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Abstract. In this paper, we give some properties of anti-invariant sub-
manifolds of a golden Riemannian manifold. We obtain some necessary
conditions for any submanifold in a locally decomposable golden Rieman-
nian manifold to be anti-invariant. In these conditions, we also show that
the submanifold is totally geodesic. We find a local orthonormal frame
for the normal bundle of any anti-invariant submanifold of a locally de-
composable golden Riemannian manifold. Finally, we demonstrate the
existence of unit and mutually orthogonal normal vector fields such that
their corresponding second fundamental tensors vanish identically under
the assumption that the codimension of the anti-invariant submanifold is
greater than its dimension.
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1 Introduction

Submanifold theory, the origins of which are in curve and surface theories, is an im-
portant research field in differential geometry. There exist two well known classes
of submanifolds among all submanifolds of an ambient manifold, namely, invariant
submanifolds and anti-invariant submanifolds. The differential geometry of invari-
ant submanifolds is very different from that of anti-invariant submanifolds. Because,
in general, an invariant submanifold inherits almost all properties of the ambient
manifold. That is, the invariant submanifold doesn’t present a completely different
geometric characteristic of the ambient manifold than expected. When considered
from this point view, the investigation of invariant submanifolds isn’t interesting
in the differential geometry of submanifolds. Therefore, this situation makes anti-
invariant submanifolds become a challenging topic in differential geometry. The dif-
ferential geometry of anti-invariant submanifolds has been studied by many geometers
in various ambient manifolds as follows: The research on the differential geometry of
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anti-invariant submanifolds has been firstly initiated by B. Y. Chen and K. Ogiue
in [5] including some fundamental properties, characterizations and classifications of
those in complex space forms. Moreover, in complex space forms, two reduction
theorems have been obtained for anti-invariant submanifolds by B. Y. Chen, C. S.
Houh and H. S. Lue [4], then a corollary as an application of these theorems has
been given. Next, it has been shown that the normal bundle of the submanifold ad-
mits no parallel isoperimetric sections if the ambient manifold is not flat. Lastly, two
necessary conditions have been found for compact anti-invariant submanifolds of the
complex number space to be a product submanifold. In Kaehlerian manifolds with
the vanishing Bochner curvature tensor, K. Yano [21] has discussed some conditions
for anti-invariant submanifolds to be conformally flat by generalizing D. E. Blair’s
theorem in [3]. In Sasakian manifolds, by introducing the concept of the vanishing
contact Bochner curvature tensor as an analogue of the Bochner curvature tensor in
Kaehlerian manifolds, anti-invariant submanifolds have been examined in [22] con-
taining some conditions for the conformal flatness and the local productness of those.
Besides, in the event that the ambient manifold is a Sasakian space form, I. Ishihara
[16] has analyzed anti-invariant submanifolds with the pseudo-parallel mean curvature
vector and the pseudo-flat normal connection in the same way as taken in complex
space forms [24]. In locally product Riemannian manifolds, T Adati [1] has given a
necessary condition for an arbitrary submanifold to be both anti-invariant and totally
geodesic and shown that an anti-invariant submanifold is totally geodesic under the
assumption that the dimension of the submanifold is equal to half of that of the am-
bient manifold. Furthermore, G. Pitis [19] has investigated algebraic conditions for
any compact anti-invariant submanifold to be stable or unstable. Many geometers
have also contributed to the differential geometry of anti-invariant submanifolds in
other well known ambient manifolds, such as almost contact metric manifolds [17],
quaternionic Kaehlerian manifolds [9], almost para contact manifolds [18], 6-spheres
[8], Kenmotsu manifolds [20].

The golden ratio, also known as the golden proportion, the divine ratio, the golden
section or the golden mean, is an irrational number, which appears in geometry,
physics, chemistry, astrophysics, biology, anatomy, art, architecture, sculpture etc. It
arises from the division problem of a line segment into two pieces of different lengths
so that the ratio of the whole segment to the larger piece is equal to that of the larger
piece to the smaller piece. That is, a line segment AB with a non-midpoint C is
divided in the ratio AB

AC = AC
CB , where AC and CB are large and small pieces of the

line segment AB, respectively. If putting x = AB
AC , then the problem is expressed by

the quadratic equation x2 = x + 1, whose roots are 1+
√
5

2 and 1−
√
5

2 . The former is
the golden ratio. It is frequently denoted by ϕ, the first Greek letter in the name of
Phidias [7, 10].

