
Some notes on Riemannian extensions
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Abstract. In the present paper we study paraholomorphy property of
the Riemannian extension by using almost paracomplex structure on the
cotangent bundle. Then we investigate locally decomposable Golden struc-
ture on the cotangent bundle which related to this almost paracomplex
structure.
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1 Introduction

Let M be an n-dimensional C∞- manifold with torsion free connection ∇, T ∗M be
its cotangent bundle and π the bundle projection T ∗M → M . Let F (M) (F (T ∗M))
be the ring of real-valued C∞ functions on M(T ∗M). Then, we denote by ℑrs (M)
(ℑrs (T ∗M)) be the module over F (M) (F (T ∗M)) of C∞ tensor fields of type (r,s) on
M(T ∗M).

The local coordinates
(
U, xi

)
, i = 1, ..., n on M introduces on T ∗M a system

of local coordinates
(
π−1 (U) , xi, xī = pi

)
, ī = n + 1, ...2n, where xī = pi are the

components of the covector p in each cotangent space T ∗
xM,x ∈ U with respect to

the natural coframe
{
dxi

}
, i = 1, ..., n.

The vector and covector (1-form) field Y ∈ ℑ1
0 (M) and ν ∈ ℑ0

1 (M) have the
local expressions Y = Y i ∂

∂xi and ν = νidx
i in U ⊂ M , respectively. Then the

complete and horizontal lifts CY,HY ∈ ℑ1
0 (T

∗M) of Y ∈ ℑ1
0 (M) and the vertical lift

V ν ∈ ℑ1
0 (T

∗M) of ν ∈ ℑ0
1 (M) are given, respectively, by

CY = Y i
∂

∂xi
−
∑
i

ph∂iY
h ∂

∂xī
(1.1)

HY = Y i
∂

∂xi
+

∑
i

phΓ
h
ijY

j ∂

∂xī
,(1.2)

V ν =
∑
i

νi
∂

∂xī
,(1.3)
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with respect to the natural frame
{

∂
∂xi ,

∂
∂xī

}
, where Γhij are the components of the

Levi-Civita connection ∇g on M (see [25] for more details).
The Riemannian extension R∇ ∈ ℑ0

2 (T
∗M) which is a pseudo-Riemannian metric

is defined by
R∇

(
CX,CY

)
= −γ (∇XY +∇YX)

for any X,Y ∈ ℑ1
0 (M), where γ (∇XY +∇YX) = pm

(
Xj∇jY

m + Y j∇jX
m
)
(see

[25, p. 268]). The components of the Riemannian extension is given by the form

R∇ =
(
R∇IJ

)
=

(
−2pkΓ

k
ij δji

δij 0

)

with respect to the natural frame
{

∂
∂xi ,

∂
∂xī

}
, where δji denote the Kronecker delta.

The Riemannian extension R∇ ∈ ℑ0
2 (T

∗M) is completely determined by its action
of HY and V ν on T ∗M . Then the Riemann extension R∇ is given by

R∇
(
V ν, V ω

)
=R∇

(
HX,HY

)
= 0,

R∇
(
V ν,HY

)
=V (ν (Y )) = ν (Y ) ◦ π(1.4)

for any X,Y ∈ ℑ1
0 (M) and ν, ω ∈ ℑ0

1(M)[25].
The Riemannian extensions were defined by Patterson and Walker [19] and inten-

sively studied for the cotangent bundle [1, 2, 3, 4, 5, 6, 9, 11, 16, 20, 22].

2 The paraholomorphy properties of the Rieman-
nian extensions

An almost product structure F ∈ ℑ1
1

(
M2m

)
is defined by F 2 = I . The pair

(
M2m, F

)
is called an almost product manifold . An almost paracomplex manifold is an almost
product manifold

(
M2m, F

)
, such that the two eigenbundles T+M2m and T−M2m

associated to the two eigenvalues +1 and -1 of F , respectively, have the same rank.
Note that the dimension of an almost paracomplex manifold is necessarily even. Con-
sidering the paracomplex structure F , we obtain the set {I, F} on M , which is an
isomorphic representation of the algebra of order 2, which is called the algebra of
paracomplex (or double) numbers and is denoted by R (j) , j2 = 1 [8].

