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Abstract. We consider geometric properties of semi-simple Lie groups
by root system and try to use the relation between roots in generated
Euclidean space and sectional curvature using Killing form. Then we
investigate the behavior of Cartan decomposition with Lie algebra au-
tomorphisms and show how such automorphims connect the roots and
subsequently sectional curvature. Finally, by adding a Killing form to
dual pairing we create an Abelian metric Lie algebra and show that how
primitive features of metric can present relations between the roots.
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1 Introduction

Assume G is a Lie group and g = TeG denote its Lie algebra. A Lie group H of a Lie
group G is a subgroup which is also a submanifold, also, Lie algebra of H which we
present it by h is a Lie subalgebra of g. We define ad : g → g with

adX(Y ) = [X,Y ],

for all X,Y ∈ g. Whenever

[X,Y ] = ∇XY −∇Y X,

we may regard ∇ as a bilinear mapping from g × g into g and ∇XY is an invariant
vector field if X and Y are invariant vector fields. One of the most known Lie
subalgebras is center which defined as follow

Definition 1.1. The subgroup Z(G) = {x ∈ G : xy = yx, ∀y ∈ G}, is called the
center of G. It is a Lie subgroup with corresponding Lie subalgebra

Z(g) = {X ∈ g : [X,Y ] = 0,∀Y ∈ g}.
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Definition 1.2. [3] Let g be any Lie algebra. If X,Y ∈ g, define K(X,Y ) =
Tr(adXadY ). Then K is a symmetric bilinear form on g, called the Killing form.

K is associative, in the sense that K([X,Y ], Z) = K(X, [Y, Z]), for all X,Y, Z ∈ g.
The Killing form is invariant under all automorphisms of g and it’s also attributed
to G and is in particular Ad(G)-invariant. Let G be a connected Lie group, if G is
compact then Killing form is negative definite; if Killing form is negative definite then
G is compact and has finite fundamental group; and G is compact and semi-simple if
and only if Killing form is negative definite [5].

A Lie subalgebra h ⊂ g is called an ideal if [h, g] ⊂ h. The Lie algebra of a normal
Lie subgroup of G is necessarily an ideal. If I1 and I2 are two ideals in a Lie algebra
g with zero intersection, then I1 and I2 are orthogonal subspaces with respect to the
Killing form. The orthogonal complement with respect to Killing form of an ideal is
again ideal.

A Lie algebra g is called simple if it has no nontrivial ideals (that is 0 and g are
the only ideals in g). It is called semi-simple if it is a direct sum of simple Lie algebras
or contains no nonzero solvable ideals. Note that this in particular implies that the
center Z(g) = 0. A Lie group is called simple (respectively semi-simple) if its Lie
algebra is simple (respectively semi-simple). The Cartan criterion states that a Lie
algebra is semi-simple if and only if the Killing form is non-degenerate and for this
reason it is called regular quadratic, in the other word the Killing form is a scalar
product (nondegenerate symmetric bilinear form).

2 Semisimple Lie algebra

In this section we study differential geometry of complex semi-simple Lie groups and
we will show that how the sectional curvature can play a key role. From definition of
Killing form one obtains routinely

K(X, [Y, Z]) = K(Y, [Z,X]) = K(Z, [X,Y ]),

for all X,Y, Z ∈ g. Then ∇XY =
1

2
[X,Y ]. Since Killing form is nondegenarate on

any semi-simple Lie group G, actually it’s a bi-invariant scalar product. Let H be
a Lie subgroup of G contains identity element such that h and g denotes their Lie
algebras, respectively. Then

h⊥ = {X ∈ h | K(X,Y ) = 0;∀Y ∈ g},

where h⊥ is the orthogonal complement of h with respect to K.

Proposition 2.1. [2] If g is any finite-dimensional Lie algebra over C and t is a
nilpotent subalgebra, then there is finite subset Φ ∈ t∗ such that
(i) g = ⊕α∈Φgα where

gα := {X ∈ g|(adH − α(H)I)nX = 0},

for all H ∈ t and some n.
(ii) t ⊆ g0.
(iii) [gα, gβ ] ⊆ gα+β.
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Any gα are called generalized weight spaces of g relative to adt with generalized
weights α. The elements of gα are called generalized weight vectors. The decomposi-
tion statement (1) holds for any representation of a nilpotent Lie algebra over C on a
finite-dimensional complex vector space. Statement (2) is clear since adt is nilpotent
on t. As a consequence g0 is a subalgebra of g. A nilpotent Lie subalgebra t of a
finite-dimensional complex Lie algebra g is a Cartan subalgebra if t = g0. It’s trivial
t is a Cartan subalgebra if and only if t = Ng(t). If g is semisimple a Cartan algebra
t is maximal abelian.
These are two important theorems concerning Cartan subalgebras of finite-dimensional
complex Lie algebras [7]:

Theorem 2.2. Any finite-dimensional complex Lie algebra g has a Cartan subalgebra.

