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Abstract. We find sufficient conditions on the soliton vector field under
which the metric of a Yamabe soliton is a Yamabe metric, that is, a metric
of constant scalar curvature.
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R. Hamilton introduced the notion of Yamabe flow (cf. [8]), in which the metric
on a Riemannian manifold is deformed by evolving according to

(1)
∂

∂t
g(t) = −R(t)g(t),

where R(t) is the scalar curvature of the metric g(t). Yamabe solitons correspond to
self-similar solutions of the Yamabe flow.

In dimension n = 2 the Yamabe flow is equivalent to the Ricci flow (defined by
∂
∂tg(t) = −2Ric(t), where Ric denotes the Ricci tensor). However, in dimension n > 2
the Yamabe and Ricci flows do not agree, since the first one preserves the conformal
class of the metric but the Ricci flow does not in general.

A connected Riemannian n-manifold (M, g) with n ≥ 2 is called a Yamabe soliton
if it admits a vector field ξ such that

(2)
1

2
£ξg = (R− λ)g,

where £ξ denotes the Lie derivative in the direction of the vector field ξ and λ is a real
number. Moreover, the vector field ξ in the definition is called a soliton vector field for
(M, g). In the following, we denote the Yamabe soliton satisfying (2) by (M, g, ξ, λ).
A Yamabe soliton is said to be gradient Yamabe soliton if the soliton vector field ξ
is gradient of a smooth function. Recall that on a Riemannian manifold (M, g), the
metric g is said to be a Yamabe metric if the scalar curvature R is a constant.

Yamabe flows and Yamabe solitons have been studied quite extensively (cf. [1]-[3],
[5], [6], [9]). In [6], it is shown that the metric of a compact gradient Yamabe soliton
is a Yamabe metric and the same result is achieved in [9] giving a shorter proof. One
of the interesting questions is to find conditions on soliton vector field of a Yamabe
soliton so that the metric is of a constant scalar curvature.
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In this article, a vector field ξ on a Riemannian manifold (M, g) is called closed if
its dual 1-form is closed. A smooth vector field ξ on (M, g) is said to be a geodesic
vector field if it satisfies

∇ξξ = 0.

It follows that integral curves of a geodesic vector field are geodesics. Natural examples
of geodesic vector fields are Reeb vector fields on Sasakian manifolds, Killing vector
fields of constant length on a Riemannian manifold. Also, all parallel vector fields on
the Euclidean space Rn in particular constant vector fields on Rn are geodesic vector
fields. Next, we define generalized geodesic vector fields on a Riemannian manifold.
A smooth vector field ξ on a Riemannian manifold (M, g) is said to be a generalized
geodesic vector field if it satisfies

∇ξξ = fξ,

where f is a smooth function on M called the potential function. It is clear that a
geodesic vector fields are generalized geodesic vector field but the converse is not true.
Physically, a generalized geodesic vector fields are those whose integral curves have
acceleration that is multiple of the velocity. Natural examples of generalized geodesic
vector field are, positions vector field on the Euclidean space Rn (with potential
function constant 1), a closed conformal vector field ξ on a Riemannian manifold
(M, g). Let Z be a nonzero constant vector field on the Euclidean space Rn+1 and
ZT be the tangential projection of Z on the unit sphere Sn. Then with respect to the
Riemannian connection ∇ on Sn, we have

∇ZTZY = ρZT ,

where ρ = 〈Z,N〉, N is the unit normal vector field to the sphere Sn and 〈 , 〉 is
the Euclidean metric on Rn+1. Thus ZT is generalized geodesic vector field on Sn.
The following Lemma gives a sufficient condition for a generalized geodesic vector
field to be geodesic vector field.

Lemma. A nonzero generalized geodesic vector field ξ of constant length on a
Riemannian manifold (M, g) is a geodesic vector field.

Proof. Let ξ be a generalized geodesic vector field with potential function f . Then
for ϕ = 1

2 ‖ξ‖
2
, using definition of generalized geodesic vector field, we get

ξ (ϕ) = fϕ,

thus on open subset where ϕ 6= 0, we have

f = ξ (lnϕ) .

If ϕ is a constant, the above equation gives f = 0 and consequently, ξ is a geodesic
vector field. �

As a direct consequence of above Lemma, we have the following result for a Yamabe
soliton.
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Corollary. If the soliton field of Yamabe soliton (M, g, ξ, λ) is a generalized
geodesic vector field with potential function R − λ and length of soliton field is a
constant, then g is a Yamabe metric.

In this short note, we use generalized geodesic vector field to prove the following
results for the cases when the soliton field is non-closed and other for when it is closed:

Theorem 1. A connected Yamabe soliton (M, g, ξ, λ) with soliton vector field is a
generalized geodesic vector field with potential function R − λ that is not closed has
constant scalar curvature.

Proof. Let η be smooth 1-form dual to soliton vector field ξ, that is, η(X) = g(X, ξ),
X ∈ X(M), X(M) being Lie algebra of smooth vector fields on M . Define a skew
symmetric (1, 1) tensor field ϕ on M by

(3) g(ϕX, Y ) =
1

2
dη(X,Y ), X,Y ∈ X(M).

Then using Koszul’s formula (cf. [4]) and equations (2) and (3), the covariant deriva-
tive of the soliton field ξ is given by

(4) ∇Xξ = (R− λ)X + ϕX, X ∈ X(M).