A tensor field ϑ ∈ ℑ0
q

(
M2m

)
is called pure with respect to the paracomplex struc-

ture F if

ϑ (FY1, Y2, ..., Yq) = ϑ (Y1, FY2, ..., Yq) = ... = ϑ (Y1, Y2, ..., FYq)

for any Y1, Y2, ..., Yq ∈ ℑ1
0

(
M2m

)
[24].

Using the paracomplex structure F and the pure tensor field ϑ, the operator ϕF
defined by

(ϕFϑ) (Y, Z1, ..., Zq) = (FY ) (ϑ (Z1, ..., Zq))
− Y (ϑ (FZ1, Z2, ..., Zq)) + ϑ ((LZ1F )Y, Z2, ..., Zq)
+...+ ϑ

(
Z1, Z2, ...,

(
LZqF

)
Y
)
,

(2.1)
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where LY denotes the Lie derivative with respect to Y and ϕFϑ ∈ ℑ0
q+1

(
M2m

)
[24].

If ϕFϑ = 0 , then ϑ is said to be an almost paraholomorphic with respect to the
paracomplex algebra R (j) ( see [17], [23]).

An almost para-Norden manifold
(
M2m, F, g

)
is given a real differentiable manifold

M2m endowed with an almost paracomplex structure F and a pseudo-Riemannian
metric g ∈ ℑ0

2

(
M2m

)
satisfying the Nordenian property (or purity condition)

g (FY,Z) = g (Y, FZ)(2.2)

for any Y,Z ∈ ℑ1
0

(
M2m

)
. The almost para-Norden manifold

(
M2m, F, g

)
is called a

paraholomorphic Norden manifold (or para-Kähler-Norden manifold) such that∇F =
0, where ∇ is Levi-Civita connection of g. We know that ∇F = 0 is equivalent to
ϕF g = 0 [23].

Salimov and Agca presented in [21] an almost paracomplex structure on T ∗M by{
FHY = V Ỹ ,
FV ν = H ν̃

(2.3)

for any Y ∈ ℑ1
0 (M) and ν ∈ ℑ0

1 (M) , where Ỹ = g ◦ Y ∈ ℑ0
1 (M), ν̃ = g−1 ◦ ν ∈

ℑ1
0 (M).
We put

W
(
X̄, Ȳ

)
=R∇

(
FX̄, Ȳ

)
−R∇

(
X̄, F Ȳ

)
.

IfW
(
X̄, Ȳ

)
= 0 for all vector fields X̄ and Ȳ which are of the form V ν, V ω or HX,HY ,

then W = 0. From (1.2)-(1.4) and (2.3)
W

(
V v, V ω

)
=R∇

(
FV ν, V ω

)
−R∇

(
V ν, FV ω

)
=R∇

(
H ν̃, V ω

)
−R∇

(
V ν,H ω̃

)
= V (ω (ν̃))− V (ν (ω̃)) = 0,

W
(
HY, V ν

)
= −W

(
V ν,HY

)
=R∇

(
FHY, V ν

)
−R∇

(
HX,FV ν

)
=R∇

(
V Y, V ν

)
−R∇

(
HX,Hν

)
= 0,

W
(
HX,HY

)
=R∇

(
FHX,HY

)
−R∇

(
HX,FHY

)
=R∇

(
V X̃,HY

)
−R∇

(
HX, V Ỹ

)
= V

(
X̃ (Y )

)
− V

(
Ỹ (X)

)
= 0

i.e. R∇ is pure with respect to the almost paracomplex structure F . Hence we have
the following theorem.

Theorem 2.1. The triple
(
T ∗M,R∇, F

)
is an almost para-Nordenian manifold.

In [25, p.238 and p.277], the Lie bracket operation for horizontal and vertical lifts
of vector fields on the cotangent bundle is given by the following[
HY,HZ

]
= H [Y,Z] + γR (Y,Z) = H [Y,Z] + V (pR (Y, Z)) ,[

HY, V ν
]
= V (∇Y ν) ,[

V γ, V ν
]
= 0

for all Y, Z ∈ ℑ1
0 (M) and γ, ν ∈ ℑ0

1 (M).
Now we give the condition for the Riemannian extension to be para-holomorphic

with respect to the almost paracomplex structure F . From (2.1), (2.3), (2.4) and by
using the fact that V νV f = 0 and HY V f = V (Y f), where f ∈ ℑ0

0 (M), we get(
ϕF

R∇
) (

HX,HY, V ν
)
=

(
FHX

) (
R∇

(
HY, V ν

))
− HX

(
R∇

(
FHY, V ν

))
+ R∇

(
(LHY F )