Recently, the golden ratio has been used to research on its effect on differential ge-
ometry with the help of a special geometric structure on C∞-differentiable manifolds,
called a golden structure, in [6]. Herein a golden structure has been investigated by
means of the corresponding almost product structure, then by endowing the golden
structure with a main geometric object, namely, a Riemannian metric, the concepts
of a golden Riemannian structure and a golden Riemannian manifold have been de-
fined and their basic properties have been obtained. Thus, the application of the
golden ratio to differential geometry has been immensely successful. Since then, C∞-
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differentiable manifolds admitting golden Riemannian structures, i.e., golden Rieman-
nian manifolds are of great interest to geometers. Particularly, their different kind
of submanifolds, such as invariant submanifolds, slant submanifolds, semi-slant sub-
manifolds, hemi-slant submanifolds have been examined in [2, 12, 13, 14, 15]. The
increasing interest of golden Riemannian manifolds related to the golden ratio, es-
pecially their submanifolds, gives an opportunity to make new examinations in the
differential geometry of Riemannian manifolds endowed with special geometric struc-
tures and their submanifolds.

Motivated by the above mentioned studies and guidances, the main purpose of
this paper is to investigate anti-invariant submanifolds in the case that the ambient
manifold is a locally decomposable golden Riemannian manifold.

The organisation of this paper is as follows: The paper consists of three sections.
Section 2 contains some fundamental facts on golden Riemannian manifolds and their
submanifolds. Section 3 is concerned with a research on anti-invariant submanifolds in
locally decomposable golden Riemannian manifolds. We obtain a few basic properties
of an anti-invariant submanifold in golden Riemannian manifolds. We get necessary
conditions for any submanifold of a locally decomposable golden Riemannian manifold
to be both anti-invariant and totally geodesic. We also prove that an anti-invariant
submanifold is totally geodesic in locally decomposable golden Riemannian manifolds
if the dimension of the ambient manifold is equal to twice that of the submanifold.
We establish a local orthonormal frame for the normal bundle of any anti-invariant
submanifold in a locally decomposable golden Riemannian manifold providing that
the dimension of the submanifold is less than its codimension, moreover, we show
that there exist normal vector fields determined by a chosen local orthonormal frame
for the tangent bundle of the submanifold as the number of its dimension.

2 Preliminaries

In this section, we give a short review of main definitions, concepts, formulas, nota-
tions and results on golden Riemannian manifolds and their submanifolds.

A non-trivial C∞-tensor field f of type (1, 1) on a C∞-differentiable manifold M
is called a polynomial structure of degree n if it satisfies the algebraic equation

(2.1) Q (x) = xn + anx
n−1 + · · ·+ a2x+ a1I = 0,

where I is the identity (1, 1)-tensor field on M and fn−1 (p) , fn−2 (p) , . . . , f (p) , I
are linearly independent for every point p ∈ M . Also, the monic polynomial Q (x) is
said to be the structure polynomial [11].

A polynomial structure Φ of degree 2 with the structure polynomial Q (x) =
x2 − x− 1 on a C∞-differentiable real manifold M is called a golden structure. That
is, the golden structure Φ is a tensor field of type (1, 1) satisfying the equation

(2.2) Φ
2
= Φ+ I.

In this case, M is called a golden manifold. We denote by Γ
(
TM

)
the Lie algebra of

differentiable vector fields on M . If there is a Riemannian metric g on M endowed
with a golden structure Φ such that g and Φ yield the relation

(2.3) g
(
ΦX,Y

)
= g

(
X,ΦY

)
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for any vector fields X,Y ∈ Γ
(
TM

