinc(n)×S1. �

Since Spin(n) is contained in the complex Clifford algebra Cln, the spin represen-
tation κ of the group Spin(n) extends to a SpinT (n)-representation. For an element
[g, z1, z2] from SpinT (n) and any spinor ψ ∈ ∆n, the spinor representation κT of
SpinT (n) is given by

κT [g, z1, z2]ψ = z2
1z2κ(g)(ψ).

Proposition 2.2. If n = 2k + 1 is odd, then κT is irreducible.

Proof. Assume that {0} 6= W 6= ∆2k+1 is a SpinT invariant subspace. Thus, we have
κT [g, z1, z2](W ) ⊆ W . That is, z2

1z2κ(g)(W ) ⊆ W . In this case, for every w ∈ W
there exists a w′ ∈ W such that z2

1z2κ(g)(w) = w′. As κ(g)(w) =
1

z2
1z2

w′ ∈ W and

the representation κ of Spin(n) is irreducible if n is odd, this is a contradiction. The
representation κT of SpinT (n) has to be irreducible for n = 2k + 1.

�

Proposition 2.3. If n = 2k is even, then the spinor space ∆2k decomposes into two
subspaces ∆2k = ∆+

2k ⊕∆−2k.

Proof. We know that the Spin(n) representation ∆2k decomposes into two subspaces
∆+

2k and ∆−2k. Thus, we obtain z2
1z2κ(g)(∆+

2k) ⊆ ∆+
2k and z2

1z2κ(g)(∆−2k) ⊆ ∆−2k.
Namely, κT [g, z1, z2](∆+

2k) ⊆ ∆+
2k and κT [g, z1, z2](∆−2k) ⊆ ∆−2k. Hence, the SpinT (2k)

representation ∆2k decomposes into two subspaces ∆+
2k and ∆−2k. It can be easily seen

that the SpinT (2k) representation ∆±2k is irreducible. �

The Lie algebra of the group SpinT (n) is described by

spinT (n) = spin(n)⊕ iR⊕ iR.

The differential p∗ : spinT (n)→ so(n)⊕ iR⊕ iR is defined by

p∗(eαeβ , λi, µi) = (2Eαβ , 2λi, (λ+ µ)i)

where λ and µ are any real numbers and Eαβ is the n × n matrix with entries
(Eαβ)αβ = −1, (Eαβ)βα = 1 and all others are equal to zero. The inverse of the
differential p∗ is given by

p−1
∗ (Eαβ , λi, µi) = (

1

2
eαeβ ,

1

2
λi, (µ− 1

2
λ)i).
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3 SpinT structure, Spinor bundle and Dirac
operator

Definition 3.1. A SpinT structure on an oriented Riemannian manifold (Mn, g) is
a SpinT (n) principal bundle PSpinT (n) together with a smooth map
Λ : PSpinT (n) → PSO(n) such that the following diagram commutes:

PSpinT (n) × SpinT (n) //

Λ×λT

��

PSpinT (n)

Λ

��
PSO(n) × SO(n) // PSO(n)

From above definition we can construct a two-fold covering map

Π : PSpinT (n) → PSO(n) × PS1×S1 .

Given a SpinT structure (PSpinT (n),Λ), the map λT : SpinT (n) −→ SO(n) induces
an isomorphism

PSpinT (n)/S
1 × S1 ∼= PSO(n).

In similar way, SpinT (n)/Spin(n)
∼= S1 × S1 implies the isomorphism

PSpinT (n)/Spin(n) ∼= PS1×S1 .

Note that on account of the inclusion map i : Spin(n) → SpinT (n), every spin
structure on M induces a SpinT structure. Similarly, since there exists a inclusion
map Spinc(n)→ SpinT (n), every Spinc structure on M induces a SpinT structure.

Let (Mn, g) be an oriented connected Riemannian manifold and PSO(n) →M the
SO(n)−principal bundle of positively oriented orthonormal frames. The Levi-Civita
connection ∇ on PSO(n) determines a connection 1−form ω on the principal bundle
PSO(n) with values in so(n), locally given by

ωe =
∑
i<j

g(∇ei, ej)Eij

where e = {e1, . . . , en} is a local section of PSO(n) and Eij is the n × n matrix with
entries (Eij)ij = −1, (Eij)ji = 1 and all others are equal to zero.

We fix a connection
(A,B) : TPS1×S1 → iR⊕ iR

on the principal bundle PS1×S1 . The connections ω and (A,B) induce a connection

ω × (A,B) : T (PSO(n) × PS1×S1)→ so(n)⊕ iR⊕ iR

on the fibre product bundle PSO(n)×PS1×S1 . Now we can define a connection 1−form

˜ω × (A,B) on the principal bundle PSpinT (n) such that the following diagram com-
mutes:

TPSpinT (n)
//

Π∗

��

˜ω×(A,B) // spinT (n) = spin(n)⊕ iR⊕ iR

p∗

��
T (PSO(n) × PS1×S1) //ω×(A,B) // so(n)⊕ iR⊕ iR
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That is, the equality

p∗ ◦ ˜ω × (A,B) = (ω × (A,B)) ◦Π∗

holds.