Using above equation, it is easy to see that the curvature tensor of the Yamabe soliton
(M, g, ξ, λ) satisfies

(5) R(X,Y )ξ = X(R)Y − Y (R)X + (∇ϕ) (X,Y )− (∇ϕ) (Y,X),

where the covariant derivative ∇ϕ is defined by

(∇ϕ) (X,Y ) = ∇X (ϕY )− ϕ (∇XY ) , X, Y ∈ X(M).

Note the smooth 2-form Ω = dη is closed and therefore using equations (3) and (5)
and symmetries of curvature tensor, we conclude that

(6) (∇ϕ) (X,Y ) = R(X, ξ)Y + Y (R)X − g(X,Y )∇R, X,Y ∈ X(M),

where ∇R is the gradient of scalar curvature R. Note that the condition on the soliton
filed and equation (4) gives ϕ(ξ) = 0. Thus the equation (6) with X = Y = ξ gives

ξ(R)ξ = ‖ξ‖2∇R,

that is, vector fields ξ and ∇R are parallel and consequently there exists a smooth
function α on M such that

(7) ∇R = αξ.

Let AR be the Hessian operator of the scalar curvature R, then the above equation
and the equation (4) gives

(8) ARX = X(α)ξ + α(R− λ)X + αϕX, X ∈ X(M).
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Using the symmetry of the operator AR and skew-symmetry of ϕ in above equation
leads to

(9) 2αϕX = g(X, ξ)∇α−X(α)ξ, X ∈ X(M).

Taking X = ξ in above equation gives

(10) ‖ξ‖2∇α = ξ(α)ξ,

which on taking inner product with ∇α, gives

(11) ‖ξ‖2 ‖∇α‖2 = ξ(α)2.

Now, with a local orthonormal frame {e1, e2, ..en} the equation (9) gives

4α2 ‖ϕ‖2 = 4α2
∑
‖ϕei‖2 = 2 ‖ξ‖2 ‖∇α‖2 − 2ξ(α)2,

which in view of equation (11), gives

α2 ‖ϕ‖2 = 0.

If α = 0, then equation (7) implies R is a constant. If ϕ = 0, then the equation (4)
takes the form

(12) ∇Xξ = (R− λ)X,

which gives ξ is closed and this is not allowed by the hypothesis that ξ is not closed.
�

Next, we consider the Yamabe soliton (M, g, ξ, λ) with soliton field ξ a generalized
geodesic vector field with potential function (R− λ) and it is closed. Recall that the
Hessian of the scalar curvature HR is given by

HR(X,Y ) = g (ARX,Y ) , X,Y ∈ X(M),

and if HR(u, u) = 0, for some vector field u, Hessian is said to be degenerate in the
direction of u.

Theorem 2. Let the soliton field of a connected Yamabe soliton (M, g, ξ, λ) be closed
generalized geodesic vector field with potential function R− λ. If the function

ξ(R)

‖ξ‖2

(defined on the open subset where ξ 6= 0) is a constant along the integral curves of
ξ and the Hessian HR is degenerate in the direction of ξ, then Yamabe soliton has
constant scalar curvature.
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Proof. As the soliton field is closed, we have ϕ = 0 in equation (4) and it takes the
form of equation (12), and equation (6), gives

(13) R(X, ξ)Y = g(X,Y )∇R− Y (R)X, X,Y ∈ X(M),

which on taking X = Y = ξ, implies

(14) ‖ξ‖2∇R = ξ(R)ξ.

Thus, on the open subset where ξ 6= 0, we have

∇R =

(
ξ(R)

‖ξ‖2

)
ξ,

which on taking divergence both sides and noting that the coefficient function of ξ in
above equation is a constant along integral curves of ξ, we get

(15) ∆R = n(R− λ)

(
ξ(R)

‖ξ‖2

)
,

where we used equation (12) to conclude div ξ = n(R− λ), n = dimM . Now, taking
an orthonormal frame {e1, .., en} and substituting X = Y = ei in equation (13) and
summing the resulting equation, leads to

(16) Q(ξ) = −(n− 1)∇R,

where Q is the Ricci operator defined by Ric(X,Y ) = g(QX,Y ). Using equation (12)
in taking divergence on both sides of equation (16), we get

(17) −(n− 1)∆R = R(R− λ) +
1

2
ξ(R),

where we used the following equation (cf. [4], [7])∑
(∇Q) (ei, ei) =

1

2
∇R.

Eliminating ∆R in equations (15) and (17), we get

n(n− 1)(R− λ)

(
ξ(R)

‖ξ‖2

)
+R(R− λ) +

1

2
ξ(R) = 0,

which on differentiating along ξ, yields

n(n− 1)

(
ξ(R)2

‖ξ‖2

)
+ (R− λ)ξ(R) +Rξ(R) +

1

2
ξξ(R) = 0.

Now, using the expression for the Hessian HR(ξ, ξ) = ξξ(R)−∇ξξ(R) = ξξ(R)−(R−
λ)ξ(R) and the condition in the statement that the Hessian HR is degenerate in the
direction of ξ, in above equation leads to

n(n− 1)

(
ξ(R)2

‖ξ‖2

)
+ (R− λ)ξ(R) +Rξ(R) +

1

2
(R− λ)ξ(R) = 0,
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that is,

ξ(R)

(
n(n− 1)

(
ξ(R)

‖ξ‖2

)
+R+

3

2
(R− λ)

)
= 0.

If ξ(R) = 0, then equations (2) and (14) imply that R is a constant. Therefore suppose

n(n− 1)

(
ξ(R)

‖ξ‖2

)
+R+

3

2
(R− λ) = 0,

which on differentiating along ξ, gives

5

2
ξ(R) = 0,

and it proves that R is a constant. �
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