HX, V ν
)
+ R∇

(
HY, (LV νF )

HX
)

= −
(
R∇

(
V ν,H

(
g−1 ◦ pR (Y,X)

)))
= −V

(
ν
(
g−1 ◦ pR (Y,X)

))
= −V

(
g−1 (pR (Y,X) , ν)

)
= V (pR (X,Y ) ν̃) .
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Same calculation we find(
ϕF

R∇
) (

V ω,HY,HZ
)
=V (pR (Y, ω̃)Z + pR (Z, ω̃)Y ) ,(

ϕF
R∇

) (
HX, V ω,HY

)
=V (pR (X,Y ) ω̃)

and the others are zero. Therefore, we have

Theorem 2.2. The almost para-Norden manifold
(
T ∗M,R∇, F

)
is para-holomorphic

if and only if M is flat.

3 Locally Decomposable Golden Structures

Golden structure as a polynomial structure [13] on a Riemannian manifold was created
by M.Crasmareanu and C. Hretcanu [7, 14, 15]. Let ψ be a (1,1)-tensor field on M .
If the polynomial x2 − x − 1 is the minimal polynomial for a structure ψ satisfying
ψ2 − ψ − 1 = 0, then ψ is defined a Golden structure on M and (M,ψ) is a Golden
manifold.

A Golden Riemannian manifold can be defined as a triple (M,ψ, g) which consist
of a Riemannian manifold (M, g) endowed with a Golden structure ψ such that

g (ψY,Z) = g (Y, ψZ)

for any Y, Z ∈ ℑ1
0 (M) [7].

Suppose that (M, g) be a pseudo-Riemannian manifold endowed with the Golden
structure ψ such that ψ satisfies the condition

g (ψY,Z) = g (Y, ψZ)(3.1)

for all Y, Z ∈ ℑ1
0 (M). Hence we say that (M,ψ, g) is a Golden pseudo-Riemannian

manifold. Some applications are given in [18].
Gezer et. al. presented in [12] a Golden structure on T ∗M by

ψHY = 1
2

(
HY +

√
5V Ỹ

)
ψV ν = 1

2

(
V ν +

√
5H ν̃

)(3.2)

for any Y ∈ ℑ1
0 (M) and ν ∈ ℑ0

1 (M), where Ỹ = g◦Y ∈ ℑ0
1 (M), ν̃ = g−1◦ν ∈ ℑ1

0 (M).
Then we see that this structure related to F defined by (2.3) . Using (1.2)-(1.4), (3.1),
(3.2), we calculate

A
(
Ȳ , Z̄

)
=R∇

(
ψȲ , Z̄

)
−R∇

(
Ȳ , ψZ̄

)
for any Ȳ , Z̄ ∈ ℑ1

0 (T
∗M), then we have A

(
Ȳ , Z̄

)
= 0. Hence R∇ is pure with respect

to ψ and we have the following theorem.

Theorem 3.1. The triple
(
T ∗M,R∇, ψ

)
is a Golden pseudo-Riemannian manifold.

In [12], a Golden Riemannian manifold (M,ψ, g) is a locally decomposable Golden
Riemannian manifold if and only if ϕF g = 0 (or equivalently ϕψg = 0 ) where F is
the corresponding almost product structure. We put(

ϕψ
R∇

) (
X̄, Ȳ , Z̄

)
=

(
ψX̄

) (
R∇

(
Ȳ , Z̄

))
− X̄

(
R∇

(
ψȲ , Z̄

))
+ R∇

(
(LȲ ψ) X̄, Z̄

)
+ R∇

(
Ȳ , (LZ̄ψ) X̄

)
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for any X̄, Ȳ , Z̄ ∈ ℑ1
0 (T

∗M). Then we have(
ϕψ

R∇
) (

V ω,HY,HZ
)
=

√
5
2
V (pR (Y, ω̃)Z + pR (Z, ω̃)Y ) ,(

ϕψ
R∇

) (
HX, V ω,HY

)
=

√
5
2
V (pR (X,Y ) ω̃) ,(

ϕψ
R∇

) (
HX,HY, V ω

)
=

√
5
2
V (pR (X,Y ) ω̃)

and the others are zero. Therefore, we have

Theorem 3.2. . The triple
(
T ∗M,R∇, ψ

)
is a locally decomposable Golden pseudo-

Riemannian manifold if and only if M is flat.