Definition 3.2. The spinor bundle of a SpinT manifold is defined as the associated
vector bundle

S = PSpinT (n) ×κT ∆n

where κT : SpinT (n)→ GL(∆n) is the spinor representation of SpinT (n). In case of
n = 2k the spinor bundle splits into the sum of two subbundles S+ and S− such that

S = S+ ⊕ S−, S± = PSpinT (n) ×κT ± ∆±n .

Any spinor field ψ can be identified with the map ψ : PSpinT (n) → ∆n satisfying

the transformation rule ψ(pg) = κT (g−1)ψ(p). The absolute differential of a section

ψ with respect to ˜ω × (A,B) determines a covariant derivative

∇̃ : Γ(S)→ Γ(T ∗M ⊗ S)

given by

∇̃ψ = dψ + κT∗1( ˜ω × (A,B))ψ

where κT∗1 : spinT (n)→ End(∆n) is the derivative of κ at the identity
1 ∈ SpinT (n). It can be also shown that

κT∗1(eαeβ , λi, µi) = κ(eαeβ) + (2λi+ µi)Id

where λ and µ are any real numbers and κ is the spin representation of the group
Spin(n).

Now we give the local formulas for connections. Fix a section s : U → PS1×S1 of
the principal bundle PS1×S1 . Then, we obtain the local connection form

(As, Bs) : TU → iR⊕ iR

where As, Bs : TU → iR. e× s : U → PSO(n) × PS1×S1 is a local section of the fiber

product bundle PSO(n)×PS1×S1 . ẽ× s is a lift of this section to the two-fold covering

Π : PSpinT (n) → PSO(n) × PS1×S1 . The local connection form ˜ω × (A,B)
(̃e×s)

on the
principal bundle PSpinT (n) is given by the formula

˜ω × (A,B)
(̃e×s)

=

1

2

∑
i<j

g(∇ei, ej)eiej ,
1

2
As, Bs − 1

2
As


Hence, this connection form induces a connection ∇̃ on the spinor bundle S. We can
locally describe ∇̃ by

(3.1) ∇̃Xψ = dψ(X) +
1

2

∑
i<j

g(∇Xei, ej)eiejψ +
1

2
Asψ +Bsψ

where ψ : U → ∆n is a section of the spinor bundle S.
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Definition 3.3. The first order differential operator

D(A,B) = µ ◦ ∇̃ : Γ(S)
∇̃→ Γ(T ∗M ⊗ S)

µ→ Γ(S)

where µ denotes Clifford multiplication, is called the Dirac operator.

The Dirac operator D(A,B) is locally given by

(3.2) D(A,B)ψ =

n∑
i=1

ei · ∇̃eiψ

where {e1, . . . , en} is a local orthonormal frame on the manifold M .
The Dirac operator has the following property:

Theorem 3.1. Let f be a smooth function and ψ ∈ Γ(S) be a spinor field. Then,

D(A,B)(f · ψ) = (gradf · ψ) + fD(A,B)ψ.

Proof. By using the definition of the Dirac operator D(A,B) we can compute D(A,B)(f ·
ψ) as follows:

D(A,B)(f · ψ) =
n∑
i=1

ei · ∇̃ei(f · ψ)

=
n∑
i=1

ei · (ei(f) · ψ + f∇̃eiψ)

=
n∑
i=1

ei(f)ei · ψ + f
n∑
i=1

ei · ∇̃eiψ

= (gradf) · ψ + fD(A,B)ψ

�

Now we can define the Laplace operator on the spinor bundle S.

Definition 3.4. Let ψ ∈ Γ(S) be a spinor field. The Laplace operator ∆ on spinors
is defined by

(3.3) ∆ψ = −
n∑
i=1

(
∇̃ei∇̃eiψ + div(ei)∇̃eiψ

)
.

4 Schrödinger-Lichnerowicz type formula

The square D2
(A,B) of the Dirac operator and the Laplace operator ∆ are second

order differential operators. We derive Schrödinger-Lichnerowicz type formula by
computing their difference D2

(A,B) −∆.

The curvature RS of the spinor covariant derivative ∇̃ is an End(S) valued 2−form
by

RS(X,Y )ψ = ∇̃X∇̃Y ψ − ∇̃Y ∇̃Xψ − ∇̃[X,Y ]ψ

where ψ ∈ Γ(S) and X,Y ∈ Γ(TM). Now we want to describe RS in terms of the
curvature tensor R.
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Let Ωω : TPSO(n) × TPSO(n) → so(n) be the curvature form of the Levi-Civita
connection with the components

Ωω =
∑
i<j

ΩijEij

where Ωij : TPSO(n) × TPSO(n) → R. The commutative diagram defining the con-

nection ˜ω × (A,B) implies that the curvature form of ˜ω × (A,B) is

Ω
˜ω×(A,B) =

1

2

∑
i<j

Π∗(Ωij)eiej ⊕
1

2
Π∗(dA)⊕Π∗(dB).

