On the local properties of factored Fourier series *

Hüseyin Bor

Abstract

In the present paper, a theorem on local property of $|\bar{N}, p_n, \theta_n|_k$ summability of factored Fourier series which generalizes a result of Bor [3] has been proved.

1 Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . We denote by t_n the n-th (C,1) mean of the sequence (na_n) . A series $\sum a_n$ is said to be summable $|C,1|_k, k \geq 1$, if (see [6],[8])

$$\sum_{n=1}^{\infty} \frac{1}{n} \mid t_n \mid^k < \infty.$$
(1.1)

Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \quad as \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, i \ge 1).$$
 (1.2)

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \tag{1.3}$$

defines the sequence (σ_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [7]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k, k \ge 1$, if (see [2])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} \mid \Delta \sigma_{n-1} \mid^k < \infty,$$
 (1.4)

where

$$\Delta \sigma_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad n \ge 1.$$
 (1.5)

* Mathematics Subject Classifications: 40G99, 42A24, 42B24.

Key words: Absolute summability, infinite series, local property, Fourier series,

^{©2009} Universiteti i Prishtines, Prishtine, Kosovë. Submitted November 2008, Published January 2009.

In the special case $p_n = 1$ for all values of n, $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ summability. Also, if we take k = 1 and $p_n = 1/(n+1)$, then summability $|\bar{N}, p_n|_k$ is equivalent to the summability $|R, \log n, 1|$. Let (θ_n) be any sequence of positive constants. The series $\sum a_n$ is said to be summable $|\bar{N}, p_n, \theta_n|_k, k \ge 1$, if (see [12])

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \mid \Delta \sigma_{n-1} \mid^k < \infty.$$
(1.6)

If we take $\theta_n = \frac{P_n}{p_n}$, then $|\bar{N}, p_n, \theta_n|_k$ summability reduces to $|\bar{N}, p_n|_k$ summability. Also, if we take $\theta_n = n$ and $p_n = 1$ for all values of n, then we get $|C, 1|_k$ summability. Furthermore, if we take $\theta_n = n$, then $|\bar{N}, p_n, \theta_n|_k$ summability reduces to $|R, p_n|_k$ (see [4]) summability. A sequence (λ_n) is said to be convex if $\Delta^2 \lambda_n \geq 0$ for every positive integer n, where $\Delta^2 \lambda_n = \Delta(\Delta \lambda_n)$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

Let f(t) be a periodic function with period 2π , and integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of f(t) is zero, so that

$$\int_{-\pi}^{\pi} f(t)dt = 0$$
 (1.7)

and

$$f(t) \sim \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t).$$
 (1.8)

2 Known result

Mohanty [11] has demonstrated that the summability $| R, \log n, 1 |$ of

$$\sum A_n(t)/\log(n+1),\tag{2.1}$$

at t = x, is a local property of the generating function of $\sum A_n(t)$. Later on Matsumoto [9] improved this result by replacing the series (2.1) by

$$\sum A_n(t) / \log \log(n+1)^{1+\epsilon}, \epsilon > 0.$$
(2.2)

Generalizing the above result Bhatt [1] proved the following theorem.

Theorem A. If (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent, then the summability $|R, \log n, 1|$ of the series $\sum A_n(t)\lambda_n \log n$ at a point can be ensured by a local property.

Also, Mishra [10] has proved the following most general theorem on this matter.

Theorem B. If (p_n) is a sequence such that

$$P_n = O(np_n) \tag{2.3}$$

Hüseyin Bor

$$P_n \Delta p_n = O(p_n p_{n+1}), \tag{2.4}$$

then the summability $|\bar{N}, p_n|$ of the series

$$\sum_{n=1}^{\infty} A_n(t)\lambda_n P_n/np_n \tag{2.5}$$

at a point can be ensured by local property, where (λ_n) is as in Theorem A. On the other hand Bor [3] has generalized Theorem B for $|\bar{N}, p_n|_k$ summability in the following form.

Theorem C. Let $k \ge 1$ and (p_n) be a sequence such that the conditions (2.3) and (2.4) of Theorem B are satisfied. Then the summability $|\bar{N}, p_n|_k$ of the series (2.5) at a point can be ensured by local property, where (λ_n) is as in Theorem A.

