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Abstract. In information geometry, one of the basic problem is to study
the geometric properties of statistical manifold. In this paper, we study
the geometric structure of the generalized normal distribution manifold
and show that it has constant α-Gaussian curvature. Then for any positive
integer p, we construct a p-dimensional statistical manifold that is α-flat.
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1 Introduction

Fisher information is an important quantity in probability and statistics. It mea-
sures the amount of information that an observable random variable carries about
the unknown parameters of the underlying distribution. The well-known Cramer-
Rao theorem states that the lower bound of the variance of any unbiased estimator
is the inverse of the Fisher information. In asymptotic theory, the maximum likeli-
hood estimator converges in distribution to Gaussian distribution with mean zero and
variance the inverse of the Fisher information. In 1945, Rao noticed that the Fisher
information defines a Riemannian metric on a statistical manifold([18]). Closely re-
lated to the Fisher information is the statistical curvature defined on one-parameter
distribution family by Bradley Efron([12]). It controls how much the variance of
the maximum likelihood estimator exceeds the Cramer-Rao lower bound([12]). Later
Madsen extended the result of Efron to the multi-parameter case([15]). It’s well-
known that differential geometry is an important field in mathematics. The famous
Einstein’s relativity theory depends on Riemannian geometry and recently some re-
searchers are interested in extending the relativity theory by using the more general
Riemann-Finsler geometry. See [4, 8, 9, 10, 19, 20] for some references. In 1982,
Amari provided a differential geometrical framework for analyzing statistical problmes
related to mult-parameter families of distribution and introduced the α-geometry on
statistical manifold([1]). The α-geometry measures the second-order information loss
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and second-order efficiency of an estimator([1]). Since then, many researchers stud-
ied the geometry of the statistical manifold([1][2][12][13]). Amari, Arwini and Dodson
studied the α-geometry of Gaussian, Gamma, Mckey bivariate gamma and the Freund
bivariate exponential manifold([2][3]). Recently, the α-geometry of Weibull, inverse
gamma distribution, t-distribution and generalized exponential distribution manifold
are investigated([6][7][14]). One interesting fact is that the Gaussian manifold and
the Weibull manifold have negative constant Gaussian curvature([3][6]) and several
of the submanifolds of the Freund bivariate exponential manifold are α-flat([3]). The
statistical manifold with negative constant α-curvature will share similar statistical
properties as Gaussian manifold and Weibull manifold([1][12]). Especially, the MLE
for some parameter in α-flat statistical manifold has no second order information
loss([1][12]). Then one both statistically and geometrically interesting question is
whether we have other statistical manifolds that have constant Gaussian curvature or
α-Gaussian curvature. In this paper, we firstly show that the generalized Gaussian
statistical manifold has constant α-Gaussian curvature. Then for any positive integer
p, we construct a p-dimensional statistical manifold that is α-flat.

The generalized Gaussian distribution is a generalization of the normal and Laplace
distributions. It has received widespread applications in many applied areas([16][17]).
The generalized Gaussian distribution manifold is defined as

M1 =

{
f(x;µ, σ, β)|f(x;µ, σ, β) = β

2σΓ(1/β)
e−

|x−µ|β

σβ , x, µ ∈ R, σ, β > 0

}
,

where µ, σ, β are called the location, scale and shape parameters respectively and
Γ(x) is the gamma function. Clearly, this fimily includes the Gaussian distribution
when β = 2 and the Laplace distribution if β = 1. Note that if β is odd, the manifold
is not smooth. Hence we only consider the case when β is a known even number.

Theorem 1.1. Let β be a given even number. Then the Riemannian metric on the
generalized Gaussian statistical manifold M1 is

(1.1) (gij) =

[
1
σ2 c11 0
0 1

σ2 c22

]
,

where

c11 =
Γ(1− 1

β )β(β − 1)

Γ( 1β )
, c22 = β.