Hence the 2−form RS with values in the spinor bundle S is obtained by the following
formula:

RS(., .)ψ =
1

2

∑
i<j

Ωijeiej · ψ +
1

2
dA · ψ + dB · ψ.

Let {e1, . . . , en} be orthonormal frame field, Ωij(X,Y ) = g(R(X,Y )ei, ej) the
components of the curvature form of the Levi-Civita connection,

X =
n∑
k=1

Xkek and Y =
n∑
l=1

Y lel be vector fields on the Riemannian manifold M . Then

we have
Ωij(X,Y ) = g(R(X,Y )ei, ej)

=
n∑

k,l=1

RklijX
kY l

=
n∑

k,l=1

Rklije
k(X)el(Y )

=
1

2

n∑
k,l=1

Rklij(e
k ∧ el)(X,Y ).

where {e1, . . . , en} is the frame dual to {e1, . . . , en}. Thus, we obtain the following
local formula for the curvature form

Ω
˜ω×(A,B) =

1

4

∑
i<j

n∑
k,l=1

Rklij(e
k ∧ el)eiej +

1

2
dA+ dB

and the 2-form RS(., .) is calculated as follows:

RS(., .)ψ =
1

4

∑
i<j

n∑
k,l=1

Rklij(e
k ∧ el)eiej · ψ +

1

2
dA · ψ + dB · ψ.

By using the above properties of the curvature form RS on spinor bundle S we
deduce the following result:

Proposition 4.1. Let Ric be the Ricci tensor. Then, the following relation holds:

(4.1)

n∑
α=1

eα ·RS(X, eα)ψ = −1

2
Ric(X) · ψ +

1

2
(X y dA) · ψ + (X y dB) · ψ
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Proof. In [1] it is proved the following relation:

(4.2)

n∑
α=1

∑
i<j

n∑
k,l=1

Rklij(e
k ∧ el)eαeiej · ψ = −2Ric(X) · ψ

It can be easily seen the following two relations:

(4.3)

n∑
α=1

eα · dA(X, eα) · ψ = (X y dA) · ψ

and

(4.4)

n∑
α=1

eα · dB(X, eα) · ψ = (X y dB) · ψ.

Then, using (4.2), (4.3) and (4.4), we obtain the claimed equivalence. �

Now, we derive Schrödinger-Lichnerowicz-type formula in the following way:

Proposition 4.2. Let s be scalar curvature of the Riemannian manifold and let
dA = ΩA and dB = ΩB be the imaginary-valued 2−forms of the connections (A,B)
in the (S1×S1)−bundle associated with SpinT structure. Then, we have the following
formula:

D2
(A,B)ψ = ∆ψ +

s

4
ψ +

1

2
dA · ψ + dB · ψ.

Proof.

(4.5)

D2
(A,B)ψ =

∑
i,j

ei · ∇̃ei(ej · ∇̃ejψ)

=
∑
i,j

ei · ∇eiej · ∇̃ejψ + eiej · ∇̃ei∇̃ejψ

=
∑
i,j,k

g(∇eiej , ek)eiek · ∇̃ejψ +
∑
i,j

eiej · ∇̃ei∇̃ejψ

= ∆ψ +
∑
j,i 6=k

g(∇eiej , ek)eiek · ∇̃ejψ +
∑
i 6=j

eiej · ∇̃ei∇̃ejψ

Now we can calculate the following sum:∑
i 6=k

g(∇eiej , ek)eiek = −
∑
i 6=k

g(ej ,∇eiek)eiek

= −
∑
i<k

g(ej ,∇eiek −∇ekei)eiek

=
∑
i<k

g(ej , [ek, ei])eiek

From (4.5) we get

D2
(A,B)ψ = ∆ψ +

∑
j,i<k

g(ej , [ek, ei])eiek∇̃ejψ +
∑
i<j

eiej · (∇̃ei∇̃ejψ − ∇̃ej ∇̃eiψ)

= ∆ψ +
∑
i<j

eiej(∇̃ei∇̃ejψ − ∇̃ej ∇̃eiψ − ∇̃[ei,ej ]ψ)

= ∆ψ +
1

2

∑
i,j

eiejR
S(ei, ej)ψ.
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Using the identity (4.1) and multiplying by ei we deduce that

D2
(A,B)ψ = ∆ψ − 1

4

∑
i

eiRic(ei) · ψ +
1

4

∑
i

ei · (ei y dA) · ψ +
1

2

∑
i

ei · (ei y dB) · ψ

= ∆ψ +
s

4
ψ +

1

2
dA · ψ + dB · ψ.

�
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