Theorem 2.3. If t and t
′
are Cartan subalgebras of a finite-dimensional complex Lie

algebra g, then there exists an inner auto-morphism a ∈ Intg such that a(t) = t
′
.

The gα are 1-dimensional and are therefore given by

gα = {X ∈ g | [V,X] = α(V )X},(2.1)

for all V ∈ t, α ∈ t∗. Notice that g0 is simply Cg(t), the centralizer of t; it includes
t. The set of all nonzero α ∈ t∗ for which gα ̸= 0 is denoted by Φ; the elements of Φ
are called the roots of g relative to t and are finite in number. With this notation we
have a root space decomposition (or Cartan decomposition) [3]:

g = Cg(t)⊕
⨿
α∈Φ

gα,(2.2)

such that Φ = {α ∈ t∗ | α ̸= 0, gα ̸= 0}. It’s trivial Cg(t) = t. We know that
a subalgebra t of a semi-simple Lie algebra g is a CSA (Cartan subalgebra) if and
only if it is a maximal toral subalgebra. Therefore the next theorem is valid and the
hypothesis is compatible.

Theorem 2.4. [3] Let G be a semi-simple Lie group. If g is its Lie algebra and t is
a toral maximal subalgebra of g, then
(i) [gα, gβ ] ⊆ gα+β for any α, β ∈ t∗.
(ii) If α ∈ Φ and X ∈ gα, then X is nilpotent(ad−nilpotent).
(iii) If α, β ∈ t∗, and α+ β ̸= 0, then K(X,Y ) = 0 for any X ∈ gα and Y ∈ gβ.

Proof. The proof of (i) is trivial. To prove (ii) it’s obvious that [gγ , gδ] = 0 if γ+δ = 0,
and we know that Φ is finite set; therefore there exists an integer number n such that
[Y, ...[Y,X]]...] = adn(Y )X = 0, for any Y ∈ β, β ∈ Φ. In the other words nβ + α
cannot be a root for any n. Suppose X ∈ gα, Y ∈ gβ and V ∈ t are arbitrary elements;
then

α(V )K(X,Y ) = K([V,X], Y ) = −K(X, [V, Y ]) = −β(V )K(X,Y ).(2.3)

Thus (α(V ) + β(V ))K(X,Y ) = 0 and the proof is complete. �

The curvature tensor If ζ1, ζ2, ζ3 are vector fields on g then recall that the
curvature tensor is given by

R(ζ1, ζ2)ζ3 =
1

4
[[ζ1, ζ2], ζ3].
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We may regard R as a multilinear map from g × g to g. Let α, β, γ ∈ t∗ such that
α+ β ̸= 0 and X ∈ gα, P ∈ g−α, Y ∈ gβ , Z ∈ gγ and V,W,L ∈ t are arbitrary vector
fields. One computes

R(V,X)P =
1

4
α(V )[X,P ],(2.4)

R(X,Y )V =
1

4
(α+ β)(V )[Y,X],

R(V,W )X = R(V,W )L = R(X,P )V = 0.

It is trivial that K(gα, g−α) ̸= 0.
The Ricci tensor For all X,Y ∈ g, the Ricci tensor of g is given by

Ric(X,Y ) = −1

4
K(X,Y )

We express the following important theorem which can be proved in same way
using the geometrical approach. We note first that for any α ∈ t∗, there is unique
bi-invariant vector field Wα ∈ t such that

K(Wα, V ) = α(V ),(2.5)

for any V ∈ t[3].

Theorem 2.5 ([3]). (a) Φ spans t∗ .
(b) If α ∈ Φ, then −α ∈ Φ.
(c) Let α ∈ Φ, X ∈ gα, Y ∈ g−α, then [X,Y ] = K(X,Y )Vα.
(d) If α ∈ Φ, then [gα, g−α] is one dimensional, with basis {Vα}.
(e) K(Vα, Vα) = α(Vα) ̸= 0, for α ∈ Φ.
(f) If α ∈ Φ and X is any nonzero element of gα, then there exists Y ∈ g−α such
that X,Y, Hα = [X,Y ] span a three dimensional simple subalgebra of g isomorphic to
sl(2,F).