The α-curvature tensor is given by

(1.2) R
(α)
1212 = −

(1− α)β(β − 1)[2− β + (1− α)(β − 1)]Γ(β−1
β )

σ4Γ( 1β )
,

and the α-Gaussian curvature is constant and given by

(1.3) K(α) = −
(1− α)

(
2− β + (1− α)(β − 1)

)
β

.

Then the α-curvature tensor vanishes if and only if α = 1 or 1
β−1 .



Geometry of some statistical manifolds 81

Note that when α = 0, the K(0) is the Gaussian curvature of the Riemannian
metric. In this case, K(0) = − 1

β . If β = 2, then the manifold is just the univariate

Gaussian manifold. Plugging β = 2 into the formula for K(0), we get K(0) = −1
2 ,

which is the same as that in ([3]). When β = 4, K(0) = −1
4 , and K

(0) = −1
6 for β = 6.

Then by using Theorem 1, we can get a lot of non-Gaussian statistical manifolds with
constant Gaussian curvature different from that of the Gaussian manifold and the
Weibull distribution.

Next, we define another interesting non-Gaussian statistical manifold. Let Ωp =
{x = (x1, . . . , xp) ∈ Rp|

∏p
i=1 xi > 0} and Rp

+ = {x = (x1, . . . , xp) ∈ Rp|xi > 0, i =
1, 2, . . . , p.}, we define a p-dimensional statistical manifold

M2 =

{
f(x;λ)|f(x;λ) = 2

p∏
i=1

√
λi√
2π
e−

λix
2
i

2 , x ∈ Ωp, λ ∈ Rp
+

}
.

The importance of this distribution family lies in that its member is non-Gaussian
multivariate distribution while the marginal distribution is Gaussian, which implies
that a set of marginal distributions does not uniquely determine the multivariate
normal distribution([11]). For example, if p = 2, we have

f(x1, x2) = 2

√
λ1√
2π
e−

λ1x2
1

2

√
λ2√
2π
e−

λ2x2
2

2 I[x1x2 > 0],

and the marginal distribution

fX1(x1) =

∫ +∞

−∞
2

√
λ1√
2π
e−

λ1x2
1

2

√
λ2√
2π
e−

λ2x2
2

2 I[x1x2 > 0]dx2

=

∫ 0

−∞
2

√
λ1√
2π
e−

λ1x2
1

2

√
λ2√
2π
e−

λ2x2
2

2 I[x1x2 > 0]dx2

+

∫ +∞

0

2

√
λ1√
2π
e−

λ1x2
1

2

√
λ2√
2π
e−

λ2x2
2

2 I[x1x2 > 0]dx2

=

√
λ1√
2π
e−

λ1x2
1

2 I[x1 < 0] +

√
λ1√
2π
e−

λ1x2
1

2 I[x1 > 0]

=

√
λ1√
2π
e−

λ1x2
1

2 , (x1 ∈ R),

where I is the indicator function. Obviously f is not a Gaussian density but fX1 is
the density of the Gaussian distribution with mean zero and variance 1

λ1
. Similarly,

one can show that the another marginal distribution is Gaussian distribution with
men zero and variance 1

λ2
.

For this non-Gaussian manifold M2, we have

Theorem 1.2. For any positive integer p, the p-dimensional statistical manifold M2

is α-flat.

By this theorem, there exists α-flat statistical manifold with any dimension.
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2 Geometry of statistical manifold

In this section, we introduce the statistical manifold, see ([5, 3]) for more details. Let
M = {p(x; θ)|θ ∈ Θ ⊂ Rp} be a statistical manifold, l = log p(x; θ) and ∂i =

∂
∂θi

. The
Riemannian metric on M is defined by

gij(θ)] = −E
[
∂i∂j l

]
.

The Levi-Civita connection is

Γk
ij = gkl

{
∂gli
∂θj

+
∂glj
∂θi

− ∂gij
∂θl

}
,

and
Γijk = Γm

ij gmk.

The α-connection is defined by

Γ
(α)
ijk = E

[(
∂i∂j l +

1− α

2
∂il∂j l

)
∂kl

]
.