)
, then the pair

(
g,Φ

)
is named a golden Rieman-

nian structure and the triple
(
M, g,Φ

)
is called a golden Riemannian manifold. The

eigenvalues of the golden structure Φ are ϕ = 1+
√
5

2 and 1−ϕ = 1−
√
5

2 being the roots

of the algebraic equation x2 − x− 1 = 0. The inverse Φ
−1

of the golden structure Φ

is given by Φ
−1

= Φ− I and verifies the equation
(
Φ

−1
)2

= −Φ
−1

+ I, so it isn’t a

golden structure [6, 14, 15].
Let M be an n-dimensional submanifold of codimension r, isometrically immersed

in an m-dimensional golden Riemannian manifold
(
M, g,Φ

)
. We denote by TpM

and TpM
⊥ its tangent and normal spaces at a point p ∈ M , respectively. Then the

tangent space TpM has the decomposition

(2.4) TpM = TpM ⊕ TpM
⊥

for each point p ∈ M . The induced Riemannian metric g on M is given by

(2.5) g (X,Y ) = g (i∗X, i∗Y )

for any vector fields X,Y ∈ Γ(TM), where i∗ denotes the differential of the immersion
i : M −→ M . We consider a local orthonormal frame {N1, . . . , Nr} of the normal
bundle TM⊥. For every tangent vector field X ∈ Γ(TM), the vector fields Φ (i∗X)
and Φ (Nα) on the ambient manifold M can be expressed in the following forms:

(2.6) Φ (i∗X) = i∗ (Φ (X)) +

r∑
α=1

uα (X)Nα

and

(2.7) Φ (Nα) = εi∗ (ξα) +

r∑
β=1

aαβNβ , ε = ±1,

respectively, where Φ is a tensor field of type (1, 1) on M , ξα’s are tangent vector fields
on M , uα’s are differential 1-forms on M and (aαβ) is a matrix of type r × r of real

functions on M . Thus, we obtain a structure
(
Φ, g, uα, εξα, (aαβ)r×r

)
induced on M

by the golden Riemannian structure
(
g,Φ

)
. We denote by ∇ and ∇ the Levi-Civita

connections on M and M , respectively. Then the Gauss and Weingarten formulas of
M in M are given, respectively, by

(2.8) ∇i∗X i∗Y = i∗∇XY +

r∑
α=1

hα (X,Y )Nα

and

(2.9) ∇i∗XNα = −i∗AαX +

r∑
β=1

lαβ (X)Nβ

for any vector fields X,Y ∈ Γ(TM), where hα’s are the second fundamental tensors
corresponding to Nα’s, Aα’s are the shape operators in the direction of Nα’s and



Anti-invariant submanifolds 51

lαβ ’s are the 1-forms on M corresponding to the normal connection ∇⊥ for any
α, β ∈ {1, . . . , r}. Besides, the following relations are verified:

(2.10) h (X,Y ) =

r∑
α=1

hα (X,Y )Nα,

(2.11) hα (X,Y ) = hα (Y,X) ,

(2.12) hα (X,Y ) = g (AαX,Y ) ,

(2.13) ∇⊥
XNα =

r∑
β=1

lαβ (X)Nβ

and

(2.14) lαβ = −lβα

for any vector fields X,Y ∈ Γ(TM) [14].
As it is well known, the submanifold M is called totally geodesic if the second

fundamental form h vanishes identically. Also, the mean curvature vector H of M is
defined by

(2.15) H =
1

n

n∑
i=1

h (ei, ei) ,

where {e1, . . . , en} is an orthonormal basis of the tangent space TpM at a point p ∈ M .
If H = 0, then M is named a minimal submanifold. If h (X,Y ) = g (X,Y )H for any
vector fields X,Y ∈ Γ(TM), then M is said to be a totally umbilical submanifold
[23].

The triple
(
M, g,Φ

)
is called a locally decomposable golden Riemannian manifold

if the golden structure Φ is parallel with respect to the Levi-Civita connection ∇, i.e.,
the covariant derivative ∇Φ is identically zero.