(g) Hα =
2Vα

K(Vα, Vα)
; Hα = −H−α.

Notation From Proposition 8.4 in [3] we notice that if α ∈ Φ, the only scalar
multiples of α which are roots are α and −α.
We define the positive definite symmetric bilinear form (, ) : t∗× t∗ −→ F by (α, β) =
K(Vα, Vβ) = α(Vβ) = β(Vα), where α, β ∈ t∗, (α, β) = ∥α∥∥β∥ cos θ [8].

Theorem 2.6 ([3]). Let g be a semisimple Lie algebra and t be a maximal toral
subalgebra. If Φ is a root system and E an Euclidean space, then
(a) Φ spans E, and 0 does not belong to Φ.
(b) If α ∈ Φ then −α ∈ Φ, but no other scalar multiple of α is a root.

(c) If α, β ∈ Φ, then β − 2(β, α)

(α, α)
∈ Φ.

(d) If α, β ∈ Φ, then
2(β, α)

(α, α)
∈ Z.

According to the assertions of the theorem, we consider Φ as a root system in the

Euclidean space E. If α ∈ Φ and β ∈ Φ∪0, then
2(β, α)

(α, α)
∈ {0,±1,±2,±3}. Therefore
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(α, α) ̸= 0. Also, the possible values for θ, which is the angle between α and β as
follows

θ ∈ {π
2
,
π

3
,
2π

3
,
π

4
,
3π

4
,
π

6
,
5π

6
}.(2.6)

Since the statement from Theorem 2.6 will be used frequently, we present it by ⟨β, α⟩
briefly, and we shall use this form throughout this paper. If Φ is the root system of
a semi-simple Lie algebra g, we also refer to l = dimt as the rank of g.

Theorem 2.7. Let G be a semisimple Lie group with a Killing form; then K ≤ 0,
where K is the sectional curvature.

Proof. From the definition of sectional curvature, we have

K(X,Y ) =
R(X,Y, Y,X)

K(X,X)K(Y, Y )−K(X,Y )2
=

1

4

K([X,Y ], [X,Y ])

K(X,X)K(Y, Y )−K(X,Y )2

=
1

4

K(X,Y )2K(Vα, Vα)

−K(X,Y )2
= −1

4
K(Vα, Vα),(2.7)

for any X ∈ gα and Y ∈ g−α(α ∈ Φ). Since (α, α) > 0, the proof is complete. �

Lemma 2.8. Let G be a semisimple Lie group with a Killing form. Then

β(Vα) = 4
√
cαcβ cos θ,

for any α, β ∈ Φ and V ∈ t.

Proof. From Theorem 2.7 we have

K(Vα, Vα) = −4cα = (α, α) =∥ α ∥2,

and hence ∥ α ∥= 2
√
−cα; also similar calculations show that ∥ β ∥= 2

√−cβ , then

β(Vα) = g(Vα, Vβ) = (α, β) = ∥α∥∥β∥ cos θ = 4
√
cαcβ cos θ.

The proof is complete. �

Using Theorem 2.6 and straightforward calculations, one obtains

⟨β, α⟩ = 2

√
cβ
cα

cos θ,(2.8)

where θ is the angle between vectors of α and β in Euclidean space. The following
states are valid

If θ =
π

3
, 2

π

3
, then cβ = cα,

If θ =
π

4
, 3

π

4
, then cβ =

√
2cα,

If θ =
π

6
, 5

π

6
, then cβ =

√
3cα.
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The relation between curvature and sectional curvature is given by

R(Vβ , X)Y = 4(
√
cβcα cos θ)Ric(X,Y )Vα,

for any X ∈ gα and Y ∈ g−α. Ricci curvature is obtained as follow

Ric(Vα, Vβ) = −√
cαcβ cos θ.

Using 2, we have

R(Vβ , X)Y = −4Ric(Vα, Vβ)Ric(X,Y )Vα,

and for X ∈ gα and Y ∈ gβ we can obtain

R(X,Y )Vβ = −(Ric(Vα, Vγ) +Ric(Vβ , Vγ))[X,Y ].

