The dual logarithmic Aleksandrov-Fenchel inequality
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Abstract. In this paper, we establish a dual logarithmic Aleksandrov-
Fenchel inequality involving logarithms by introducing new geometric mea-
sures and using the newly published L,-dual Aleksandrov-Fenchel inequal-
ity. The dual logarithmic Aleksandrov-Fenchel inequality is also derived.
This new dual logarithmic Aleksandrov-Fenchel type inequality in special
cases yields Ly-dual logarithmic Minkowski’s inequality, the classical dual
Aleksandrov-Fenchel inequality and related dual logarithmic Minkowski
type inequalities.
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1 Introduction

In 2012, a logarithmic Minkowski inequality for origin-symmetric convex bodies was
conjectured by Boroczky, Lutwak, and et al [1].

The conjectured logarithmic Minkowski inequality.
If K and L are convez bodies in R™ which are symmetric with respect to the origin,

I L

where dvy, = %hLdS(L, -) is the cone-volume measure of L, and dvy = ﬁd’uL 18
its normalization, and S(L,-) is the mized surface area measure of L.

The functions are the support functions. If K is a nonempty closed (not necessarily
bounded) convex set in R™, then

hxg =max{zx-y:y e K},

for z € R™, defines the support function hx of K. A nonempty closed convex set is
uniquely determined by its support function.
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Recently, the conjectured logarithmic Minkowski inequality and its dual form have
attracted extensive attention and research. The recent research on the logarithmic
Minkowski type inequalities and its dual can be found in the references [2, 3, 5, 6, 7,
11, 12, 13, 15, 17, 18, 19, 20, 21, 23].

The dual mixed volume of star bodies K7, ..., Ky, ‘7(K1, ..., K},) defined by Lut-
wak (see [10])

~ 1
V(Ko K = [ () pl Ko u)dS (), (1.2)
Sn—1
Here, p(K,-) denotes the radial function of star body K. The radial function of star
body K is defined by
p(K,u) =max{c>0:cu€ K},

for u € S"7L. If p(K,-) is positive and continuous, K will be called a star body. In
the following, let S™ denote the set of star bodies about the origin in R™. Moreover,
Lutwak’s dual Aleksandrov-Fenchel inequality is the following: If Ky,--- , K, € 8"
and 1 <r < n, then

V(K- Ky < [V K K, K (1.3)
=1

S|

with equality if and only if K4, ..., K, are all dilations of each other (see [10]).

It is well known that in dual Brunn-Minkowski theory, dual Minkowski inequal-
ity and dual Aleksandrov-Fenchel inequality appear at the same time, and the latter
is a generalization of the former. So a natural question is raised: is there a dual
logarithmic Aleksandrov-Fenchel inequality relative to a dual logarithmic Minkowski
inequality? The main purpose of this article is to answer the above questions perfectly
and obtain a dual logarithmic Aleksandrov-Fenchel inequality involving logarithms by
introducing two new concepts of mixed dual volume measure and L,-multiple dual
mixed volume measure, and using the L,-dual Aleksandrov-Fenchel inequality for the
L,-multiple dual mixed volume. The dual logarithmic Aleksandrov-Fenchel inequality
is also derived. The new dual logarithmic Aleksandrov-Fenchel inequality involving
logarithms in special cases yields L,-dual logarithmic Minkowski’s inequality, the clas-
sical dual Aleksandrov-Fenchel inequality, and some new dual logarithmic Minkowski
type inequalities. Our main result is given in the following inequality.

The dual logarithmic Aleksandrov-Fenchel inequality involving
logarithms.

IfL1,Ky,...., K, €S8", 1<r<mnandp>1, then

/ h’l(p(Ll’u))di;,p(Ll,Kh...,Kn)Zln _ V(L17K27"' 7Kn) . ,
sn-1 \p(K1,u) " V(K. K Ky, KT

=1

with equality if and only if L1, K1, ..., K, are all dilations of each other.