The induced structure
(
Φ, g, uα, εξα, (aαβ)r×r

)
on the submanifold M by the

golden Riemannian structure
(
g,Φ

)
satisfies the following relations:

(2.16) Φ2 (X) = Φ (X) +X − ε

r∑
α=1

uα (X) ξα,

(2.17) uα (Φ (X)) = (1− aαα)uα (X) ,

(2.18) aαβ = aβα,

(2.19) uβ (ξα) = ε

(
δαβ + aαβ −

r∑
γ=1

aαγaβγ

)
,
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(2.20) Φ (ξα) = ξα −
r∑

β=1

aαβξβ ,

(2.21) uα (X) = εg (X, ξα) ,

(2.22) g (Φ (X) , Y ) = g (X,Φ(Y ))

and

(2.23) g (Φ (X) ,Φ(Y )) = g (Φ (X) , Y ) + g (X,Y )−
r∑

α=1

uα (X)uα (Y )

for any vector fields X,Y ∈ Γ(TM), where δαβ is the Kronecker delta [14, 15]. More-
over, if M is a locally decomposable golden Riemannian manifold, then we have the
following relations:

(2.24) (∇XΦ)Y = ε

r∑
α=1

hα (X,Y ) ξα +

r∑
α=1

uα (Y )AαX,

(2.25) (∇Xuα)Y = −hα (X,ΦY ) +

r∑
β=1

uβ (Y ) lαβ (X) +

r∑
β=1

hβ (X,Y ) aαβ ,

(2.26) ∇Xξα = −εΦ(AαX) + ε

r∑
β=1

aαβAβX +

r∑
β=1

lαβ (X) ξβ

and

(2.27) X (aαβ) = −εhβ (X, ξα)− εhα (X, ξβ)−
r∑

γ=1

aαγ lγβ (X)−
r∑

γ=1

aβγ lγα (X)

for any vector fields X,Y ∈ Γ(TM) [14].
Let {N1, . . . , Nr} and {N ′

1, . . . , N
′
r} be two local orthonormal frames of the normal

bundle TM⊥. Then the decomposition of the normal vector field N ′
α in the local

orthonormal frame {N1, . . . , Nr} is given by

(2.28) N ′
α =

r∑
γ=1

kγαNγ

for any α ∈ {1, . . . , r}, where (kγα) is an orthogonal matrix of type r × r. We write

(2.29) u′
α =

r∑
γ=1

kγαuγ ,
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(2.30) ξ′α =

r∑
γ=1

kγαξγ

and

(2.31) a′αβ =

r∑
γ=1

r∑
δ=1

kγαaγδk
δ
β .

Then using (2.28), (2.6) and (2.7) take the following forms:

(2.32) Φ (i∗X) = i∗Φ(X) +

r∑
α=1

u′
α (X)N ′

α

and

(2.33) Φ (N ′
α) = εi∗ (ξ

′
α) +

r∑
β=1

a′αβN
′
β , ε = ±1,

respectively.
On the other hand, (2.30) shows that if the tangent vector fields ξ1, . . . , ξr are

linearly independent (respectively, linearly dependent), then the tangent vector fields
ξ′1, . . . , ξ

′
r are also linearly independent (respectively, linearly dependent). As the

matrix element aαβ is symmetric in the indices α and β, it can be reduced to the
form a′αβ = λαδαβ , where λα’s are the eigenvalues of the matrix (aαβ)r×r for any
α, β ∈ {1, . . . , r} [6].

Lemma 2.1. Let M be an n-dimensional submanifold of codimension r, isometri-
cally immersed in an m-dimensional locally decomposable golden Riemannian mani-
fold

(
M, g,Φ

)
. If aαβ = λaδαβ, λa ∈ (1− ϕ, ϕ) for any α, β ∈ {1, . . . , r}, then the

tangent vector fields ξ1, . . . , ξr are linearly independent.

Proof. We assume that aαβ = λaδαβ , λa ∈ (1− ϕ, ϕ) for any α, β ∈ {1, . . . , r}. By a
straightforward calculation, we obtain from (2.18) and (2.19) that

(2.34) uβ (ξα) = εδαβ
(
1 + λa − λ2

a

)
.

On the other hand, it can be easily seen from (2.21) that g (ξα, ξβ) = εuβ (ξα) for any
α, β ∈ {1, . . . , r}. Thus, we get

(2.35) g (ξα, ξβ) = δαβ
(
1 + λa − λ2

a

)
.

