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Abstract. This paper considers 4−dimensional manifolds which admit a
metric of any signature and examines the relationships between the metric,
its Levi-Civita connection, its curvature tensor and sectional curvature
function and its Weyl conformal tensor. It is shown that, with some special
cases excepted (some of which will be discussed), these various curvature
concepts are very closely related. The relationship between them and the
holonomy group associated with the connection is also explored. Some of
these results, in the case of positive definite and Lorentz signature, have
been given before and so this paper will concentrate mainly on the case
of neutral signature (+,+,−,−) and on the process of putting together
simple arguments which cover all signatures simultaneously.
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1 Introduction and notation

The idea of this paper is to show the close relationships between the metric g, its
Levi-Civita connection ∇, the curvature tensor Riem with components Rabcd, the
sectional curvature function, the holonomy group and the Weyl conformal tensor C
with components Cabcd in 4−dimensional manifolds admitting a metric. Some of
these results for Lorentz and positive definite (and occasionally for neutral) signature
have been discussed elsewhere and it is intended that this paper collects them together
and adds new ones, mostly for neutral signature. To establish notation, M denotes
a 4−dimensional, smooth, connected, paracompact, hausdorff manifold with smooth
metric g of any signature, collectively labelled (M, g). The tangent space at m ∈ M
is denoted by TmM and the vector space of 2−forms (usually referred to as bivectors)
at m by ΛmM . The symbol u.v denotes the inner product at m, g(m)(u, v), of
u, v ∈ TmM . To allow for all signatures, a non-zero member u ∈ TmM is called
spacelike if u.u > 0, timelike if u.u < 0 and null if u.u = 0. The symbol ∗ denotes
the usual Hodge duality (linear) operator on ΛmM . For positive definite signature

∗Balkan Journal of Geometry and Its Applications, Vol.23, No.1, 2018, pp. 44-57.
c© Balkan Society of Geometers, Geometry Balkan Press 2018.



Curvature and holonomy in 4-dimensional manifolds 45

an orthogonal basis of unit vectors x, y, z, w is employed whilst for Lorentz signature
an orthonormal basis x, y, z, t is sometimes used with x.x = y.y = z.z = −t.t = 1
together with its derived real null basis l, n, x, y where

√
2l = z + t and

√
2n = z − t

so that l and n are null and l.n = 1 with all other such inner products zero. For
neutral signature one may choose an orthonormal basis x, y, s, t at m ∈ M with
x.x = y.y = −s.s = −t.t = 1 and an associated null basis of (null) vectors l, n, L,N
at m given by

√
2l = x + t,

√
2n = x − t,

√
2L = y + s and

√
2N = y − s so that

l.n = L.N = 1 with all other such inner products zero.

For all signatures a 2−dimensional subspace (2−space) V of TmM is called space-
like if each non-zero member of V is spacelike, or each non-zero member of V is
timelike, timelike if V contains exactly two, null 1−dimensional subspaces (direc-
tions), null if V contains exactly one null direction and totally null if each non-zero
member of V is null. Thus a totally null 2−space consists, apart from the zero vec-
tor, of null vectors any two of which are orthogonal and can only occur for neutral
signature. A bivector E at m with components Eab(= −Eba) necessarily has even
matrix rank. If this rank is 2, E is called simple and if 4, it is called non-simple. If
E is simple it may be written Eab = uavb − vaub for u, v ∈ TmM and the 2−space
spanned by u and v is uniquely determined by E and called the blade of E (and then,
unless more precision is required, E or its blade is written u ∧ v). A simple bivector
is called spacelike (respectively, timelike, null or totally null) if its blade is spacelike
(respectively, timelike, null or totally null). All types may occur for neutral signature
whereas for Lorentz signature 2−spaces and simple bivector blade may only be space-
like, timelike or null. For positive definite metrics all tangent vectors, 2−spaces and
blades of simple bivectors are spacelike. In the positive definite and neutral signature

cases any bivector E satisfies
∗∗
E = E whilst in Lorentz signature

∗∗
E = −E.

For positive definite and neutral signatures define the subspaces
+

Sm ≡ {E ∈

ΛmM :
∗
E = E} and

−
Sm ≡ {E ∈ ΛmM :

∗
E = −E} and also the subset S̃m ≡

+

Sm∪
−
Sm,

of ΛmM . Then each member of ΛmM may be written uniquely as the sum of a

member of
+

Sm and a member of
−
Sm and if

+

E ∈
+

Sm and
−
E ∈

−
Sm, one has [

+

E,
−
E] = 0

where [ ] denotes matrix commutation. Thus one may write ΛmM =
+

Sm⊕
−
Sm. Each

of
+

Sm and
−
Sm is a Lie algebra isomorphic to o(3) for positive definite signature and

to o(1, 2) for neutral signature, each under [ ] and so ΛmM is the Lie algebra product
+

Sm⊕
−
Sm and which is isomorphic to o(2, 2) or to o(4). For Lorentz signature

+

Sm and
−
Sm are trivial and play no further role here for this signature. The set S̃m has no
simple members in the positive definite case whilst in the neutral case its only simple
members are totally null. More details on such matters may be found in [12, 19, 2, 3].
Finally, one may define an inner product P on ΛmM by P (A,B) = AabBab for

A,B ∈ ΛmM and then A ∈ ΛmM is simple ⇔ P (A,
∗
A) = 0. In the neutral case this

inner product reduces to a Lorentz metric on each of
+

Sm and
−
Sm. If

+

E ∈
+

Sm and
−
E ∈

−
Sm, P (

+

E,
−
E) = 0.