3 Main result

The aim of this paper is to generalize Theorem C for $|\bar{N}, p_n, \theta_n|_k$ summability. We shall prove the following theorem.

Theorem. Let $k \ge 1$ and (p_n) be a sequence such that the conditions (2.3)-(2.4) of Theorem B are satisfied. If (θ_n) is any sequence of positive constants such that

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{v} (\lambda_v)^k = O(1)$$
(3.1)

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \Delta \lambda_v = O(1) \tag{3.2}$$

$$\sum_{v=1}^{m} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{v} (\lambda_{v+1})^k = O(1)$$
(3.3)

and

$$\sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O\left\{ \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{P_v} \right\},\tag{3.4}$$

then the summability $|\bar{N}, p_n, \theta_n|_k$ of the series (2.5) at a point can be ensured by local property, where (λ_n) is as in Theorem A.

It should be noted that if we take $\theta_n = \frac{P_n}{p_n}$, then we get Theorem C. In this case the conditions (3.1)-(3.3) are obvious and the condition (3.4) reduces to

$$\sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} = O\left(\frac{1}{P_v}\right),$$

which always holds.

We need the following lemmas for the proof of our theorem.

Lemma 1 ([10]). If the sequence (p_n) is such that the conditions (2.3) and (2.4) of Theorem B are satisfied, then

$$\Delta(P_n/np_n) = O(1/n). \tag{3.5}$$

Lemma 2 ([5]). If (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent, then (λ_n) is non-negative and decreasing, and $n\Delta\lambda_n \to 0$ as $n \to \infty$.

Lemma 3. Let $k \ge 1$. If (s_n) is bounded and all conditions of the Theorem are satisfied, then the series

$$\sum_{n=1}^{\infty} A_n \lambda_n P_n / n p_n \tag{3.6}$$

is summable $|\bar{N}, p_n, \theta_n|_k$, where (λ_n) is as in Theorem A.

Remark. Since (λ_n) is a convex sequence, therefore $(\lambda_n)^k$ is also convex sequence and $\sum (1/n)(\lambda_n)^k < \infty$.

Proof of Lemma 3. Let (T_n) denotes the (\overline{N}, p_n) mean of the series (3.6). Then, by definition, we have

$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v \sum_{r=0}^v a_r \lambda_r P_r / r p_r = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v \lambda_v P_v / v p_v.$$

Then

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} P_v \frac{a_v \lambda_v}{v p_v}, \quad n \ge 1, \quad (P_{-1} = 0).$$

By Abel's transformation, we have

$$T_{n} - T_{n-1} = -\frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} p_{v}P_{v}s_{v}\lambda_{v}\frac{1}{vp_{v}}$$

$$+ \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} P_{v}s_{v}P_{v}\Delta\lambda_{v}\frac{1}{vp_{v}}$$

$$+ \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} P_{v}\lambda_{v+1}\Delta(P_{v}/vp_{v})s_{v} + s_{n}\lambda_{n}\frac{1}{n}$$

$$= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \quad say.$$

To prove the lemma, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \theta_n^{k-1} \mid T_{n,r} \mid^k < \infty, \quad for \quad r = 1, 2, 3, 4.$$
(3.7)

18

Now, applying Hölder's inequality, we have that

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} \mid T_{n,1} \mid^k &\leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \mid s_v \mid^k p_v \left(\frac{\lambda_v P_v}{v p_v}\right)^k \times \left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right\}^{k-1} \\ &= O(1) \sum_{v=1}^m p_v \left(\frac{P_v}{p_v}\right)^k (\lambda_v)^k \frac{1}{v^k} \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v}\right)^{k-1} (\lambda_v)^k \frac{1}{v^k} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \\ &= O(1) \sum_{v=1}^m v^{k-1} (\lambda_v)^k \frac{1}{v^k} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \\ &= O(1) \sum_{v=1}^m \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{v} (\lambda_v)^k = O(1) \quad as \quad m \to \infty, \end{split}$$

by virtue of the hypotheses of the Theorem. Since

$$\sum_{v=1}^{n-1} P_v \Delta \lambda_v \le P_{n-1} \sum_{v=1}^{n-1} \Delta \lambda_v \Rightarrow \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_v \Delta \lambda_v \le \sum_{v=1}^{n-1} \Delta \lambda_v = O(1),$$

by Lemma 2, we have that

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} \mid T_{n,2} \mid^k &\leq \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{vp_v}\right)^k P_v \Delta \lambda_v \mid s_v \mid^k \\ &\times \left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v\right\}^{k-1} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{vp_v}\right)^k \frac{1}{v^k} P_v \Delta \lambda_v \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{vp_v}\right)^k \frac{1}{v^k} \Delta \lambda_v \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \\ &= O(1) \sum_{v=1}^m \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \Delta \lambda_v \\ &= O(1) as \quad m \to \infty, \end{split}$$

in view of the hypotheses of the Theorem and Lemma 2.