Let Tijk = E
[
∂il∂j l∂kl

]
and Γ

(1)
ijk = E[∂i∂j l∂kl]. Then we have

Γ
(α)
ijk = Γ

(1)
ijk +

1− α

2
Tijk.

Let Γ
(α)k
ij = gkmΓ

(α)
ijm. The α-curvature tensor is

R
(α)l
ihj = ∂iΓ

(α)l
hj − ∂hΓ

(α)l
ij +

∑
m

Γ
(α)l
im Γ

(α)m
hj −

∑
m

Γ
(α)l
hm Γ

(α)m
ij ,

and
R

(α)
ihjk =

∑
l

glkR
(α)l
ihj .

A statistical manifold is said to be α-flat if its α-curvature vanishes. For p = 2,
the α-Gaussian curvature is defined as

K(α) =
R

(α)
1212

det(gij)
.

Note that the 0-geometry corresponds to the geometry of the Riemannian metric.

3 Proof of the theorems

For distribution in M1 and β ̸= 1, 2, we need to make a transformation of the param-
eter space so that the distribution can written as a regular exponential distribution.
It is not easy to find such transformation for every β. So we work with the original
parameter space without transformation. The computation is plausible.
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Proof of Theorem 1: The log-likelihood function of the generalized normal
distribution is

l = log f(x;µ, σ, β) = log β − log

(
2Γ(

1

β
)

)
− log σ − (x− µ)β

σβ
.

Then direct computation yields the first and second partial derivatives below

∂l

∂µ
=

β

σβ
(x− µ)β−1,

∂l

∂σ
= − 1

σ
+

β

σβ+1
(x− µ)β ,

∂2l

∂µ2
= −β(β − 1)

σβ
(x− µ)β−2,

∂2l

∂µ∂σ
= − β2

σβ+1
(x− µ)β−1,

∂2l

∂σ2
=

1

σ2
− β(β + 1)

σβ+2
(x− µ)β .

In terms of gamma function, we have the k-th moment

E[(x− µ)k] =

{
0, k : odd, β : even;
Γ( k+1

β )

Γ( 1
β )

σk, k, β : even.

Notice that we assume β is even, then β− 1 is odd. Hence, the Riemannian metric is

g11 = −E
[
∂2l

∂µ2

]
=
β(β − 1)

σβ
E

[
(x− µ)β−2

]
=

Γ(1− 1
β )β(β − 1)

Γ( 1β )

1

σ2
,

g22 = −E
[
∂2l

∂σ2

]
= − 1

σ2
+
β(β + 1)

σβ+2
E

[
(x− µ)β

]
= − 1

σ2
+
β(β + 1)

σβ+2

Γ(β+1
β )

Γ( 1β )
σβ =

β

σ2
,

g12 = g21 = −E
[
∂2l

∂µ∂σ

]
=

β2

σβ+1
E

[
(x− µ)β−1

]
= 0,

which leads to equation (1.1).
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Next we compute the coefficients Tijk below

T112 = E

[
∂l

∂µ

∂l

∂µ

∂l

∂σ

]
= − β2

σ2β+1
E

[
(x− µ)2(β−1)

]
+

β3

σ3β+1
E

[
(x− µ)3β−2

]
=

1

σ3

Γ(3β−1
β )β3 − Γ(2β−1

β )β2

Γ( 1β )
,

T222 = E

[
∂l

∂σ

∂l

∂σ

∂l

∂σ

]
= E

[(
− 1

σ
+

β

σβ+1
(x− µ)β

)3]
= − 1

σ3
+

3β

σβ+3
E

[(
x− µ

)β]
− 3β2

σ2β+3
E

[(
x− µ

)2β]
+

β3

σ3β+3
E

[(
x− µ

)3β]
=

1

σ3

(
− 1 +

3βΓ(β+1
β )

Γ( 1β )
−

3β2Γ(2β+1
β )

Γ( 1β )
+
β3Γ( 3β+1

β )

Γ( 1β )

)
=

2β2

σ3
,

T121 = T211 = T112,

T111 = T221 = T212 = T122 = 0.