Here, dv_p(Ll, K;---,K,) denotes a new probability measure call it L,-multiple
dual mixed volume probability measure of star bodies L1, K1, ..., K,, defined by
~ 1

AV (L1, Ky - K,) = = Ao (L, Ky K, 15
p(L1, Ky ) T K p(L1, Ky ) (1.5)
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where p > 1, and
- 1 _
dv—p(Lla Kl e aKn) = ﬁp(Kla U) pp(Lla U)1+pP(K2a u) e p(K’m u)dS(u),

and YN/,p(Ll, Ki,...,K,) is the Lp-multiple dual mixed volume of star bodies
L, Ky,...,K,, defined by ([22])

Voalta Koo ) = 1 [ () ) oS0 (10

Obviously, putting p =1, L1 = L, Ky = K and Ky = ... = K,, = L in (1.6), then

V_p(L1, K1, ..., K,) becomes the well-known dual mixed volume ‘7_1(L, K), defined
by (see (8]

- 1
V(LK) = 5/ (L, uw)" M p(K,u)~tdS (u).
Snfl
Remark. When L; = K, inequality (1.4) becomes the classical dual Aleksandrov-
Fenchel inequality as follows: If K7,--- , K, € 8™ and 1 < r < n, then
V(Ky, - K) <[V Ko Ko, K7 (1.7)
i=1

with equality if and only if K, ..., K, are all dilations of each other.
Ifputtingp=1,r=n—-1,L1 =L, K1 =Kand Ky =... = K,, = L in (1.4),
and noting that

V_(L,K,L,....,L) = V_(L,K),
N——
n—1
1
dv_1(L,K,L,...,L) = —p(L,u)" " p(K,u)"!,
N—— n
n—1
~ 1
dv_(L,K,L,...,L) = =———div_(L,K,L,...,L),
\‘/1—" V_l(L,K) \Wl—’

and in view of

ot . 1/(n—1)
[V K KD = (Vi LV (L))

< V(K)l/nv(L)(nfl)/n,

with equality if and only if K and L are dilates, then (1.4) becomes the following dual
logarithmic Minkowski inequality.

The dual logarithmic Minkowski inequality.
If K and L are star bodies in R™, then

[ () mstn(B).
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with equality if and only if K and L are dilates, where dlw/,l(L K) = d‘N/,l(L, K, L,...,L)
——
n—1
denotes the dual mized volume probability measure of K and L.
Obviously, a special case of (1.4) is the following dual logarithmic Aleksandrov-
Fenchel inequality.
The dual logarithmic Aleksandrov-Fenchel inequality.
IfL1,Kq,...,K,, € §",1<r <n, then

/ ln(M>d\~Ll(L1,K17...,K”)>1n VL, Kz, Kn) -,
sn-1 \p(K1,u) V(K K Kega, . K) T

i=1

(1.9)
with equality if and only if L1, Ky,..., K, are all dilations of each other, where
dV_q1(L1, K1,...,K,) is as in (1.5).

2 Notations and preliminaries

The setting for this paper is n-dimensional Euclidean space R™. A body in R”" is
a compact set equal to the closure of its interior. For a compact set K C R",
we write V(K) for the (n-dimensional) Lebesgue measure of K and call this the
volume of K. The unit ball in R" and its surface are denoted by B and S"~!,
respectively. Let K™ denote the class of nonempty compact convex subsets containing
the origin in their interiors in R™. Associated with a compact subset K of R™, which
is star-shaped with respect to the origin and contains the origin, its radial function is
p(K,-): 8" 1 —[0,00), defined by

p(K,u) =max{\A >0: € K}.

Two star bodies K and L are dilates if p(K,u)/p(L,u) is independent of u € S"~!.
Let § denote the radial Hausdorff metric, as follows, if K, L € 8™, then (see e.g. [14])

5K, L) = (K w) — plL, 0)]e.
2.1 Dual mized volumes
The polar coordinate formula for volume of a compact set K is

V(K) =+ /S plE w)"dS (). (2.1)

n
The first dual mixed volume, X~/1(K , L), defined by

‘Z(K’L):l - V(K15~L)7V(K),

n e—0+ S

where K, L € §™. The integral representation for first dual mixed volume is proved:
For K,L € 8",

Vi(K,L) = %/Snil p(K,w)" " p(L,u)dS(u). (2.2)
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The Minkowski inequality for first dual mixed volume is the following: If K, L € S,
then B
(K, L) < V(K" 'V(L), (2.3)

with equality if and only if K and L are dilates (see [10]).