If we write
r∑

β=1

ρ
β
ξβ = 0, then it follows from (2.35) that

(2.36) 0 = g

ξα,

r∑
β=1

ρ
β
ξβ

 = ρa

(
1 + λa − λ2

a

)
for any α ∈ {1, . . . , r}. At the same time, because of the fact that λa ∈ (1− ϕ, ϕ), it
is clear that

(2.37) 1 + λa − λ2
a ̸= 0.
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Hence, it results from (2.36) and (2.37) that ρa = 0 for any α ∈ {1, . . . , r}. In other
words, the tangent vector fields ξ1, . . . , ξr are linearly independent. �

Lemma 2.2. Let M be an n-dimensional submanifold of codimension r, isometri-
cally immersed in an m-dimensional locally decomposable golden Riemannian mani-
fold

(
M, g,Φ

)
. Then the following expressions are equivalent:

(a) For any α, β ∈ {1, . . . , r}, aαβ = δαβ.

(b) For any α ∈ {1, . . . , r}, Φ−1
(Nα) ∈ Γ (TM).

Proof. If aαβ = δαβ for any α, β ∈ {1, . . . , r}, then we derive by a direct calculation
from (2.7) that

(2.38) Φ
−1

(Nα) = εi∗ (ξα) ,

which implies that Φ
−1

(Nα) ∈ Γ (TM). That is, we get (a)⇒(b). Conversely, we

suppose that Φ
−1

(Nα) ∈ Γ (TM) for any α ∈ {1, . . . , r}. By means of (2.7), we have

(2.39)

r∑
β=1

(aαβ − δαβ)Nβ = 0.

Thus, as {N1, . . . , Nr} is a local orthonormal frame of the normal bundle TM⊥, we
obtain

(2.40) aαβ = δαβ ,

which shows (b)⇒(a). Consequently, the proof has been completed. �

3 Anti-Invariant Submanifolds of Golden Rieman-
nian Manifolds

This section deals with an investigation regarding anti-invariant submanifolds in
golden Riemannian manifolds.

To begin with, we remember the concept of an anti-invariant submanifold in golden
Riemannian manifolds. Any anti-invariant submanifold M of a golden Riemannian
manifold

(
M, g,Φ

)
is submanifold such that the golden structure Φ of the ambient

manifold M carries each tangent vector of the submanifold M into its corresponding
normal space in the ambient manifold M , that is,

(3.1) Φ (TpM) ⊆ TpM
⊥

for any point p ∈ M .
Let M be an n-dimensional anti-invariant submanifold of codimension r, isomet-

rically immersed in an m-dimensional golden Riemannian manifold
(
M, g,Φ

)
. Then

we have Φ = 0. Hence, (2.6) is given by

(3.2) Φ (i∗X) =

r∑
α=1

uα (X)Nα

for any vector field X ∈ Γ (TM).
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Proposition 3.1. Let M be an n-dimensional anti-invariant submanifold of codi-
mension r, isometrically immersed in an m-dimensional golden Riemannian mani-

fold
(
M, g,Φ

)
. Then the induced structure

(
Φ = 0, g, uα, εξα, (aαβ)r×r

)
on M by the

golden Riemannian structure
(
g,Φ

)
satisfies the following relations:

(3.3) X = ε

r∑
α=1

uα (X) ξα, or I = ε

r∑
α=1

uα ⊗ ξα,

(3.4) (1− aαα)uα (X) = 0,

(3.5)
r∑

β=1

(δαβ − aαβ) ξβ = 0

and

(3.6) g (X,Y ) =

r∑
α=1

uα (X)uα (Y )

for any vector fields X,Y ∈ Γ(TM).

Proof. Taking account of that Φ = 0, the proof is obvious from (2.16), (2.17), (2.20)
and (2.23). �

Proposition 3.2. Let M be an n-dimensional anti-invariant submanifold of codimen-
sion r, isometrically immersed in an m-dimensional locally decomposable golden Rie-

mannian manifold
(
M, g,Φ

)
. Then the induced structure

(
Φ = 0, g, uα, εξα, (aαβ)r×r

)
on M by the golden Riemannian structure

(
g,Φ

)
verifies the following relations:

(3.7) ε

r∑
α=1

hα (X,Y ) ξα +

r∑
α=1

uα (Y )AαX = 0,

(3.8) (∇Xuα)Y =

r∑
β=1

uβ (Y ) lαβ (X) +

r∑
β=1

hβ (X,Y ) aαβ

and

(3.9) ∇Xξα = ε

r∑
β=1

aαβAβX +

r∑
β=1

lαβ (X) ξβ

for any vector fields X,Y ∈ Γ(TM).