In what is to follow, those subalgebras of o(4), o(1, 3) and o(2, 2) which can be
holonomy algebras for the connection ∇ will be important. Thus, in Tables 1 − 3,
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the first three columns list all possible holonomy algebras, their dimensions and a
spanning set in the bivector representation which is convenient for present purposes.
They are taken from [3, 17] for o(1, 3), from [12] for o(4) and from [18, 19] for o(2, 2).
Complete lists for o(1, 3) may be found in [3] and for o(2, 2) in [1, 18]. Also, in Tables

1 and 3,
+

S denotes the Lie algebra
+

Sm (and similarly for
−
S), and for neutral signature

+

B denotes the 2−dimensional subalgebra of
+

S spanned in some null basis by l ∧ N

and l ∧ n − L ∧ N and similarly
−
B the 2−dimensional subalgebra of

−
S spanned by

l∧L and l∧n+L∧N . In Table 1, α, β ∈ R, for subalgebra 2(j) αβ 6= 0 and for 2(h)
and 3(d), α 6= ±β, whereas in Table 2, 0 6= ω ∈ R. As a general clause, and given the
existence of the metric g on M , tangent and cotangent spaces (together with their
tensor equivalents) will often be identified.

Table 1: Subalgebras for (+,+,−,−)

Type Dimension Basis Curvature Type
1(a) 1 l ∧ n O, D
1(b) 1 x ∧ y O, D
1(c) 1 l ∧ y or l ∧ s O, D
1(d) 1 l ∧ L O, D

2(a) 2 l ∧ n− L ∧N, l ∧N(=
+

B) O, D, A
2(b) 2 l ∧ n, L ∧N O, D, B
2(c) 2 l ∧ n− L ∧N , l ∧ L+ n ∧N O, B
2(d) 2 l ∧ n− L ∧N , l ∧ L O, D, B
2(e) 2 x ∧ y, s ∧ t O, D, B
2(f) 2 l ∧N + n ∧ L, l ∧ L O, D, B
2(g) 2 l ∧N , l ∧ L O, D, C
2(h) 2 l ∧N , α(l ∧ n) + β(L ∧N) O,D,C (αβ = 0), O,D,A (αβ 6= 0)
2(j) 2 l ∧N , α(l ∧ n− L ∧N) + β(l ∧ L) O, D, A
2(k) 2 l ∧ y, l ∧ n or l ∧ s, l ∧ n O, D, C
3(a) 3 l ∧ n, l ∧N , L ∧N Any
3(b) 3 l ∧ n− L ∧N , l ∧N , l ∧ L Any
3(c) 3 x ∧ y, x ∧ t, y ∧ t or x ∧ s, x ∧ t, s ∧ t O, D, C
3(d) 3 l ∧N , l ∧ L, α(l ∧ n) + β(L ∧N) O,D,C (α = 0),O,D,C,A (α 6= 0)

4(a) 4
+

S, l ∧ n+ L ∧N Any

4(b) 4
+

S, l ∧ L+ n ∧N O, D, B, A

4(c) 4
+

B,
−
B =< l ∧ L, l ∧N , l ∧ n, L ∧N > Any

5 5
+

S,
−
B Any

6 6 o(2, 2) Any

2 Sectional curvature and the Weyl conformal ten-
sor

It has been shown that if the sectional curvature function σm at each m ∈M , arising
from g and Riem, is given then, under a weak restriction (for the positive definite case
[14]) and under the same restriction (but with some very special cases excluded for
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Table 2: Subalgebras for (+,+,+,−)

Type Dimension Basis Curvature Types
R2 1 l ∧ n O,D
R3 1 l ∧ x O,D
R4 1 x ∧ y O,D
R6 2 l ∧ n, l ∧ x O,D,C
R7 2 l ∧ n, x ∧ y O,D,B
R8 2 l ∧ x, l ∧ y O,D,C
R9 3 l ∧ n, l ∧ x, l ∧ y O,D,C,A
R10 3 l ∧ n, l ∧ x, n ∧ x O,D,C
R11 3 l ∧ x, l ∧ y, x ∧ y O,D,C
R12 3 l ∧ x, l ∧ y, l ∧ n+ ω(x ∧ y) O,D,C,A
R13 3 x ∧ y, y ∧ z, x ∧ z O,D,C
R14 4 l ∧ n, l ∧ x, l ∧ y, x ∧ y Any
R15 6 o(1, 3) Any

Table 3: Subalgebras for (+,+,+,+)

Type Dimension Basis Curvature Types
S1 1 x ∧ y O,D
S2 2 x ∧ y, z ∧ w O,D,B
S3 3 x ∧ y, x ∧ z, y ∧ z O,D,C
+

S3 3
+

S O,A
+

S4 4
+

S, G (G ∈
−
S) O,D,B,A

S6 6 o(4) Any

Lorentz [4, 16, 3] and neutral signatures [5]), the metric g can be uniquely recovered
from it. The exceptional cases can be described.