Ith...,Kn € Sn’ Ki=---=K,_; = K, Kn7i+1 =...=K, = L, the dual
mixed volume V (K7, ..., K,) is written as V;(K, L). If L = B, the dual mixed volume
Vi(K, L) = Vi(K, B) is written as Wz(K) and called dual quermassintegral of K. For
K eS8 and 0 <i < n,

— 1 ,
Wi(K) = f/ p(K,u)"~*dS(u). (2.4)
n Jgn-1
If Kl = = KTL—i—l = K, Kn_j, = . = Kn—1~: B and Kn = L, the dual
mixed volume V(K,..., K, B,..., B, L) is written as W;(K, L) and called dual mixed
—_——— ———

n—i—1 i
quermassintegral of K and L. For K, L € 8" and 0 < i < n, it is easy that
Wi(K¥e L) - W;(K) 1

N» — 1 = — n—i—1
W:(K, L) glu%l+ 5 " /an p(K,u) p(L,uw)dS (u).
(2.5)

The fundamental inequality for dual mixed quermassintegral stated that: If K, L €
S™ and 0 < i < n, then

WK, )" < Wy(K)" "' Wi(L), (2.6)

with equality if and only if K and L are dilates. The Brunn-Minkowski inequality for
dual quermassintegral is the following: If K, L € 8™ and 0 < i < n, then

Wi(KFL)Y =0 < Wy(K)Y =9 4 wi(L) =), (2.7)
with equality if and only if K and L are dilates.
2.2 Ly-dual mized volume
The dual mixed volume V_; (K, L) of star bodies K and L is defined by ([8])

V_i(K,L) = lim V(K)_WK%'L), (2.8)

e—0t S

where F is the harmonic addition. The following is a integral representation for the
dual mixed volume V_; (K, L):

~ 1

Vi (K,L) = - /SH (K, u)" ™ p(L,u) " dS (u). (2.9)

The dual Minkowski inequality for the dual mixed volume states that
Vo1 (K, L)" > V(K)""'WV (L), (2.10)

with equality if and only if K and L are dilates (see [9]).
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The dual Brunn-Minkowski inequality for the harmonic addition states that
V(KFL)™Y" > v(K)"Y" 4+ v(L)~V", (2.11)

with equality if and only if K and L are dilates (this inequality is due to Firey [4]).
The L,, dual mixed volume V_,(K, L) of K and L is defined by [8])

Vo, (K,L) = -2 lim V(E e L) - V) (2.12)

n e—=0+ 9

where K, L € S" and p > 1.
The following is an integral representation for the L, dual mixed volume: For
K, LeS"andp>1,

V_,(K,L) = % /S K, w)" P p(L, u)"PdS (u). (2.13)

L,-dual Minkowski and Brunn-Minkowski inequalities were established by Lutwak [8]:
If K,L € S" and p > 1, then

V_,(K,L)" > V(K)"*PV(L)™?, (2.14)
with equality if and only if K and L are dilates, and
V(KF,L)™?/" > V(K)™P/" + V(L)~P/", (2.15)
with equality if and only if K and L are dilates.
2.8 Mixed p-harmonic quermassintegral

In 1996, L,-harmonic radial addition for star bodies was defined by Lutwak [8]:
If K, L are star bodies, for p > 1, the L,-harmonic radial addition defined by

p(KFpLoa) 7 = p(K.,2) ¥ + p(L,x) 7, (2.16)

for z € R". For convex bodies, Ly-harmonic addition was first investigated by Firey
[4]. The operations of the L,-radial addition, L,-harmonic radial addition and the
L,-dual Minkowski, Brunn-Minkwski inequalities are fundamental notions and in-
equalities from the L,-dual Brunn-Minkowski theory.

From (2.16), it is easy to see that if K, L € 8", 0 <i <n and p > 1, then

P gy Wille L) - WA(I) _ L /Sf (K )"+ p(Law) PdS(u). (2.17)

n—1e—0t 3 n

Let K,L € 8", 0 <i <n and p > 1, the mixed p-harmonic quermassintegral of star
K and L, denoted by W_,, ;(K, L), defined by (see [16])

— 1 A
Wopsl KoL) = o [ oK) 4 7p(Lu) PdS(u). (2.18)
Sn—l
Obviously, when K = L, the p-harmonic quermassintegral W,p’i(K , L) becomes the

dual quermassintegral W;(K). The Minkowski and Brunn-Minkowski inequalities
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for the mixed p-harmonic quermassintegral are following (see [16]): If K,L € 8™,
0<i<nandp>1, then

W—p;L(K, L)V > Wi(K)" " PW,(L)~?, (2.19)

with equality if and only if K and L are dilates. If K, L € 8™, 0<i¢ <n and p > 1,
then
Wi(KF,L)7P/ (=) > W, (K)~P/ ("= 4 W, (L)=P/(n=9), (2.20)

with equality if and only if K and L are dilates.