Remark 3.1. The horizontal lift Hφ ∈ ℑ1
1 (T

∗M) is given by

HφHY = H (φY ) ,
HφV ν = V (ν ◦ φ)

for any Y ∈ ℑ1
0 (M) and ν ∈ ℑ0

1 (M). Also the followings hold

HI = I,
(
Hφ

)2
= H

(
φ2

)
...(3.3)

where I is the unit tensor field of type (1,1) [25].

From (3.3), φ2 −φ− I = 0 implies
(
Hφ

)2 −Hφ− I = 0. Hence, one can say that if φ
is a Golden structure on M , then Hφ is also a Golden structure on T ∗M [10]. In [1],
we know that Riemannian extension R∇ is pure with respect to Hφ. Then we obtain

Theorem 3.3. The triple
(
T ∗M,R∇,Hφ

)
is a Golden pseudo-Riemannian manifold.
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[6] E. Calviño-Louzao, E. Garćıa-Ŕıo, P. Gilkey, P., A. Vázquez-Lorenzo, The Ge-
ometry of Modified Riemannian Extensions, Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 465, 2107 (2009), 2023-2040.

[7] M. Crasmareanu, C. Hretcanu, Golden differential geometry, Chaos Solitons
Fractals. 38, 5 (2008), 1229-1238,

[8] V.Cruceanu, P. Fortuny, M. Gadea, A survey on paracomplex Geometry, Rocky
Mountain J. Math. 26 (1995), 83-115.

[9] V. Dryuma, The Riemann Extensions in Theory of Differential Equations and
their Applications, Mat. Fiz. Anal. Geom. 10, 3 (2003), 307-325.



50 F. Ocak

[10] A. Gezer, M. Altunbas, Notes on the rescaled sasaki type metric on the cotangent
bundle, Acta Math. Sci. 34B, 1 (2014), 162-174.

[11] A. Gezer, L. Bilen, A. Cakmak, Properties of Modified Riemannian Extensions,
Zh. Mat. Fiz. Anal. Geom. 11, 2 (2015), 159-173.

[12] A. Gezer, N. Cengiz, A. Salimov, On integrability of Golden Riemannnian struc-
tures, Turk. J. Math. 37 (2013), 693-703.

[13] S.I. Goldberg, K. Yano, Polynomial structures on manifolds, Kodai Math. Sem.
Rep. 22(1970), 199-218.

[14] C. Hretcanu, M. Crasmareanu, On some invariant submanifolds in a Riemannian
manifold with golden structure, An. Stiins. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 53,
1 (2007), 199-211.

[15] C. Hretcanu, M. Crasmareanu, Applications of the golden ratio on Riemannian
manifolds, Turkish J. Math. 33, 2 (2009), 179-191.

[16] O. Kowalski, M. Sekizawa, On natural Riemann extensions, Publ. Math. Debre-
cen 78(2011), 709-721.

[17] G.I. Kruckovic, structures on manifolds.I, Trudy. Sem. Vektor. Tenzor. Anal. 16
(1972), 174-201(in Russian).

[18] M. Özkan, Prolongations of Golden structures to tangent bundles, Diff. Geom.
Dyn. Syst., 16(2014), 227-238.

[19] E.M. Patterson, A.G. Walker, Riemann Extensions, Quart. J. Math. Oxford Ser.
3 (1952), 19-28.

[20] A. Salimov, Tensor Operators and Their Applications, Nova Science Publishers,
New York 2012.

[21] A. A. Salimov, F. Agca, On para-Nordenian structures, Ann. Polon. Math., Vol.
99, 2 (2010), 193-200.

[22] A. Salimov, R. Cakan, On deformed Riemannian extensions associated with twin
Norden metrics, Chinese Annals of Mathematics, Series B, 36, 3 (2015), 345-354.

[23] A.A. Salimov, M. Iscan, F. Etayo, Paraholomorphic B-manifold and its proper-
ties, Topology Appl. 154 (2007), 925-933.

[24] K. Yano, M. Ako, On certain operators associated with tensor fields, Kodai Math.
Sem. Rep. 20 (1968), 414-436.

[25] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New
York 1973.

Author’s address:

Filiz Ocak
Karadeniz Technical University,
Faculty of Science, Dept. of Mathematics,
61080, Trabzon, Turkey.
E-mail: filiz.ocak@ktu.edu.tr , filiz math@hotmail.com