Proof. Using the fact that Φ = 0, the proof can be easily seen from (2.24), (2.25) and
(2.26). �
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Let us consider the matrix U = (ξ1 · · · ξr) of type r × r. Then in order that the
non-trivial solution of the system of equations uα (X) = 0 for any α ∈ {1, . . . , r} does
not exist, it is a necessary and sufficient condition that rankU = n. Thus, we have
r ≥ n.

Theorem 3.3. Let M be an n-dimensional submanifold, isometrically immersed in a
2n-dimensional locally decomposable golden Riemannian manifold

(
M, g,Φ

)
. If aαβ =

δαβ for any α, β ∈ {1, . . . , n}, then M is an anti-invariant submanifold. Moreover,
the submanifold M is totally geodesic.

Proof. We firstly note that r = n = dimM , where r is the codimension of the
submanifold M . We assume that aαβ = δαβ for any α, β ∈ {1, . . . , n}. In this case, it
follows from (2.20) that

(3.10) (Φ)U = 0,

where (Φ) is the corresponding matrix to the induced structure Φ. Also, we deduce
from Lemma 2.1 that if aαβ = δαβ for any α, β ∈ {1, . . . , n}, the tangent vector fields
ξα’s are linearly independent, or equivalently the 1-forms uα’s are linearly indepen-
dent. Then there exists the inverse U−1 of the matrix U . Hence, we obtain from
(3.10) that

(3.11) Φ = 0.

In consequence of (2.6), it seems from (3.11) that M is an anti-invariant submanifold.
Now, we show that the submanifold M is totally geodesic. Using the anti-invariance
of the submanifold M , then it results from (2.12), (2.21) and (3.7) that

(3.12)

n∑
α=1

uα (Y )hα (X,Z) = −
n∑

α=1

uα (Z)hα (X,Y )

for any vector fields X,Y, Z ∈ Γ(TM). Applying (2.11) to (3.12), we get

(3.13)

n∑
α=1

uα (Y )hα (X,Z) =

n∑
α=1

uα (Z)hα (X,Y )

for any vector fields X,Y, Z ∈ Γ(TM). Hence, by means of (3.12) and (3.13), we have

(3.14)

n∑
α=1

uα (Y )hα (X,Z) = 0,

which implies that hα = 0 for any α ∈ {1, . . . , n} because of the linear independence
of the 1-forms uα’s. That is, the second fundamental form h is identically zero.
Therefore, M is a totally geodesic submanifold. �

Theorem 3.4. Let M be an n-dimensional submanifold, isometrically immersed in
a 2n-dimensional locally decomposable golden Riemannian manifold

(
M, g,Φ

)
. If

Φ
−1

(Nα) ∈ Γ (TM) for any α ∈ {1, . . . , n}, then M is an anti-invariant submanifold.
Furthermore, the submanifold M is totally geodesic.
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Proof. Taking into consideration Lemma 2.2, the proof can be shown in a method
similar to that of Theorem 3.3. �

We also note that if M is an n-dimensional anti-invariant submanifold of a 2n-
dimensional locally decomposable golden Riemannian manifold, then the tangent vec-
tor fields ξα’s have to be linearly independent and we have aαβ = δαβ , or equivalently

Φ
−1

(Nα) ∈ Γ (TM) for any α, β ∈ {1, . . . , n}. In addition, M is a totally geodesic
submanifold.

Theorem 3.5. Let M be an n-dimensional anti-invariant submanifold of codimen-
sion r, isometrically immersed in an m-dimensional locally decomposable golden Rie-
mannian manifold

(
M, g,Φ

)
. If r > n, then there exists a local orthonormal frame

{N1, . . . , Nr} of the normal bundle TM⊥ such that

(3.15) Ni = Φi∗Ei, i = 1, . . . , n

and

(3.16) Φ (NA) = λANA, A = n+ 1, . . . , r,

where {E1, . . . , En} is a local orthonormal frame of the tangent bundle TM and λA’s
are the eigenvalues of the golden structure Φ.