3 L,-multiple dual mixed volumes

In [22], the L,-multiple mixed volume was introduced as follows:

Definition 3.1 For p > 1, the L,-multiple dual mixed volume of star bodies
Li,Kq,...,K,, denoted by

P
V(L Ko, Kn) = %/Si <;’((]L(IIZ))) (L1, ) p(Kay ) - p(Kmy )dS().  (3.1)
Putting L; = K in (3.1), the L, multiple dual mixed volume V_p(Ll, Ky, K,)
becomes the usual dual mixed volume V(Kl, -+, K,). Putting K1 = L and L; =
Ky=---=K,=Kin(3.1), V,p(Ll, K,,---,K,) becomes the L, dual mixed volume
V_,(K,L). Putting K; = Land L1 = Ky = - = K, ; = K and K, ;11 = --- =
K, = Bin(3.1), V,p(Ll, K, , K;,) becomes the harmonic mixed p-quermassintegral,

L,-dual Aleksandrov-Fenchel inequality for L,-multiple dual mixed
volumes.

If L1, Ky, K, €S", p>1and1<r <n, then

~ V(L. Ko.--- Kn p+1
V_p(L].?Kl?KQa"' 7Kn) Z s ~ ( Lo : )
[Ty V(Ko Ko Ko K.

(3.2)

sk

with equality if and only if L1, K1, ..., K, are all dilations of each other.

The following inequality follows immediately from (3.2). If K, L € S*, 0<i<mn
and p > 1, then . S o
W_pi(K,L)"™" > W;(K)"""PW,;(L)"?, (3.3)

with equality if and only if K and L are dilates. Taking ¢ = 0 in (3.3), this yields the
L,-dual Minkowski inequality: If K,L € 8" and p > 1, then

V_p(K,L)" > V(K)"*PV(L)~P, (3.4)

with equality if and only if K and L are dilates.
A limit of representation of the L,-multiple dual mixed volume was found,

- V(L1 Fpe - Ki, Ko, Kn) = V(L1, Ko, -, Kn
L‘/LP('Llal{la"'7-[(77,): lim ( 1+p5 1,52, ’ ) ( 1, M2, )

—p e—0t €

(3.5)
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4 The dual logarithmic Aleksandrov-Fenchel inequality

In the section, in order to derive a dual logarithmic Aleksandrov-Fenchel inequality
involving logarithms, we need to define some new mixed volume measures.

If Ky,...,K, € 8", the dual mixed volume of star bodies K3, ..., K,, V(Ki,...,K,)
defined by

~ 1
V(Ky,...,Kp) = - / ) p(K1,u) - p(Ky,u)dS(u). (4.1)
gn—
From (4.1), we introduce the dual mixed volume measure of star bodies L1, K, ..., K.
Definition 4.1 (dual mixed volume measure) For Ly, Ko, -+, K, € 8", the

L,-dual mixed volume measure of Lq, Ks,..., K, denoted by do(Lq, Ka,...,K,),
defined by

A5(Ln, Ko, ... K) = %p(Lh Wp(Ksu) -+« p(Kon, u)dS(w). (4.2)

From Definition 4.1, we get the following mixed volume probability measure.

~ 1
AV (Ly, Ky, ... K,) = = do(Ly, Ko, ..., K,). (4.3)
V(Li, K, ..., Ky)

For p > 1, L,-multiple dual mixed volume of L;,K;---,K,, denoted by
V_p(L1, K, -, Ky), defined by
~ 1 _
Vop(Ln, Koo Kn) = / p(K1,u) P p(La,u) P p(Kayu) - - p(Kp, u)dS(u).  (4.4)
Sn—1
From (4.4), we introduce L,-multiple dual mixed volume measure of star bodies
Li,K,---, K, as follows:

Definition 4.2 (L,-multiple dual mixed volume measure). For L1, K1,..., K, €
8", the dual mixed volume measure of L1, K7 . .., K,,, denoted by dv_, (L1, K1 -+ -, K),
defined by

- 1 _
drU—P(leKl"' ,Kn) = Ep(Klau) pp(L17u)1+pp(K27u)"'p(Kﬂnu)dS(u)' (45)
From Definition 4.2, L,-multiple dual mixed volume probability measure is defined
by
~ 1