Using the fact that $\Delta(P_v/vp_v) = O(1/v)$ by Lemma 1, we have that

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} \mid T_{n,3} \mid^k &= \sum_{n=1}^m \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}^k} \mid \sum_{v=1}^{n-1} P_v \lambda_{v+1} \Delta(P_v / v p_v) s_v \mid^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}^k} \left\{ \sum_{v=1}^{n-1} \frac{P_v}{p_v} p_v \lambda_{v+1} \frac{1}{v} \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n} \right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_v}{p_v} \right)^k p_v (\lambda_{v+1})^k \frac{1}{v^k} \\ &\times \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v} \right)^k p_v (\lambda_{v+1})^k \frac{1}{v^k} \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n} \right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m \left(\frac{P_v}{p_v} \right)^{k-1} (\lambda_{v+1})^k \frac{1}{v^k} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^m v^{k-1} (\lambda_{v+1})^k \frac{1}{v^k} \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \\ &= O(1) \sum_{v=1}^m \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{v} (\lambda_{v+1})^k = O(1) \quad as \quad m \to \infty, \end{split}$$

by virtue of the hypotheses of the Theorem. Finally, we have that

$$\begin{split} \sum_{n=1}^{m} \theta_n^{k-1} \mid T_{n,4} \mid^k &= \sum_{n=1}^{m} \theta_n^{k-1} (\lambda_n)^k \frac{1}{n^k} \\ &= O(1) \sum_{n=1}^{m} \theta_n^{k-1} (\lambda_n)^k \mid s_n \mid^k \frac{1}{n^{k-1}} \frac{1}{n} \\ &= O(1) \sum_{n=1}^{m} \left(\frac{\theta_n p_n}{P_n} \right)^{k-1} \frac{1}{n} (\lambda_n)^k \\ &= O(1) \quad as \quad m \to \infty, \end{split}$$

in view of the hypotheses of the Theorem. Therefore we get that

$$\sum_{n=1}^{m} \theta_n^{k-1} \mid T_{n,r} \mid^k = O(1) \quad as \quad m \to \infty, \quad for \quad r = 1, 2, 3, 4.$$

which completes the proof of the Lemma 3.

Remark. If we take k = 1, then we get a result due to Mishra [10].

4 Proof of the Theorem

Since the behaviour of the Fourier series, as far as convergence is concerned, for a particular value of x depends on the behaviour of the function in the immediate neighborhood of this point only, hence the truth of the Theorem is necessary consequence of Lemma 3.

References

- S. N. Bhatt, An aspect of local property of | R, log n, 1 | summability of the factored Fourier series, Proc. Nat. Inst. India 26, (1968), 69-73.
- [2] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97, (1985), 147-149.
- [3] H. Bor, Local property of | N, p_n |_k summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 17, (1989), 165-170.
- [4] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113, (1991), 1009-1012.
- [5] H. C. Chow, On the summability factors of infinite series, J. London Math. Soc. 16, (1941), 215-220.
- [6] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113-141.
- [7] G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, 1949.
- [8] E. Kogbetliantz, Sur les séries absolument par la méthode des moyannes arithmétiques, *Bull. Sci. Math.* **49**, (1925), 234-256.
- [9] K. Matsumoto, Local property of the summability $| R, \lambda_n, 1 |$, Thoku Math. J. **2**, (8) (1956), 114-124.
- [10] K. N. Mishra, Multipliers for $|\bar{N}, p_n|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica 14, (1986), 431-438.
- [11] R. Mohanty, On the summability $| R, \log w, 1 |$ of Fourier series, J. London Math. Soc. 25, (1950), 67-72.
- [12] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115, (1992), 313-317.

HÜSEYİN BOR Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey e-mail: bor@erciyes.edu.tr