Lemma 2.9 ([3]). Let α and β be nonproportional roots. If (α, β) > 0 ( i.e., if the
angle between α and β is strictly acute), then α − β is a root. If (α, β) < 0, then
α+ β is a root.

Suppose α, β ∈ Φ and X ∈ gα, Y ∈ g−α, Z ∈ gβ , P ∈ g−β are arbitrary elements.
Using theorem 2.5 we have

K([X,Y ], [Z,P ]) = K(X,Y )K(Z,P )K(Vα, Vβ).(2.9)

From definition of Killing form we have

K([X,Y ], [Z,P ]) = K(Z, [P, [X,Y ]]) = K(Z, [[P,X], Y ]) +K(Z, [X, [P, Y ]]),

= K([P,X], [Y,Z]) +K([P, Y ], [Z,X]).(2.10)

From the Lemma 2.9 one can realize that in any case one of the last two terms of
(2.10) must be zero. As a result of Theorem 2.4, we have [gα, gβ ] = 0 if α + β /∈ Φ.
As indicated in Theorem 2.5 part b, if α − β is a root then α + β cannot be a root
and vice versa. Using Lemma 2.9 we review both of the following cases.
(1)If (α, β) > 0, and α−β ∈ Φ, therefore α+β /∈ Φ then [Z,X] = [P, Y ] = 0, so from
(2.9) and (2.10) we have

K([P,X], [Y,Z]) = K(X,Y )K(Z,P )K(Vα, Vβ) = 4K(X,Y )K(Z,P )
√
cαcβ cos θ.

In this case cos θ > 0 and the possible values for θ are
π

3
,
π

4
,
π

6
.

(2)If (α, β) < 0, then α + β ∈ Φ. Since α − β /∈ Φ then [P,X] = [Y, Z] = 0, so from
(2.9) and (2.10) we have

K([P, Y ], [Z,X]) = K(X,Y )gK(Z,P )gK(Vα, Vβ) = 4K(X,Y )K(Z,P )
√
cαcβ cos θ.

Because cos θ < 0 and the possible values for θ are
2π

3
,
3π

4
,
5π

6
. Furtheremore, if

(α, β) < 0, then

K(Vα+β , Vα+β) = −4cα − 4cβ + 8
√
cαcβ cos θ,(2.11)
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and if (α, β) > 0, then

K(Vα−β , Vα−β) = −4cα − 4cβ − 8
√
cαcβ cos θ.(2.12)

Suppose α + β is a root; then for ∥α + β∥ = 2
√−cα+β , and also from (2.11), one

obtains

cα+β = cα + cβ − 2
√
cαcβ cos θ.(2.13)

Also, since α+ β is a root if cos θ < 0 and from (2.13), we get

cos θ =
cα+β − cα − cβ

−2
√
cαcβ

< 0,(2.14)

where θ is the angle between α and β. Therefore cα+β < cα + cβ . In the case of
α− β ∈ Φ it’s straightforward that cos θ > 0, and cα−β > cα + cβ . Let α, β, λ ∈ Φ, so
(α, β) < 0, thus α + β ∈ Φ; assume [Vλ, [X,Y ]] = 0, for all X ∈ gα and Y ∈ gβ , and
then (α + β)(Vλ) = α(Vλ) + β(Vλ) = 0 and we have (α+ β, λ) = (α, λ) + (β, λ) = 0.
In this case we conclude (α, λ) = (β, λ) = 0 or (α, λ) = −(β, λ), and we obtain

∥α∥ = −cos θ1
cos θ

∥β∥,

where θ and θ1 are the angles between α, λ and β, λ respectively. Therefore the
relationship between the measures of any pair of roots can be expressed by another
root which should be not perpendicular to the other two roots. We should stress that
cos θ1 and cos θ have opposite signs. If θ2 is the angle between α and β, then

⟨β, α⟩ = −2
cos θ cos θ2

cos θ1
,

and from (2.8) we get

cβ
cα

=
cos2 θ

cos2 θ1
.

Lemma 2.10. Let α and β be nonproportional roots. There exist γ ∈ Φ, where θ1,
θ2 and θ3 are the angles between γ, α; β, γ and α + β, γ, respectively. If (α, β) < 0,
then cos θ1 ≤ cos θ3 and cos θ2 ≤ cos θ3.

Proof. First note that (γ, α+ β) = (γ, α) + (γ, β) implies

∥α∥ cos θ1 + ∥β∥ cos θ2 = ∥α+ β∥ cos θ3.

