On the local properties of factored Fourier series *

Hüseyin Bor

Abstract

In the present paper, a theorem on local property of $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability of factored Fourier series which generalizes a result of Bor [3] has been proved.

1 Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. We denote by t_{n} the n-th (C,1) mean of the sequence $\left(n a_{n}\right)$. A series $\sum a_{n}$ is said to be summable $|C, 1|_{k}, k \geq 1$, if (see [6],[8])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, i \geq 1\right) \tag{1.2}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.3}
\end{equation*}
$$

defines the sequence (σ_{n}) of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$ (see [7]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(P_{n} / p_{n}\right)^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \sigma_{n-1}=-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v}, \quad n \geq 1 . \tag{1.5}
\end{equation*}
$$

[^0]© 2009 Universiteti i Prishtines, Prishtine, Kosovë.
Submitted November 2008, Published January 2009.

In the special case $p_{n}=1$ for all values of $\mathrm{n},\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ summability. Also, if we take $k=1$ and $p_{n}=1 /(n+1)$, then summability $\left|\bar{N}, p_{n}\right|_{k}$ is equivalent to the summability $|R, \log n, 1|$. Let $\left(\theta_{n}\right)$ be any sequence of positive constants. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}, k \geq 1$, if (see [12])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\Delta \sigma_{n-1}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $p_{n}=1$ for all values of n, then we get $|C, 1|_{k}$ summability. Furthermore, if we take $\theta_{n}=n$, then $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability reduces to $\left|R, p_{n}\right|_{k}$ (see [4]) summability. A sequence $\left(\lambda_{n}\right)$ is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integer n, where $\Delta^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.
Let $f(t)$ be a periodic function with period 2π, and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(t) d t=0 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t) \tag{1.8}
\end{equation*}
$$

2 Known result

Mohanty [11] has demonstrated that the summability $|R, \log n, 1|$ of

$$
\begin{equation*}
\sum A_{n}(t) / \log (n+1) \tag{2.1}
\end{equation*}
$$

at $t=x$, is a local property of the generating function of $\sum A_{n}(t)$. Later on Matsumoto [9] improved this result by replacing the series (2.1) by

$$
\begin{equation*}
\sum A_{n}(t) / \log \log (n+1)^{1+\epsilon}, \epsilon>0 \tag{2.2}
\end{equation*}
$$

Generalizing the above result Bhatt [1] proved the following theorem.
Theorem A. If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then the summability $|R, \log n, 1|$ of the series $\sum A_{n}(t) \lambda_{n} \log n$ at a point can be ensured by a local property.
Also, Mishra [10] has proved the following most general theorem on this matter.
Theorem B. If $\left(p_{n}\right)$ is a sequence such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right) \tag{2.4}
\end{equation*}
$$

then the summability $\left|\bar{N}, p_{n}\right|$ of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n}(t) \lambda_{n} P_{n} / n p_{n} \tag{2.5}
\end{equation*}
$$

at a point can be ensured by local property, where $\left(\lambda_{n}\right)$ is as in Theorem A.
On the other hand Bor [3] has generalized Theorem B for $\left|\bar{N}, p_{n}\right|_{k}$ summability in the following form.

Theorem C. Let $k \geq 1$ and $\left(p_{n}\right)$ be a sequence such that the conditions (2.3) and (2.4) of Theorem B are satisfied. Then the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the series (2.5) at a point can be ensured by local property, where $\left(\lambda_{n}\right)$ is as in Theorem A.

3 Main result

The aim of this paper is to generalize Theorem C for $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability. We shall prove the following theorem.

Theorem. Let $k \geq 1$ and $\left(p_{n}\right)$ be a sequence such that the conditions (2.3)(2.4) of Theorem B are satisfied. If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{gather*}
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v}\right)^{k}=O(1) \tag{3.1}\\
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \Delta \lambda_{v}=O(1) \tag{3.2}\\
\sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v+1}\right)^{k}=O(1) \tag{3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left\{\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right\} \tag{3.4}
\end{equation*}
$$

then the summability $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series (2.5) at a point can be ensured by local property, where $\left(\lambda_{n}\right)$ is as in Theorem A.

It should be noted that if we take $\theta_{n}=\frac{P_{n}}{p_{n}}$, then we get Theorem C. In this case the conditions (3.1)-(3.3) are obvious and the condition (3.4) reduces to

$$
\sum_{n=v+1}^{m+1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\frac{1}{P_{v}}\right)
$$

which always holds.
We need the following lemmas for the proof of our theorem.
Lemma 1 ([10]). If the sequence $\left(p_{n}\right)$ is such that the conditions (2.3) and (2.4) of Theorem B are satisfied, then

$$
\begin{equation*}
\Delta\left(P_{n} / n p_{n}\right)=O(1 / n) \tag{3.5}
\end{equation*}
$$

Lemma 2 ([5]). If (λ_{n}) is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then $\left(\lambda_{n}\right)$ is non-negative and decreasing, and $n \Delta \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Lemma 3. Let $k \geq 1$.If $\left(s_{n}\right)$ is bounded and all conditions of the Theorem are satisfied, then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} A_{n} \lambda_{n} P_{n} / n p_{n} \tag{3.6}
\end{equation*}
$$

is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$, where $\left(\lambda_{n}\right)$ is as in Theorem A.
Remark. Since $\left(\lambda_{n}\right)$ is a convex sequence, therefore $\left(\lambda_{n}\right)^{k}$ is also convex sequence and $\sum(1 / n)\left(\lambda_{n}\right)^{k}<\infty$.