The 1-connection coefficients are

Γ
(1)
112 = E

[
∂2l

∂µ2

∂l

∂σ

]
=
β(β − 1)

σβ+1
E

[
(x− µ)β−2

]
− β2(β − 1)

σ2β+1
E

[
(x− µ)2β−2

]
,

=
1

σ3

Γ(β−1
β )β(β − 1)− Γ( 2β−1

β )β2(β − 1)

Γ( 1β )
,

Γ
(1)
121 = E

[
∂2l

∂µ∂σ

∂l

∂µ

]
= − β3

σ2β+1
E

[
(x− µ)2β−2

]
= − 1

σ3

Γ(2β−1
β )β3

Γ( 1β )
,

Γ
(1)
222 = E

[
∂2l

∂σ2

∂l

∂σ

]
= − 1

σ3
+

β

σβ+3
E

[
(x− µ)β

]
+
β(β + 1)

σβ+3
E

[
(x− µ)β

]
− β2(β + 1)

σ2β+3
E

[
(x− µ)2β

]
=

1

σ3

(
− 1 +

βΓ(β+1
β )

Γ( 1β )
+
β(β + 1)Γ(β+1

β )

Γ( 1β )
−
β2(β + 1)Γ( 2β+1

β )

Γ( 1β )

)
= −β(β − 1)

σ3
,

Γ
(1)
211 = Γ

(1)
121,

Γ
(1)
111 = Γ

(1)
122 = Γ

(1)
212 = Γ

(1)
221 = 0.
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The α-connection is just a linear combination of the 1-connection and T . Hence,
the α-connection coefficients are

Γ
(α)
112 = Γ

(1)
112 +

1− α

2
T112 =

(
c
(1)
112 +

1− α

2
c112

)
1

σ3
,

Γ
(α)
121 = Γ

(1)
121 +

1− α

2
T121 =

(
c
(1)
121 +

1− α

2
c121

)
1

σ3
,

Γ
(α)
222 = Γ

(1)
222 +

1− α

2
T222 =

(
c
(1)
222 +

1− α

2
c222

)
1

σ3
,

Γ
(α)
211 = Γ

(α)
121,

Γ
(α)
111 = Γ

(α)
122 = Γ

(α)
212 = Γ

(α)
221 = 0.

To compute the α-curvature, we need the α-connection coefficients in a another
form.

Γ
(α)2
11 = g22Γ

(α)
112 =

1

σ

1

c22

(
c
(1)
112 +

1− α

2
c112

)
,

Γ
(α)1
21 = g11Γ

(α)
211 =

1

σ

1

c11

(
c
(1)
121 +

1− α

2
c121

)
,

Γ
(α)1
12 = Γ

(α)1
21 ,

Γ
(α)2
21 = Γ

(α)2
12 = 0.

By definition, the α-curvature is

R
(α)
1212 = −

[( ∂

∂σ
Γ
(α)2
11 − ∂

∂µ
Γ
(α)2
21

)
g22 + Γ

(α)
222Γ

(α)2
11 − Γ

(α)
112Γ

(α)1
21

]
= −C1 + C2 − C3

σ4
,(3.1)

where the constants dependent on α and β are defined below

c11 =
Γ(1− 1

β )β(β − 1)

Γ( 1β )
,

c22 = β,

C1 = −
(
c
(1)
112 +

1− α

2
c112

)
,

C2 =
1

c22

(
c
(1)
222 +

1− α

2
c222

)(
c
(1)
112 +

1− α

2
c112

)
,

C3 =
1

c11

(
c
(1)
112 +

1− α

2
c112

)(
c
(1)
121 +

1− α

2
c121

)
,
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c112 =
Γ( 3β−1

β )β3 − Γ( 2β−1
β )β2

Γ( 1β )
,

c121 = c112,

c222 = 2β2,

c
(1)
112 =

Γ(β−1
β )β(β − 1)− Γ(2β−1

β )β2(β − 1)

Γ( 1β )
,

c
(1)
121 = −

Γ( 2β−1
β )β3

Γ( 1β )
,

c
(1)
222 = −β(β − 1).