Assuming that cos θ3 < 0, the possible amounts for θ3 are
2π

3
,
3π

4
,
5π

6
; for l = cos θ3,

we infer

−∥α∥ cos θ1 − ∥β∥ cos θ2 = −l∥α+ β∥ ≤ −l (∥α∥+ ∥β∥) ,

and the last equation can be written as

− cos θ1
−l

∥α∥+ − cos θ2
−l

∥β∥ ≤ ∥α∥+ ∥β∥.

The claim follows. �
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Any nonzero vector α in the generated Euclidean space can potentially define
a reflection σα, with reflecting hyperplane Pα = {β ∈ E | (β, α) = 0}. This can
explicitly be written as [3]:

σα(β) = β − 2(β, α)

(α, α)
α.

Suppose ⟨β, α⟩ = ⟨σα(β), σβ(α)⟩, where σ is a reflection; then

2(α, β)

(β, β)
=

(σα(β), σβ(α))

(σβ(α), σβ(α))
=

(β − 2(β, α)

(α, α)
α, α− (α, β)

(β, β)
β)

(α− 2(α, β)

(β, β)
β, α− 2(α, β)

(β, β)
β)

.

Assuming (α, β) ̸= 0, by straightforward calculations we get

cos θ = ∥β∥∥α∥,(2.15)

where θ is the angle between α and β. Assume K(Vα, Vδ) = K(Vβ , Vδ) ̸= 0, where
α, δ, β ∈ Φ and (α, β) ̸= 0. Then (α, δ) = (β, δ) leads to

∥α∥
∥β∥

=
cos θ2
cos θ1

,(2.16)

where θ1 and θ2 are the angles between α, δ and β, δ respectively. From Table 1. in

[3], it can be seen that
cos θ2
cos θ1

= 1,
√
2,
√
3. Let θ3 be the angle between α and β; then

(i)If
∥α∥
∥β∥

=
cos θ2
cos θ1

= 1 ⇒ θ2 = θ1, θ3 =
π

3
,
2π

3
,

(ii)If
∥α∥
∥β∥

=
cos θ2
cos θ1

=
√
2 ⇒ θ1 =

π

3
, θ2 =

π

4
; θ1 =

2π

3
, θ2 =

3π

4
; θ3 =

π

4
,
3π

4
,(2.17)

(iii)If
∥α∥
∥β∥

=
cos θ2
cos θ1

=
√
3 ⇒ θ1 =

π

3
, θ2 =

π

6
; θ1 =

2π

3
, θ2 =

5π

6
; θ3 =

π

6
,
5π

6
.

Now let ⟨α, δ⟩ = ⟨σδ(α), σα(δ)⟩ and ⟨β, δ⟩ = ⟨σδ(β), σβ(δ)⟩, then cos θ1 = ∥α∥∥δ∥,

cos θ2 = ∥β∥∥δ∥ and hence
∥α∥
∥β∥

=
cos θ1
cos θ2

, using assertion 1 in 2.17 it can be concluded

cos θ2 = cos θ1.

3 Automorphism of Lie algebras

Definition 3.1. A linear map φ : g → g
′
of Lie algebras is called a homomorphism

of Lie algebras if it preserves the bracket in the following manner

φ([X,Y ]) = [φX,φY ],

for any X,Y ∈ g.
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Any homomorphism from g to g is called automorphism. Let φ be a Lie algebra
automorphism; for all V,W ∈ t, we have

φ([V,W ]) = [φ(V ), φ(W )] = 0,

and thus t is invariant under φ. From theorem 2.5 we have [gα, gβ ] = 0 if α + β /∈
Φ ∪ {0} then

φ([X,Y ]) = [φ(X), φ(Y )] = 0,

for any X ∈ gα and Y ∈ gβ such that α+β /∈ Φ∪{0}; therefore if φ(gα+β)gδ =, then
δ /∈ Φ ∪ {0}. Furthermore, if X ∈ gα (α ∈ Φ) is an arbitrary element and φ(X) = V ,
(V ∈ g0), such that α(V ) ̸= 0, then

φ([V,X]) = φ(α(V )X) = α(V )φ(X),(3.1)

and

φ([V,X]) = [φ(V ), φ(X)] = 0.(3.2)

Comparing (3.1) and (3.2), it follows that φ([V,X]) = 0 and hence [V,X] = α(V ) = 0,
which is impossible; then such automorphisms and gα, (α ∈ Φ) cannot exist such that
φ(gα) ⊆ g0.