AV (L1, Ky - K,) = = Ao (L, Ky K. 4.6
p(L1, Ky ) T K p(L1, Ky ) (4.6)

Obviously, the dual mixed volume measure do(L1, K, ..., K,) is special case of
the L,-multiple dual mixed volume measure. When K; = L, we have

di}_P(leLlaKQ?"' 3K7L) = dﬁ(L15K27”' ;Kn)7 (47)

and

~ 1
dV_p (L1, L1, Ky -+ | Kp) = = do(L1, Ko+, K,). (4.8)
V(leKQ"' 7K’n)
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Theorem 4.1 (The dual logarithmic Aleksandrov-Fenchel inequality involving
logarithms). If L1, Ky,..., K, € 8", 1 <r <n and p > 1, then

- 1 V_
/ In ('O(Ll’“)> AV p(Ly, Kry .. ) > S 1n [ Yol B K)
Sn—1 p(K17u) p V(L17K27"'7K7l)

V

> In —= n
Hi:l V(KZ (R 7Ki7 KT+17 vy Kn):
the left inequality in (4.9) with equality if and only if L1 and K; are dilates, and the
right inequality with equality if and only if L1, K1,..., K, are all dilations of each
other.
Proof. From (4.2), (4.5) and (4.6), we have

/Sn_l (%)"ln (%) di(Ln, Ko, ..., Ln) = /Sn_l In (;’((f(llz))) d@_p(Ll(ﬁlO,). LK),

V(L1 Ko, -, Ky) ) L (4.9)

Noting that

~ 1
V_P<L1a Kl) o aK’ﬂ) = E / p(K17 U)_pp(Lh u)1+pp(K27 ’I,L) T p(K’na u)dS(u),
STL*I

and from Lebesgues dominated convergence theorem, we obtain

p(Ll,m)ff" : 7
PN (L, Ky Ky) = V(L1 K, . Ko
/Sn_1 (p(Kl,u) (L1, K2 ) p(L1, Ky )

as ¢ — 0o, and

_Pq
+n
/ (M) 1 (M) do(L1, Ko, ..., Kp) — In (M) do_p(Ly, K1, ..., Ky)
Ssn—1 sn—1

p(K17u) p(K17u) p(Klvu)

as ¢ — oo. Considering the function gy, x, ..k, :[1,00] = R, defined by

n

yl
L / (p(L1, ) > atn
L1,K1,..., Kn(q) = = —_ dv(L1, Ka,...,Ky). (4.11
g ( ) V*P(LlaKlw--vKn) Sn—1 p(K17u) ( ) ( )

By calculating the derivative and limit of this function, we have

dgr, k,..x.(q) _ _pn 1
dq (@+n)? V_, (L1, Ky,..., K,)
p(Ll,u>)q”# (p(Ll,u)> )
X 2o In( 522 ) do(Ly, Ko, ..., Ky). (4.12
/S"*1 (p(Klvu) p(Klau) ( ! ? ) ( )

and
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From (4.11), (4.12) and (4.13), and by using L’Hépital’s rule, we have

lim In atn —(q+n)? lim 4
o (ng K1, vKn(q)) (q ) 400 gLy Ky, Kn(q)
— _ pn
V—p(L17K17"'7Kn)
_Pg
Liu) )\ atn Liu ~
X lim Jsn (ZéKll,m)q 1“(5<(K117u>>) (L, K, -, Kn)
q— 00 gr,,Kq,..., Kn(q)
_ _ pn
pr(L17K1a"'7K”7«)
p
o / <P(L1,u)) 1n<p(L1,u))df)(Ll,Kg,...,Kn).
sn—1 \ p(K1,u) p(K1,u)
Hence

pn p(Lyw) \P p(Li,u) ~
eXp (_ V(LK1 Kn) Jsn— (p(Kl,u)) In (p(xl,u)) do(L1, Ko, .. '7K"))

= limg—o0 (g2, K1, 100) 0" (4.14)
(Ly) |57 o
— i 1 U q+n g~
= limgso0 (m Jon-r (5535 d”(Ll’KQW"K”)) :
On the other hand, from Holder’s inequality
. 2L (g+n)/a ny
(fsm (L) dﬁ(Ll,Kg,...,Kn)) (fanor di(L1, Ko, ..., Kp)) "
P
< Jouor (£5225)" di(Ls, Ko, .. Kn)
=V (L1, K1,..., Ky).
(4.15)