It is also true that the Weyl conformal tensor, with components Cabcd arising from
g, if nowhere zero, uniquely determines the conformal class to which g belongs in the
positive definite case [6]. This result can be merged with the other signatures and the
result (for all signatures) is [7] that if the (necessarily closed) subset U of points of M
at which the equation Cabcdk

d = 0 has a non-trivial solution for k ∈ TmM has empty
interior in the manifold topology on M , C uniquely determines the conformal class of
g. In the positive definite case this condition on U is equivalent to {m : C(m) = 0}
having empty interior in M (and is slightly weaker than that in the first sentence
above). Thus for all three signatures one has a close relationship between sectional
curvature and metric and between the Weyl conformal tensor and the conformal class
of the metric.

3 The curvature map

Now consider a similar problem this time imposed on the curvature tensor Riem.
This latter tensor gives rise, for each signature, to a linear map f : ΛmM → ΛmM
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called the curvature map and given by

(3.1) f : F ab → RabcdF
cd

The rank of f at m ∈ M will be referred to as the curvature rank at m and the
range space of f is denoted rgf(m). It is rgf(m) which will be important in what
is to follow and this section will be devoted to a classification of rgf(m) for all
signatures. To do this it is first noted that rgf(m) is a subspace of the infinitesimal
holonomy algebra φ′(m) of ∇ at m which, in turn, is a subalgebra of the holonomy
algebra φ of ∇ [13] (but rgf may not be a subalgebra of φ). Next let r̃gf(m) be the
smallest (not necessarily holonomy) subalgebra of the appropriate orthogonal algebra
containing rgf(m) (the intersection of all the subalgebras containing rgf(m)). The
reason for this construction will be made clear later. Then r̃gf(m) is a subalgebra of
the holonomy algebra φ which may differ from φ and may not itself be a holonomy
algebra; hence the need for care in Tables 1 − 3 where the first column is the actual
holonomy algebra of (M, g). If dim rgf(m) = 1, then r̃gf(m) = rgf(m) and one may,
using the metric g(m), write Rabcd = gaeR

e
bcd = aFabFcd at m for 0 6= a ∈ R where F

spans rgf(m). Then the identity Ra[bcd] = 0 (where square brackets denote the usual
skew-symmetrisation of the indices enclosed) gives Fa[bFcd] = 0 which implies that F
is simple and so rgf(m) is spanned by a simple bivector. So only those 1-dimensional
subalgebras of o(4), o(1, 3) and o(2, 2) spanned by simple bivectors are retained in
Tables 1− 3.

It turns out convenient to classify the map f at m into one of five mutually disjoint
and exhaustive classes A, B, C and D and O (with the latter being the trivial case
when Riem(m) = 0) which is determined by rgf(m) and referred to as the curvature
class (of Riem or of the curvature map f) at m. This classification applies to all
signatures although it was given in a slightly different, but equivalent form for the
Lorentz case in [3] and positive definite case in [12].

ClassD. This arises when dim rgf(m) = 1 with rgf(m) being spanned by a
(necessarily simple) bivector. In this case rgf(m) = r̃gf(m)

ClassC. This arises when there exists a unique (up to a scaling) 0 6= k ∈ TmM
such that Fabk

b = 0 for each F ∈ rgf(m) (and k will be said to annihilate F ).
ClassB. This arises when rgf(m) =< F,G > (where <> denotes a spanning set)

for independent F, G ∈ ΛmM with [F, G] = 0 and where F and G have no common
annihilator. Thus rgf(m) = r̃gf(m). By writing, in the positive definite and neutral

cases, F =
+

F +
−
F for unique members

+

F ∈
+

Sm and
−
F ∈

−
Sm, and similarly for G, it

can easily be shown that class B can be equivalently described by the ability to choose

rgf(m) =< F,G > with F ∈
+

Sm and G ∈
−
Sm. In the Lorentz case, the subalgebra

type R7 is the unique (up to isomorphism) 2−dimensional abelian subalgebra without
a common annihilator and similarly for S2 in the positive definite case.

ClassA. This arises when rgf(m) is not of class B, C, D or O.

The main idea here is to first consider the holonomy group of (M, g) with holonomy
algebra φ listed in Tables 1 − 3. Since, for m ∈ M , rgf(m) is a subset (and r̃gf(m)
a subalgebra) of φ (and recalling that r̃gf(m) may not be a holonomy algebra) one
can, after some calculation, complete the fourth column in the tables. This is mostly
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known for positive definite and Lorentz signatures and so only the neutral case need
be discussed. As will be seen below, it is the subalgebra r̃gf(m) which will turn out
to be important here.