Theorem 3.1. Let G be a semisimple Lie group with a Killing form. Then:
(1)If φ : gα → gβ, then φ : g−α → g−β.
(2) φ : gα → gβ, then φ(Vα) = Vβ, for any α ∈ Φ and V ∈ t

Proof. (1) Let φ : gα → gβ and X ∈ gα, Y ∈ g−α be arbitrary elements. From
theorem 2.5, we have

φ([X,Y ]) = [φ(X), φ(Y )] = K(X,Y )φ(Vα) ∈ t,(3.3)

Assume φ(g−α) ⊆ gγ , γ ∈ Φ, since [φ(X), φ(Y )] ∈ t; from Theorem 2.4 we get
β + γ = 0 and the proof of (1) is complete.
(2) Killing form being invariant under all automorphisms, we infer

φ([X,Y ]) = K(X,Y )φ(Vα),(3.4)

and

φ([X,Y ]) = [φ(X), φ(Y )] = [X̃, Ỹ ] = K(X̃, Ỹ )Vβ ,(3.5)

where X ∈ gα, Y ∈ g−α, X̃ ∈ gβ , Ỹ ∈ g−β . Comparing 3.4 and 3.5 complete the
proof. �

4 Creating a metric Lie algebra by Cartan subalge-
bra

In this section we define a symmetric bilinear form {., .} on tad∗ × t∗ by adding Killing
form to the dual pairing of t and t∗, that is by

{V + α,W + β} = α(W ) + β(V ) +K(V,W ),(4.1)
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for V,W ∈ t, α, β ∈ t∗. The coadjoint representation ad ad∗ : t → End(t∗) is given by

V.α(W ) = ad∗(V )α(W ) = −α ◦ ad(V )(W ),

for all α ∈ t∗ and V,W ∈ t. On the vector space had∗ × h∗ we define a Lie bracket [, ]
by [4]

(4.2) [V + α,W + β] = [V,W ] + ad∗h(V )β − ad∗h(W )α+ θ(V,W ).

It’s trivial that the metric Lie algebra tad∗ × t∗ is an Abelian Lie algebra [6]. It is
not hard to prove that {., .} is invariant and nondegenrate, and its signature equals
(dimt, dimt). Hence (tad∗ × t∗, {., .}) is a metric Lie algebra [1].

Lemma 4.1. Let tad∗ × t∗ be a metric extended Lie algebra with t a maximal toral
subalgebra of a semi-simple Lie algebra. For any Vα + β ∈ tad∗ × t∗, the possible

amounts for
∥β∥
∥α∥

are 1,
√
2,
√
3 and undetermined, for α, β ∈ Φ.

Proof. Since the extended Lie algebra is a metric one, using (4.1) one can obtain

{Vα + β, Vα + β} = 2β(Vα) +K(Vα, Vα) > 0.

Therefore, 2(β, α) > −(α, α) and

2(β, α)

(α, α)
> −1,(4.3)

from Theorem 2.6, one can find 4.3; taking positive integer numbers, we present it

as ⟨β, α⟩; then ⟨β, α⟩ = 2
∥β∥
∥α∥

cos θ, where θ is the angle between β and α. From the

definition of the positive definite symmetric bilinear form (., .) it’s trivial θ restricted

to {π
2
,
π

3
,
π

4
,
π

6
}, and ⟨β, α⟩ = 0, 1, 2, 3. From Section 9.4 and Table 1. in [3] it ca be

seen that

∥β∥
∥α∥

= 1,
√
2,
√
3, undetermined.(4.4)

The proof is complete. �

Corollary 4.2. Let (tad∗ × t∗, {., .}) be a metric Lie algebra where t is a maximal
toral subalgebra of a semi-simple Lie algebra and Vα + β ∈ tad∗ × t∗ is an arbitrary
element; then α− β ∈ Φ if (α, β) ̸= 0.