Proof of Lemma 3. Let $\left(T_{n}\right)$ denotes the $\left(\bar{N}, p_{n}\right)$ mean of the series (3.6). Then, by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{r=0}^{v} a_{r} \lambda_{r} P_{r} / r p_{r}=\frac{1}{P_{n}} \sum_{v=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v} P_{v} / v p_{v}
$$

Then

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} P_{v} \frac{a_{v} \lambda_{v}}{v p_{v}}, \quad n \geq 1, \quad\left(P_{-1}=0\right)
$$

By Abel's transformation, we have

$$
\begin{aligned}
T_{n}-T_{n-1} & =-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} P_{v} s_{v} \lambda_{v} \frac{1}{v p_{v}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} s_{v} P_{v} \Delta \lambda_{v} \frac{1}{v p_{v}} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \lambda_{v+1} \Delta\left(P_{v} / v p_{v}\right) s_{v}+s_{n} \lambda_{n} \frac{1}{n} \\
& =T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \quad \text { say. }
\end{aligned}
$$

To prove the lemma, by Minkowski's inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{3.7}
\end{equation*}
$$

Now, applying Hölder's inequality, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left|s_{v}\right|^{k} p_{v}\left(\frac{\lambda_{v} P_{v}}{v p_{v}}\right)^{k} \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} p_{v}\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\lambda_{v}\right)^{k} \frac{1}{v^{k}} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left(\lambda_{v}\right)^{k} \frac{1}{v^{k}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left(\lambda_{v}\right)^{k} \frac{1}{v^{k}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v}\right)^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Theorem. Since

$$
\sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} \leq P_{n-1} \sum_{v=1}^{n-1} \Delta \lambda_{v} \Rightarrow \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{v} \leq \sum_{v=1}^{n-1} \Delta \lambda_{v}=O(1)
$$

by Lemma 2, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{v p_{v}}\right)^{k} P_{v} \Delta \lambda_{v}\left|s_{v}\right|^{k} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k} \frac{1}{v^{k}} P_{v} \Delta \lambda_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{v p_{v}}\right)^{k} \frac{1}{v^{k}} \Delta \lambda_{v}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \Delta \lambda_{v} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

in view of the hypotheses of the Theorem and Lemma 2.

Using the fact that $\Delta\left(P_{v} / v p_{v}\right)=O(1 / v)$ by Lemma 1, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =\sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v} \lambda_{v+1} \Delta\left(P_{v} / v p_{v}\right) s_{v}\right|^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}^{k}}\left\{\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} p_{v} \lambda_{v+1} \frac{1}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left(\lambda_{v+1}\right)^{k} \frac{1}{v^{k}} \\
& \times\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left(\lambda_{v+1}\right)^{k} \frac{1}{v^{k}} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left(\lambda_{v+1}\right)^{k} \frac{1}{v^{k}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{k-1}\left(\lambda_{v+1}\right)^{k} \frac{1}{v^{k}}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left(\lambda_{v+1}\right)^{k}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Theorem. Finally, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k} & =\sum_{n=1}^{m} \theta_{n}^{k-1}\left(\lambda_{n}\right)^{k} \frac{1}{n^{k}} \\
& =O(1) \sum_{n=1}^{m} \theta_{n}^{k-1}\left(\lambda_{n}\right)^{k}\left|s_{n}\right|^{k} \frac{1}{n^{k-1}} \frac{1}{n} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{1}{n}\left(\lambda_{n}\right)^{k} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

in view of the hypotheses of the Theorem. Therefore we get that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2,3,4
$$

which completes the proof of the Lemma 3.
Remark. If we take $k=1$, then we get a result due to Mishra [10].

4 Proof of the Theorem

Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighborhood of this point only, hence the truth of the Theorem is necessary consequence of Lemma 3.

References

[1] S. N. Bhatt, An aspect of local property of $|R, \log n, 1|$ summability of the factored Fourier series, Proc. Nat. Inst. India 26, (1968), 69-73.
[2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97, (1985), 147-149.
[3] H. Bor, Local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 17, (1989), 165-170.
[4] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113, (1991), 1009-1012.
[5] H. C. Chow, On the summability factors of infinite series, J. London Math. Soc. 16, (1941), 215-220.
[6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
[7] G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, 1949.
[8] E. Kogbetliantz, Sur les séries absolument par la méthode des moyannes arithmétiques, Bull. Sci. Math. 49, (1925), 234-256.
[9] K. Matsumoto, Local property of the summability $\left|R, \lambda_{n}, 1\right|$, Thoku Math. J. 2, (8) (1956), 114-124.
[10] K. N. Mishra, Multipliers for $\left|\bar{N}, p_{n}\right|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica 14, (1986), 431-438.
[11] R. Mohanty, On the summability $|R, \log w, 1|$ of Fourier series, J. London Math. Soc. 25, (1950), 67-72.
[12] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115, (1992), 313-317.

HÜSEYİN BOR

Department of Mathematics,
Erciyes University,
38039 Kayseri, Turkey
e-mail: bor@erciyes.edu.tr

[^0]: *Mathematics Subject Classifications: 40G99, 42A24, 42B24.
 Key words: Absolute summability, infinite series, local property, Fourier series,