Thus in the neutral case, for class B, rgf(m) is a 2−dimensional abelian subal-
gebra of o(2, 2) and for which there does not exist a non-trivial common annihilator
k for the members of rgf(m). For class C, it is clear that dim rgf(m) ≥ 2 and it is
noted that if k annihilates bivectors F,G ∈ rgf(m) it annihilates their Lie bracket
[F, G] and so k annihilates each member of the 2− or 3− dimensional subalgebra
< F, G, [F, G] >. (That it is a subalgebra follows since any subspace of ΛmM con-
sisting entirely of simple bivectors has dimension at most 3 [19].) Thus for class C,
dim rgf(m) equals 2 or 3 as also does dimr̃gf(m). For class D, there are exactly
two independent members k ∈ TmM such that, if rgf(m) =< F >, k annihilates
F . For class A, dim rgf(m) ≥ 2 and there does not exist k which annihilates every
F ∈ rgf(m). This last result follows since, otherwise, if dim rgf(m) equals 2 or 3 one
would get class C whilst if dim rgf(m) ≥ 4 a contradiction follows since, then, each
member of rgf(m) would be simple. Said a little differently, f(m) is of class D if and
only if rgf(m) (=r̃gf(m)) is one of the four 1−dimensional subalgebras 1(a) − 1(d)
of o(2, 2) spanned by a simple bivector and f(m) is of class B if and only if rgf(m)
(=r̃gf(m)) is one of the 2−dimensional abelian subalgebras 2(b), 2(c), 2(d), 2(e) or
2(f) of o(2, 2). Class C applies to f(m) if and only if the subalgebras r̃gf(m) arising
are 2(g), 2(h) (with αβ = 0), 2(k), 3(c) and 3(d)(α = 0). If rgf(m) is none of those
above it is of class A and r̃gf(m) is one of the subalgebras 2(a), 2(h)(αβ 6= 0), 2(j),
3(a), 3(b) and 3(d)(α 6= 0), (plus one other 2−dimensional, non-holonomy subalgebra
labelled 2(l) (=< l∧N,α(l∧n−L∧N) +β(l∧L+n∧N) >, αβ 6= 0) in [10] and two

other 3−dimensional, non-holonomy subalgebras labelled 3(e) (=<
+

S >) and 3(f)

(=<
+

B, l ∧ L + n ∧ N >) in [10]) together with those subalgebras of dimension ≥ 4
(which necessarily have no common annihilator and which include one 4−dimensional,

non-holonomy subalgebra labelled 4(d) (=<
+

S, l ∧ L >) in [10]).

The possibilities for the curvature class for each holonomy algebra for ∇ and signa-
ture are mostly obvious except, maybe, for the following remarks in the neutral case;
(i) if the holonomy algebra is 2(c) there are no simple members and so classes C and
D cannot occur, (ii) holonomy algebras 2(h) (αβ 6= 0) and 2(j) are not abelian and
have no common annihilator and so classes C and B cannot occur, (iii) holonomy
algebra 3(d) (α = 0) has a common annihilator l, (iv) holonomy type 4(a) contains
the members l ∧ n, L ∧N and l ∧N and so classes B and C are possible, (v) holon-
omy type 4(b) contains the members x ∧ y and s ∧ t and so class B is possible and,
in fact, all classes except C are possible since if the latter is a possibility one has
a 2− or 3−dimensional subalgebra E each of whose members is simple and with a

common annihilator. Then E is not contained in
+

S since
+

S (and
−
S) has no such

subalgebras. Thus if F ′ = F + λ(l ∧ L + n ∧ N) and G′ = G + µ(l ∧ L + n ∧ N)

are independent simple (non-zero) members of E with F,G ∈
+

S and real numbers
λ and µ with λ 6= 0 6= µ, then F ′ + αG′ is also simple for each α ∈ R. It fol-

lows (Section 1) that P (F ′,
∗
F ′) = P (G′,

∗
G′) = P ((F ′ + αG′), (

∗
F ′ + α

∗
G′)) = 0.

Since l ∧ L + n ∧ N ∈
−
S, this gives P (F, F ) = 4λ2 > 0, P (G,G) = 4µ2 > 0
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and P (F,G) = 4µλ (and hence (P (F,G))2 = P (F, F )P (G,G)). Now if F and G
are proportional one achieves the contradiction that some linear combination of the
bivectors F ′ and G′ is a multiple of the non-simple bivector l∧L+n∧N . Otherwise
P ((F +αG), (F +αG)) = 4(λ+αµ)2 ≥ 0. This inequality and those above contradict

the fact that P is a Lorentz metric on
+

S of signature (−1,−1, 1). Similar remarks

deal with the absence of class C in the positive definite
+

S4 case. The classes for the
other signatures are straightforward to calculate (see e.g. [3, 12]).

Now, for any signature of g, consider the following equation for Riem(m) and
0 6= k ∈ TmM

(3.2) Rabcdk
d = 0

Since Riem(m) may be written out as symmetrised products of the bivectors spanning
rgf(m), it follows that k satisfies (3.2) if and only if it annihilates each F ∈ rgf(m).
Thus if f(m) is class D there are exactly two independent solutions of (3.2) for k, for
class C there is exactly one and for classes A and B there are none.

It is remarked here that if one imposes the Ricci flat condition Ricc = 0 on
(M, g), where Ricc denotes the Ricci tensor with components Rab = Rcacb, serious
restrictions arise on the range spaces available for f(m) on M . Under such conditions
the Weyl conformal tensor equals Riem and further details may be found in [3, 8].
For example, the curvature class D can only arise for neutral signature and then rgf
is of type 1(d) [and the Weyl tensor is of type (N,O) in the classification given in
[2]]. Similar restrictions apply if one imposes the proper Einstein space condition on
(M, g).

Now, for any signature, let A also denote the subset of M consisting of precisely
those points m where rgf(m) is of class A and similarly for subsets B, C, D and O.
Then one has the disjoint decomposition M = A∪B∪C∪D∪O. In order to do calculus
on the individual regions of such a decomposition one requires a decomposition in
terms of their (open) topological interiors in M .