Then we can easily get the α-Gaussian curvature below

(3.2) K(α) =
R

(α)
1212

det(gij)
= −C1 + C2 − C3

c11c22
.

Next, we simplify (3.1) and (3.2), as pointed out by Professor Esmaeil Peyghan.
Note that

C1 + C2 − C3 =
(
c
(1)
112 +

1− α

2
c112

)(
− 1 +

c
(1)
222

c22
+

1− α

2c22
c222 −

c
(1)
121

c11
− 1− α

2c11
c121

)
.

The first product factor can be calculated as

c
(1)
112 +

1− α

2
c112 =

Γ(β−1
β )β(β − 1)[2− β + (1− α)(β − 1)]

Γ( 1β )
,

where we used the fact that Γ( 3β−1
β ) = (2β−1)(β−1)

β2 Γ(β−1
β ) and Γ( 2β−1

β ) = β−1
β Γ(β−1

β ),

since Γ(1 + x) = xΓ(x). For the second product factor, we have

−1 +
c
(1)
222

c22
− c

(1)
121

c11
= −β +

β2Γ( 2β−1
β )

(β − 1)Γ(β−1
β )

= −β +
β2 β−1

β Γ(β−1
β )

(β − 1)Γ(β−1
β )

= 0,

1− α

2c22
c222 −

1− α

2c11
c121 =

1− α

2

(
2β −

β2Γ( 3β−1
β )− βΓ( 2β−1

β )

(β − 1)Γ(β−1
β )

)
=

1− α

2

(
2β −

(2β − 1)(β − 1)Γ(β−1
β )− (β − 1)Γ(β−1

β )

(β − 1)Γ(β−1
β )

)
= 1− α.

Then, we conclude that

R
(α)
1212 = −(1− α)

Γ(β−1
β )β(β − 1)[2− β + (1− α)(β − 1)]

σ4Γ( 1β )
,
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which is (1.2). In this case, the α-Gaussian curvature is

K(α) = −(1− α)
Γ(β−1

β )β(β − 1)[2− β + (1− α)(β − 1)]

Γ( 1β )

Γ( 1β )

Γ(β−1
β )β2(β − 1)

= − (1− α)(2− β + (1− α)(β − 1))

β
,

which is (1.3).
�

For distribution inM2, we can easily write it as a regular exponential distribution.
Then we can work on the potential function to get the α-curvature([3]).

Proof of Theorem 2: We rewrite the distribution in M2 as

f(x;λ) = e
1
2

∑p
i=1 log(λi)− 1

2

∑p
i=1 λix

2
i+log 2−log

√
2π

= e
1
2

∑p
i=1 log(−θi)+

∑p
i=1 θix

2
i+

p
2 log 2−log

√
2π,

where θi = − 1
2λi. This is one member of the exponential family with (θ1, . . . , θp) the

natural coordinates and the potential function

ψ(θ) = −1

2

p∑
i=1

log(−θi).

For exponential family, the Fisher information is just the second derivative of the
potential function([3]):

gij =
∂2ψ

∂θi∂θj
= −1

2

1

θi

1

θj
δij ,

where δii = 1 for i = 1, . . . , p and δij = 0 for i ̸= j. The third derivative of the
potential function will give us the α-connection

Γ
(α)
ijk =

1− α

2

∂3ψ

∂θi∂θj∂θk
= −1− α

2

1

θi

1

θj

1

θk
δijk,

where δiii = 1 for i = 1, . . . , p and δijk = 0 for unequal i, j, k.
Then

Γ
(α)k
ij = gklΓ

(α)
ijl = − 1− α

(θiθjθk)
1
3

δijk.

Note that Γ
(α)k
ij and Γ

(α)
ijk vanish when i, j, k are unequal. Hence the α-curvature

also vanish, that is,

R
(α)
hijk = 0,

which completes the proof.
�
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