From the equality condition of Holder’s inequality, it follows the equality in (4.15)
holds if and only if p(K;,u) and p(Li,u) are proportional. This yiels equality in
(4.15) holds if and only if K; and L; are dilates. Namely,

1 L = o V(Li, K K, "
q+n
/ <p( 17U)) dﬁ(le-KQawKn) <7 =~ ( b EARRL n) )
Vop(Ly, Ky, ..., Ky) Jsn—1 \p(K1,u) Vop(L1, K1, ..., Ky)

with equality if and only if Ky and L; are dilates. Hence

exp <_‘7—p(L1Jl;:l,...,Kn) /57 (M)pln (%) di;(Ll,Kg,...,Kn)>

(VK K
T \V, (L, Ky, Ky )

with equality if and only if K3 and L; are dilates. That is
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o [ Veplln K )
V(L1 Ky, ..., K,)

with equality if and only if K7 and L; are dilates. Therefore

L . 1, (V_p(Li,Ky,..., K
/ In <p(1’u)) dv_p(L17K1’...7Kn)2*1n VNI)( 1,1, ) 7L) , (416)
Sn—1 p(Kl,u) p V(L15K27-"7Kn)

with equality if and only if K7 and L; are dilates. The completes proof of the first
inequality in (4.9).
Further, by using the L,-dual Aleksandrov-Fenchel inequality (3.2), we obtain

/ 1n<M> AVop(L1,K1,...,K,) > =In| = ! X
sn-1 \p(K1,u) p V(L1, Ko, ..., Ky)
y V(L1, Ko, Ky)PT!
M, V(Ki.. . Ki, K1, K7

1
T

In =
(HI_l V(K ..., Ki,Krs1,...,Kn)7
with equality if and only if Ly, K3, ..., K, are all dilations of each other.
This completes the proof. O
Theorem 4.2 If K and L are star bodies in R™, and 0 <i <n and p > 1, then

p(Lou)\ = 1 (WepiL K) L (W)
/S"_lln<w)dw_p,z(L,K)2pl< FD) )271 il <~ )). (4.17)

‘7(L17K2>"' 7Kn) >

each equality holds if and only if K and L are dilates, and where

dw_,;(L,K)=dv_,(L,K,L,...,L,B,...,B) = lp(K, u)*”p(L,u)”*”pdS(u),
—_—— —— n
n—1—i i
(4.18)
and 1
dW_, (LK) = =——dw_, ;(L, K), 4.19
pi(L, K) omE (L, K) (4.19)

denotes its normalization.

P?"OOf. PuttingL1 :L, Kl :K, K2 = =Np_i1 :L, ani =... :Kn =B
in (4.4), (4.5) and (4.6), we obtain

V_,(L,K,L,...,L,B,...,B) = W_,,(L,K), (4.20)
——— ——
n—i—1 7
do_p(L,K,L,...,L,B,...,B) = di_p (L, K). (4.21)
——— ——
n—i—1 7
and 1
dv_,(L,K,L,...,L,B,...,B) = —————diw_, (L, K). (4.22)
N—— H/—/ W_pﬂ,(L’ K)
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In view of (4.16) and (4.20)-(4.22), we have

L) L (WL K)
/S”lln<p(K7u)>dW—p,z(L,K)2pl( D) ) (4.23)

From (2.19) and (4.23), (4.17) easy follows. This completes the proof. O
A special case of (4.17) is the following dual logarithmic Minkowski type inequality.
Corollary 4.1 If K and L are star bodies in R™, then

[ (B v = (I0) 5 2 (F8) . qaa

each equality holds if and only if K and L are dilates.
Proof. This yields immediately from Theorem 4.2 with p =1 and ¢ = 0.
Another special case is the following logarithmic L,-dual Minkowski type inequal-
ity.
Corollary 4.2 If K and L are star bodies in R™ and p > 1, then

pLyu)\ = 1. (V(LK)\ _ 1, [V(L)
/an In (p(K, u)) dV_,(L,K) > ];ln (V(L)) > ﬁln <V(K)> . (4.25)

each equality holds if and only if K and L are dilates. Here

1
d{)—p(Lv K) = dﬁ—p(La K,L, ) L) = 7p(K7 u)ipp(Lau)nijdS(u)a
—— n

n—1

and

1
dV_ L, K - Nidi}_ L, K 5
LK) = iy (L)

denotes its normalization.
Proof. This yields immediately from (4.17) with ¢ = 0.
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