Lemma 3.1. For any signature the manifold M may be disjointly decomposed as

(3.3) M = intA ∪ intB ∪ intC ∪ intD ∪ intO ∪ Z

where int denotes the interior operator in the manifold topology of M . In this decom-
position A, A ∪ B, A ∪ B ∪ C and A ∪ B ∪ C ∪D are open in M (and so A =intA)

and Z is a closed subset of M satisfying intZ = f� .

Proof. For the Lorentz case see [3], chapters 9 and 12. The following proof covers
all cases. First note that the subset A ∪ B is precisely the subset of M on which
(3.2) has no non-trivial solutions. Let m ∈ A ∪ B, let U be an open coordinate
neighbourhood of m and consider the continuous map h : U × S3 → Rq (for q some
positive integer and for some ordering of the tensor components which arise) given

by h : (m′, X)→ RabcdX
d

(γ(X,X))
1
2

for m′ ∈ U where γ is some positive definite metric on M

(which exists since M is paracompact and could be chosen as g in the positive definite
case) and X will be used to denote both a non-zero member of TmM and the signed
direction in S3 which it uniquely determines (since the map h is indifferent to this
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choice). Now for 0 6= X ′ ∈ TmM , h(m,X ′) 6= (0, ..., 0) (q times) and so there exists
an open neighbourhood of (m,X ′) of the form W ×W ′ with W ⊂ U and W ′ ⊂ S3

both open and with h nowhere zero on W × W ′. Applying this to each X ′ ∈ S3

yields an open covering with sets like W ′ of the compact space S3. On taking a finite
subcover of this covering the associated first factors in the pairs W ×W ′ above give a
finite collection of open subsets of U each containing m whose intersection is an open
neighbourhood W ′′ ⊂ U of m and with h non-vanishing on W ′′ × S3. It follows that
W ′′ ⊂ (A∪B) and so A∪B is open. Next let m ∈ A and, since A∪B is open, choose an

open neighbourhood U of m with U ⊂ A∪B (and hence U∩C = U∩D = U∩O = f� ).

If dim rgf(m) ≥ 3 the rank theorem shows that U ∩ B = f� and so U ⊂ A. If dim
rgf(m) = 2 let rgf(m) =< F, G > with [F, G] 6= 0 (since m is not in B). Then
there exists an open neighbourhood U ′ of m on which smooth extensions F ′ and G′

of F and G, respectively, exist, which are in rgf on U ′ and which are independent
with [F ′, G′] 6= 0 at each point of U ′. Thus U ′ ⊂ A and it follows that A is open.
The openness of A ∪ B ∪ C and A ∪ B ∪ C ∪D follow from a consideration of rank.
Finally, let U ⊂ Z be open. Then by the previous results and the disjointness of the
decomposition U ∩ A = f� and if U ∩ B(= U ∩ (A ∪ B)) 6= f� it is open by the

previous result and contradicts A∩intB = f� . Thus U ∩B = f� and, by definition,
U∩intC = f� . Suppose U∩C 6= f� and let m ∈ U∩C. Then dim rgf(m) ≥ 2 and so

there exists an open neighbourhood W of m with W ⊂ U (⇒W ∩A = W ∩B = f� )

with dim rgf(m) ≥ 2 on W . So W ∩D = W ∩ O = f� . This implies that W ⊂ C

and hence that W∩intC 6= f� and gives the contradiction that U∩intC 6= f� (by

disjointness since U ⊂ Z). So U ∩ C = f� . Similarly one shows that U ∩ D = f�
and so U ⊂ O which gives the contradiction that U∩intO 6= f� . Thus U = f� and
intZ = f� and this completes the proof. �

4 The determination of the metric

Retaining the notation above and with g of Lorentz signature, the equivalents of
Lemma 4.1 and Theorem 4.2 below can be found in [3] whereas if g is of positive
definite signature, these equivalents can be found in [12]. Now let g be of neutral
signature and let g′ be another smooth metric on M with the same curvature tensor
Riem as g. Then g′aeR

e
bcd + g′beR

e
acd = 0 on M and so each member F of rgf at

each m ∈M satisfies (and it is remarked that any index movement is done using the
original metric g)

(4.1) g′aeF
e
b + g′beF

e
a = 0

This is just the statement that the bivectors F in rgf(m) are also in the orthogonal
algebra of g′. Now if F,G ∈ rgf(m), so that they each satisfy (4.1), then it is easily
checked that [F, G] also satisfies (4.1) even if it is not in rgf(m)). Thus (4.1) holds for
each member of r̃gf(m) (and it is recalled from Section 3 that if k ∈ TmM annihilates
F and G, it annihilates [F,G]). In this sense, only subalgebras of o(2, 2) need to be
considered for examining the curvature type in what is to follow and explains the
introduction of r̃gf(m), as promised earlier. The idea is then to consider (4.1) for
r̃gf(m) at each m ∈ M using the decomposition of Lemma 3.1, and for this the
following Lemma is useful.
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Lemma 4.1. (a) If (4.1) holds at m ∈ M and F (m) is simple the blade of F is
an eigenspace of the linear map associated with g′ with respect to g at m (that is,
ka → g′abk

b (g′ab ≡ gacg′cb) for k ∈ TmM).