Proof. Using Lemma 4.1 one can see that cos θ ≥ 0; if (α, β) ̸= 0, then cos θ > 0,
from Lemma 2.9; the proof is complete. �

Lemma 4.3. Let (tad∗ × t∗, {., .}) be a metric Lie algebra which t is a maximal toral
subalgebra of a semisimple Lie algebra and Vα + β, Vβ + α ∈ tad∗ × t∗, then

{Vα + β, Vβ + α} ≠ 0,

where α, β ∈ Φ and V ∈ t.
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Proof. Since both Vα + β, Vβ + α ∈ tad∗ × t∗, both
∥β∥
∥α∥

and
∥α∥
∥β∥

satisfy 4.4 and the

only possible angle between α and β is
π

3
and ∥β∥ = ∥α∥. Assume Vα +β, Vβ +α are

orthogonal; then

{Vβ + α, Vβ + α} = 2∥α∥∥β∥ cos θ + ∥β∥2 = ∥α∥∥β∥+ ∥β∥2 = 0.

But this is impossible and the proof is complete. �

Theorem 4.4. Let (tad∗×t∗, {., .}) be a metric Lie algebra and the arbitrary elements
Vα+β, Vγ + δ ∈ tad∗ × t∗ are orthogonal. θ1, θ2 and θ3, are the angles between β, γ; δ,

α and α,γ respectively. Assume that
∥β∥
∥α∥

and
∥δ∥
∥γ∥

are determinable and equal; then

one of the θ1, θ2 must be equal to
π

2
, where α, β, γ, δ ∈ Φ.

Proof. From (4.1) we have

{Vα + β, Vγ + δ} = β(Vγ) + δ(Vα) +K(Vγ , Vα) = (β, γ) + (δ, α) + (α, γ)

= ∥β∥∥γ∥ cos θ1 + ∥δ∥∥α∥ cos θ2 + ∥α∥∥γ∥ cos θ3.(4.5)

Assume Vα + β, Vγ + δ are orthogonal; then

∥β∥∥γ∥ cos θ1 + ∥δ∥∥α∥ cos θ2 + ∥α∥∥γ∥ cos θ3 = 0.

Thus

∥β∥
∥α∥

cos θ1 +
∥δ∥
∥γ∥

cos θ2 + cos θ3 = 0.(4.6)

Assume V =
∥β∥
∥α∥

=
∥δ∥
∥γ∥

. Since V is determinable, then V = 1,
√
2,
√
3 and V (cos θ1+

cos θ2) + cos θ3 = 0 or

V =
− cos θ3

cos θ1 + cos θ2
;

using 2.6, it can be concluded that possible amounts for cos of angles between roots are

given by {0,±1

2
,±

√
2

2
,±

√
3

2
}. Now let V = 1; in this case − cos θ3 = cos θ1+cos θ2 ̸=

0, and all the possible cases are as follows:

• If θ1 =
π

2
, then θ2 = π − θ3,

• If θ2 =
π

2
, then θ1 = π − θ3.

Let V =
√
2, then −

√
2

2
cosθ3 = cos θ1 + cos θ2, and we have

• If θ3 =
π

4
, then (θ1 =

π

2
; θ2 =

2π

3
) or (θ1 =

2π

3
; θ2 =

π

2
),
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• If θ3 =
3π

4
, then (θ1 =

2π

3
; θ2 =

π

2
) or (θ1 =

π

2
; θ2 =

2π

3
).

Let V =
√
3, then −

√
3

3
cosθ3 = cos θ1 + cos θ2 and we have

• If θ3 =
π

6
, then (θ1 =

2π

3
; θ2 =

π

2
) or (θ1 =

π

2
; θ2 =

2π

3
),

• If θ3 =
5π

6
, then (θ1 =

2π

3
; θ2 =

π

2
) or (θ1 =

π

2
; θ2 =

2π

3
).

The proof is trivial. �

Theorem 4.5. Let Vα+β, Vγ + δ ∈ tad∗ × t∗ be arbitrary elements such that ⟨β, α⟩ =
⟨σα(β), σβ(α)⟩, ⟨δ, γ⟩ = ⟨σγ(δ), σδ(γ)⟩; then

{Vα + β, Vγ + δ} ≤ 2

where σ is reflection and α, β, γ, δ ∈ Φ and V ∈ t.