Proof. We recall that if r > n = dimM , then the tangent vector fields ξα’s are
linearly dependent. Let {N1, . . . , Nr} be a local orthonormal frame of the normal
bundle TM⊥ such that aαβ = λaδαβ , where λa’s are the eigenvalues of the matrix
(aαβ)r×r for any α, β ∈ {1, . . . , r}. Considering (3.5) from the point of view of the
tangent vector fields ξ′α’s, we obtain

(3.17) (1− λa) ξ
′
α = 0, α = 1, . . . , r.

Also, we remark from (2.19) and (2.21) that ∥ξ′α∥
2
= 1+λa−λ2

a for any α ∈ {1, . . . , r}.
Therefore, we can suppose that the tangent vector fields ξ′i’s are linearly independent,
ξ′A = 0, λi = 1 and λ2

A = λA + 1 for any i ∈ {1, . . . , n} and A ∈ {n+ 1, . . . , r}. In
addition, from (2.19), we have

(3.18) u
′

j (ξ
′
i) = εδij , i, j = 1, . . . , n,

which tells us that the tangent vector fields ξ′i’s are unit and mutually orthogonal.
Thus, the set {ξ′1, . . . , ξ′n} is a local orthonormal frame for the tangent bunde TM .
For any i, j ∈ {1, . . . , n}, we put

(3.19) N⋆
i = Φi∗ξ

′
i

and

(3.20) N⋆
j = Φi∗ξ

′
j .

Then taking into account that the submanifold M is anti-invariant and the Rieman-
nian metric g is Φ-compatible, we get

(3.21) g
(
N⋆

i , N
⋆
j

)
= δij .
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Hence, we can choose the normal vector fields N ′
i ’s such that N ′

i = Φi∗Ei for any
i ∈ {1, . . . , n}. At the same time, we see from (2.33) that

(3.22) Φ (N ′
A) = λAN

′
A, A = n+ 1, . . . , r.

In other words, the normal vector fields N ′
A’s are the eigenvectors of the golden

structure Φ corresponding to the eigenvalues λA’s for any A ∈ {n+ 1, . . . , r}. Conse-
quently, the proof has been finished. �

Theorem 3.6. Let M be an n-dimensional anti-invariant submanifold of codimen-
sion r, isometrically immersed in an m-dimensional golden Riemannian manifold(
M, g,Φ

)
. If r > n, then there exist unit and mutually orthogonal normal vector

fields Ni’s of the normal bundle TM⊥ such that

(3.23) hi = 0

for any i ∈ {1, . . . , n}.

Proof. Because of the fact that the submanifold M is anti-invariant, we get from (3.7)
that

(3.24)

n∑
j=1

u
′

j (Y )hj (X,Z) = −
n∑

j=1

u
′

j (Z)hj (X,Y )

for any vector fields X,Y, Z ∈ Γ(TM). Using (2.11) in (3.24)

(3.25)

n∑
j=1

u
′

j (Y )hj (X,Z) =

n∑
j=1

u
′

j (Z)hj (X,Y )

for any vector fields X,Y, Z ∈ Γ(TM). Hence, it follows from (3.24) and (3.25) that

(3.26)

n∑
j=1

u
′

j (Y )hj (X,Z) = 0.

On the other hand, if {E1, . . . , En} is a local orthonormal frame for the tangent bundle
TM , it is possible from Theorem 3.5 to choose the normal vector fields Ni’s such that

(3.27) Ni = Φi∗Ei

for any i ∈ {1, . . . , n}. Hence, by virtue of (3.2), we obtain

(3.28)

n∑
j=1

δijNj =

n∑
j=1

u
′

j (Ei)Nj ,

which implies from the linear independence of the normal vector fields Nj ’s that

δij = u
′

j (Ei) for any i, j ∈ {1, . . . , n}. Thus, putting Y = Ei in (3.26), we have

(3.29) hi = 0

for any i ∈ {1, . . . , n}. As a result, the proof has been demonstrated. �
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