(b) If (4.1) holds at m ∈ M and V is the α-eigenspace (α ∈ C) of the linear
map associated with F with respect to g then V is an invariant subspace of g′ and, in
particular, if k is a (real or complex) non-degenerate eigenvector of F (that is, < k >
is a 1−dimensional eigenspace of F ) at m then k is an eigenvector of g′ with respect
to g at m. This result also follows if F and g′ are interchanged.

(c) If (4.1) holds at m for F = l ∧ n− L ∧N , then l ∧N and n ∧ L are invariant
subspaces for g′ with respect to g at m.

Proof. The proof for (a) is the same as in [3] (chapter 9) even though this latter
proof is for Lorentz signature. For (b) the proof consists of assuming k is in the
α-eigenspace of F , that is, F abk

b = αka at m and then contracting (4.1) with ka.
If one defines a 1-form p by pa ≡ g′abk

b, then one can see that the vector P given
by P a ≡ gabpb satisfies F abP

b = αP a and is hence in the α-eigenspace of F . Thus
g′abk

b(= gacg′cbk
b) = P a and the result follows. The result (c) now follows from (b)

since l ∧N and n ∧ L are eigenspaces of F (cf. [19]). �

For m ∈ A and for the subalgebras in Table 1, it follows from a similar proof
in [9] (which included only subalgebras of o(2, 2) giving holonomy algebras), that
the only solution of (4.1) is g′ = cg (0 6= c ∈ R). However, this result also follows
for the subalgebras 3(e), 3(f) and 4(d) (not given in Table 1—see section 3) and
all subalgebras of dimension ≥ 4 (including type 4(d)), since they each contain a
subalgebra isomorphic to 2(a). It also follows for the subalgebra 2(l) (also not given
in Table 1—see section 3). To see this note that Lemma 4.1(a) shows that l∧N is an
eigenspace of g′ with respect to g. Then with F = α(l∧n−L∧N)+β(l∧L+n∧N),
l ± iN and n ± iL are non-degenerate eigenvectors of F and hence from Lemma
4.1(b), eigenvectors of g′ with respect to g. It then easily follows that l, n, L,N are
each eigenvectors of g′ with the same eigenvalue and so g′ is a multiple of g.

If m ∈M \ (A ∪O) one can similarly find an algebraic expression for g′ in terms
of g and the geometry of rgf(m), but they are more complicated. For example, for
m ∈ C the members of rgf(m) are all simple and the algebraic determination of g′

is straightforward (Lemma 4.1(a)). In fact one gets g′ab = αgab + βkakb at m, where
k ∈ TmM represents the common annihilator and which may be spacelike, timelike
or null, and α, β ∈ R. For the open subset A of M , one has the following result.

Theorem 4.2. Suppose dimM = 4 and g and g′ are two metrics on M of arbitrary
signature and which have the same tensor Riem. Then g′ = cg (0 6= c ∈ R) on each
component of the open subset A of M (c being, possibly, component dependent). In
particular, if the subset A is open and dense in M , g′ = cg (0 6= c ∈ R) on M and g
and g′ have the same Levi-Civita connection on M .

Proof. This mostly follows from the above work. On the open region A, g and g′ are
smooth and conformally related and so g′ = φg, for some smooth, nowhere-zero, real-
valued function on each component of A (φ being, possibly, component dependent).
Now we use the Bianchi identities derived from the respective Levi-Civita connections
∇ and ∇′ of g and g′. With a semi-colon and a vertical stroke denoting, respectively,
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a covariant derivative with respect to ∇ and ∇′ on any coordinate neighbourhood in
A, they are

(4.2) Rabcd;a +Rbc;d −Rbd;c = 0 Rabcd|a +Rbc|d −Rbd|c = 0,

where Rab ≡ Rcacb are the components of the common Ricci tensors of g and g′. The
relation between the Christoffel symbols Γabc of ∇ and Γ′abc of ∇′ is easily computed
and is

(4.3) Γ′abc − Γabc =
1

2φ
(φ,cδ

a
b + φ,bδ

a
c − φagbc),

where a comma denotes a partial derivative and φa = gabφ,b. The remainder of the
proof consists of subtracting the equations in (4.2) (to remove the partial derivatives)
and performing some judicious contractions (which can be found in [3]) to achieve the
result Rabcdφ

d = 0. By recalling the results following (3.2), it follows that φ,a = 0
in any coordinate neighbourhood in A, and the first result follows. If A is (open
and) dense in M , g′ and g are conformally related on A, and hence on M with a
smooth conformal factor with vanishing derivative on A and hence on M . Since M
is connected, this conformal factor is constant on M . It follows that ∇ = ∇′ on M
(and so ∇g′ = 0). �

It is remarked that for the region M \ A, the comments before the statement of
Theorem 4.2 show the more complicated relations between g and g′ there and hence
that g and g′ may have different signatures (for example, if M = D or M = C).