Proof. Note first that by Lemma 4.1,
∥β∥
∥α∥

,
∥δ∥
∥γ∥

= 1,
√
2,
√
3 and assume θ is the angle

between the α and β, from 2.15, one can see always θ ∈ {π
3
,
π

4
,
π

6
} and the following

cases are included

• If θ =
π

3
⇒ ∥β∥

∥α∥
= 1, ∥β∥∥α∥ =

1

2
, and finally ∥β∥ = ∥α∥ =

√
2

2
,

• If θ =
π

4
⇒ ∥β∥

∥α∥
=

√
2, ∥β∥∥α∥ =

√
2

2
, and finally ∥β∥ = 1, ∥α∥ =

√
2

2
,

• If θ =
π

6
⇒ ∥β∥

∥α∥
=

√
3, ∥β∥∥α∥ =

√
3

2
, and finally ∥β∥ =

√
3√
2
, ∥α∥ =

√
2

2
.

Therefore ∥α∥ is constant and equal to

√
2

2
, hence

{Vα + β, Vα + β} = ∥α∥2 + 2∥α∥∥β∥ cos θ =
1

2
+

√
2∥β∥ cos θ,

and one can easily obtain that:

• If θ =
π

3
⇒ ∥Vα + β∥2 = 1,

• If θ =
π

4
⇒ ∥Vα + β∥2 =

3

2
,

• If θ =
π

6
⇒ ∥Vα + β∥2 = 2.
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Thus ∥Vα + β∥ = 1,

√
3√
2
,
√
2, same calculations are valid for Vγ + δ. Now it can be

seen that the greater amount for both elements is
√
2 and the fundamental properties

of metric

{Vα + β, Vγ + δ} ≤ ∥Vα + β∥∥Vγ + δ∥,

complete the proof. �

Corollary 4.6. Let Vα+β ∈ tad∗×t∗ be an element for which ⟨β, α⟩ = ⟨σα(β), σβ(α)⟩;
then Vα+β is an unit if and only if θ =

π

3
, where θ is the angle between α and β and

σ is reflection.

Proof. Due to the proof of Theorem 4.5 one can see that ∥α∥ =

√
2

2
; then

1 = {Vα + β, Vα + β} = ∥α∥2 + 2∥α∥∥β∥ cos θ =
1

2
+
√
2∥β∥ cos θ.

A review of all possible cases shows that:

1. If θ =
π

3
⇒ 1 =

1

2
+ 1.

1

2
,

2. If θ =
π

4
⇒ 1 ̸= 1

2
+
√
2.

√
2

2
,

3. If θ =
π

6
⇒ 1 ̸= 1

2
+
√
2.

√
3√
2
.

√
3

2
.

Now the proof is trivial. �

Theorem 4.7. Let Vα+β ∈ tad∗×t∗ be an element for which ⟨β, α⟩ = ⟨σα(β), σβ(α)⟩.
Since (α, β) ̸= 0, then K(X,Y ) = −1

8
, for all X ∈ g(α−β), Y ∈ g−(α−β).

Proof. Because Vα + β ∈ tad∗ × t∗ and it’s invariant under reflections, using Lemma
4.1 and 2.15 leads to (α, β) > 0, and also from Lemma 2.9 one can see α − β ∈ Φ.
The relation between sectional curvatures is given by 2.12 as follows

K(X,Y ) = −1

4
K(Vα−β , Vα−β) = cα + cβ + 2

√
cαcβ cos θ.(4.7)

By straightforward calculations for all θ =
π

3
,
π

4
,
π

6
one can obtain cα−β = −1

8
and

the proof is complete. �

Theorem 4.8. Let Vα + β ∈ tad∗ × t∗ be an element which ⟨β, α⟩ = ⟨σα(β), σβ(α)⟩
and there exists δ ∈ Φ such that K(Vα, Vδ) = K(Vβ , Vδ). Then Vβ +α ∈ tad∗ × t∗ can
exist, and Vα + β is a unit vector.
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Proof. The assumptions illustrate that cos θ3 = ∥α∥∥β∥ and cos θ3 > 0, where θ3 is

the angle between α and β. Also, from Theorem 4.5 it can be seen that ∥α∥ =

√
2

2
,

and since (α, δ) = (β, δ) one obtains 2.16. Now ∥β∥ =
cos θ3
∥α∥

and 2.16 imply that

(4.8) ∥β∥2 =
cos θ1 cos θ3

cos θ2
.

By 2.17 one can realize that only (i) is possible, that is, θ2 = θ1 and θ3 =
π

3
, then

∥α∥ = ∥β∥ =

√
2

2
, then from Lemma 4.1 and the proof of Lemma 4.3 it can be seen

that Vβ + α can exist and

{Vα + β, Vα + β} = ∥α∥2 + 2∥α∥∥β∥ cos θ3 = 1.

The proof is complete. �
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