A comparison of the above results with those arising from the study of recurrence
given for each of the three signatures in [3, 9] is worthwhile. In particular, the above
results are quite different from these obtained in recurrence theory, since in the latter
study a fixed metric g and its Levi-Civita connection ∇ were assumed and solutions
to (amongst others) the equation ∇h = 0 sought for a second order, symmetric tensor
h. Amongst these results it is shown that, starting from the original g and ∇, if
the holonomy algebra arising from ∇ has dimension ≥ 4, then the only solutions
for h to ∇h = 0 for a second order, non-degenerate, symmetric tensor h is when h
is a (non-zero) constant multiple of g. Thus in these cases the connection uniquely
determines the metric up to a constant conformal factor. If one of the other holonomy
types occurs, the solutions for h can still be found and the (non-degenerate) solutions
amongst them generate all the alternative metrics compatible with ∇. In Theorem
4.2, however, the Levi-Civita connection ∇′ of g′ is not assumed equal to the Levi-
Civita connection ∇ of g, but is proved equal to it if M = A and if g and g′ have the
same tensor Riem.

5 Remarks and examples

There are a number of issues arising between the holonomy group, the space rgf , the
curvature tensor, the holonomy algebra φ and the infinitesimal holonomy algebra φ′.
In fact, independently of signature, given m ∈M , no two of rgf(m), φ′(m) and φ need
be equal. In addition one has the powerful Ambrose-Singer theorem which supplies
the holonomy algebra if Riem and the parallel transport map are known on M . Of
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course, examples of the non-equality of rgf(m) for m in some subset U ⊂ M , and φ
can be constructed by a judicious (smooth) joining of U with the rest of M . But non-
trivial, simpler examples also exist for metrics of any of the three signatures (and are
easily generalised, if dimM > 4, by taking suitable products) where dim rgf(m) = 1
for all m ∈M (so that M = D) but where φ is three dimensional. They were studied
in connection with projective relatedness and can be found in [11, 3, 19, 12].

The connection ∇ of the original metric g does not necessarily determine the
metric (up to a constant conformal factor) from which it came and, in fact, may not
even determine the signature of such a metric. From the viewpoint of the present
paper one may have metrics g and g′ on M with the same tensor Riem but with
distinct Levi-Civita connections (but not in some open subset of A as Theorem 1
shows). As an example of this latter feature consider the metric g on M = R4 with
a (connected) global coordinate domain u, v, y, s and given by (cf [3])

(5.1) H(u, y, s)du2 + 2dudv + dy2 − ds2

for some nowhere-zero function H. This metric has neutral signature and on the open
subset of M where ∂2H/∂y2.∂2H/∂s2 − (∂2H/∂y∂s)2 6= 0 it has curvature rank 2,
curvature class C and at each m, rgf(m) is of type 2(g). The vector field la = gabu,b
spans the unique common annihilator of the members of rgf and is null and parallel.
Now let g′ab = gab + λ(u)u,au,b for some nowhere-zero function λ so that g′ is non-
degenerate and also has neutral signature. Then g and g′ can be checked to have the
same tensor Riem but ∇′ 6= ∇ provided λ is not a constant function. [If one assumes,
in addition, that ∂2H/∂y2 = ∂2H/∂s2 in (5.1), Ricc ≡ 0 and g and g′ have the same
Weyl conformal tensor but are not conformally related. One can then calculate in
this case that the Weyl tensor satisfies Cabcdk

d = 0: see Section 2.] A particular
example of this type is the neutral signature analogue of the plane wave metric in
general relativity and arises, for example, when H = a(u)y2 + b(u)s2 + c(u)ys for

functions a, b and c on the open subset where ab − c2

4 6= 0 (and its conformally flat
special case when a = −b and c = 0). For this example the Weyl tensor types, in the
notation of [2], are (N,N) (for regions where (a+b)2 6= c2), (N,O) (for regions where
(a+b)2 = c2 6= 0) and (O,O) (the conformally flat case for regions where a = −b and
c = 0). These examples may be converted to Lorentz signature by changing the sign
in the last term in (5.1) (see [3]) where similar results are obtained. [In fact, quite
generally, for any Lorentz or neutral signature metric g which admits a parallel null
vector field l the metric g′ab = gab + λ(u)u,au,b has the same signature as g and the
same tensor Riem but whose connection differs from that of g if λ is not a constant
function. In addition, if one of g and g′ is Ricci flat the other is and the Weyl tensors
of g and g′ agree.]

As another example consider the metric

(5.2) ε1dt
2 + dx2 + x2dy2 + ε2(x+ t)2ds2

where M is that open submanifold of R4 given in the global coordinate system −∞ <
y, s <∞ and 0 < x, t <∞. This metric is positive definite if ε1 = ε2 = 1, Lorentz if
−ε1 = ε2 = 1 and neutral if ε1 = ε2 = −1. In the neutral case one may compute with
Maple that the curvature class is D and that Rabcd = AHabHcd for some function
A : M → R where H = L∧N in some global null basis l, n, L,N and in the language of
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Section 1. Thus, in this notation, the global null vector fields l and n satisfy Rabcdl
d =

Rabcdn
d = 0 and hence Rabl

b = Rabn
b = 0. Further, the Ricci tensor has Jordan-Segre

type {(11)(11)} with L and N also spanning a Ricci eigenspace. From the expression
for the Weyl conformal tensor with components Cabcd one then finds Cabcdl

bld =
−R6 lalc and Cabcdn

bnd = −R6 nanc where R is the Ricci scalar, R = Rabg
ab. A similar

calculation then shows that CabcdL
bLd = ALaLc and CabcdN

bNd = ANaNc for some
function A. Thus l, n, L,N are repeated principal null directions (repeated pnds) for
C in the classification of this latter tensor [2]. The Weyl tensor, considered as a 6× 6
matrix in the usual way, has (maximum) rank 6 everywhere. Now C may admit at
most four repeated pnds and this, only when the algebraic type is (D1,D1), in the
notation of [2], and so this latter is the algebraic type of C on M .

To examine the metric more closely consider the possibility of parallel or properly
recurrent vector fields on M (see, for example, [9] for definitions, etc). Any parallel
vector field k satisfies Rabcdk

d = 0 from the Ricci identity and any recurrent non-null
vector field may be scaled so that it is parallel. Any parallel vector field must therefore
lie everywhere in the span of ∂/∂x and ∂/∂t and it is then easily computed that there
are no parallel or recurrent vector fields in this case. Thus any properly recurrent
vector field k is null and satisfies ka;b = kapb for some 1−form p. A differentiation of
this last equation and use again of the Ricci identity shows that Rabcdk

bkd = Bkakc
and Rabk

b = −Bka for some function B. It follows, as before, that k is a repeated
pnd of C and hence is proportional to either L or N . But it can then be computed
that neither L nor N are properly recurrent for (5.2). Thus no recurrent vector fields
are admitted by the metric (5.2). The holonomy algebra φ may now be calculated
from Table 1 by first noting that no recurrent vector fields are allowed and second
that rgf =< L ∧ N > must be a subalgebra of φ and hence that φ must have a
subalgebra of type 1a (and this latter condition rules out 2(c), 2(e), 2(f) and 4(b)).
Thus only types 4(a), the 5−dimensional subalgebra and o(2, 2) remain.

Finally, rgf fixes the null vectors L and N at each point and one may supplement
these with null vectors l and n to give a null tetrad, l, n, L,N on some connected, open
neighbourhood of any m ∈ M . Now suppose that (5.2) admits a (local) totally null

recurrent bivector field F on (a possible reduced version of) U , so that F (m) ∈
+

Sm

or F (m) ∈
−
Sm for each m ∈ U . Thus F is simple and it is easily checked that if

F = P ∧ Q for orthogonal, null vector fields P and Q on U then F is recurrent on
U if and only if Pa;b = Parb +Qar

′
b for 1−forms r and r′ and with a similar obvious

expression for Q, on U . Now since F is recurrent on U the Ricci identity for F
and the above expression for Riem shows, after an obvious contraction to expose H
from rgf , that F and the bivector H spanning rgf satisfy [F,H] is a multiple of

F on U . Since H = L ∧ N , this can only happen if (for F ∈
+

Sm) F = l ∧ N or

F = n ∧ L, or (F ∈
−
Sm) if F = l ∧ L or F = n ∧ N on U , in the above basis. This

follows by writing 2L ∧ N = (l ∧ n + L ∧ N) − (l ∧ n − L ∧ N) and using the fact
that [F,H] is a multiple of F . However, it is easily checked that neither of these
bivectors is recurrent for (5.2). Thus (5.2) admits no totally null recurrent bivectors
and hence cannot have holonomy type 4a or be 5−dimensional since each of these
admit a totally null, recurrent bivector. (In fact, 4a admits a pair of recurrent totally
null bivectors whilst the 5−dimensional case is characterised by admitting only one
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such bivector.) It follows that the holonomy algebra for (5.2) is o(2, 2). This metric
thus has dim rgf(m) = 1 at each m ∈M yet its holonomy algebra is the most general
possible. Essentially identical results apply to the Lorentz metric option in (5.2). The
calculation is rather similar, in fact slightly easier, since now at most two repeated
principal null directions for C are possible at any point (since C is nowhere zero) and
the number of holonomy types is less. The curvature rank is 1 with curvature class
D and the holonomy type is again the most general one (labelled R15 in Table 2; see
[17, 3]). In the well-known Petrov classification of the Weyl conformal tensor for this
signature [15], C is of type D. Again, with the positive definite option in (5.2) almost
identical results can be obtained, and are much easier to achieve. In this case [12] is
helpful.

One final theorem may be given and which involves certain types of symmetries
on (M, g). A curvature collineation on M is a global, smooth vector field X satisfying
LXRiem = 0 and a Weyl collineation onM is a global, smooth vector fieldX satisfying
LXC = 0. The collection of such vector fields is, in each case, a Lie algebra which, in
general, is infinite-dimensional as is easily shown by modifying the Lorentz examples
in [3]. A consideration of the local flows associated with such vector fields then easily
leads to the following theorem, the first of which is a consequence of Theorem 4.2,
and the second of the work in Section 2.

Theorem 5.1. (i) Let M be a 4−dimensional, smooth, connected, paracompact,
Hausdorf manifold admitting a smooth metric g of any signature and suppose M = A.
Then the Lie algebra of curvature collineations on M equals the Lie algebra of homo-
thetic vector fields on M and is hence finite-dimensional.

(ii) Let M be a 4−dimensional, smooth, connected, paracompact, Hausdorf man-
ifold admitting a smooth metric g of any signature and suppose that at no m ∈M is
there a non-trivial solution for k ∈ TmM to Cabcdk

d = 0. Then the Lie algebra of
Weyl collineations on M equals the Lie algebra of conformal vector fields on M and
is hence finite-dimensional.
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