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On the local properties of factored Fourier series ∗

Hüseyin Bor

Abstract

In the present paper, a theorem on local property of | N̄ , pn, θn |k summa-
bility of factored Fourier series which generalizes a result of Bor [3] has
been proved.

1 Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote by tn the
n-th (C,1) mean of the sequence (nan). A series

∑
an is said to be summable

| C, 1 |k, k ≥ 1 , if (see [6],[8])

∞∑
n=1

1
n
| tn |k< ∞. (1.1)

Let (pn) be a sequence of positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1). (1.2)

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv (1.3)

defines the sequence (σn) of the Riesz mean or simply the (N̄ , pn) mean of the
sequence (sn), generated by the sequence of coefficients (pn) (see [7]). The series∑

an is said to be summable | N̄ , pn |k, k ≥ 1, if (see [2])

∞∑
n=1

(Pn/pn)k−1 | ∆σn−1 |k< ∞, (1.4)

where

∆σn−1 = − pn

PnPn−1

n∑
v=1

Pv−1av, n ≥ 1. (1.5)
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In the special case pn = 1 for all values of n, | N̄ , pn |k summability is the
same as | C, 1 |k summability. Also,if we take k = 1 and pn = 1/(n + 1), then
summability | N̄ , pn |k is equivalent to the summability | R, log n, 1 |. Let (θn)
be any sequence of positive constants. The series

∑
an is said to be summable

| N̄ , pn, θn |k, k ≥ 1, if (see [12])

∞∑
n=1

θk−1
n | ∆σn−1 |k< ∞. (1.6)

If we take θn = Pn

pn
, then | N̄ , pn, θn |k summability reduces to | N̄ , pn |k

summability. Also, if we take θn = n and pn = 1 for all values of n, then we
get | C, 1 |k summability. Furthermore, if we take θn = n, then | N̄ , pn, θn |k
summability reduces to | R, pn |k (see [4]) summability. A sequence (λn) is said
to be convex if ∆2λn ≥ 0 for every positive integer n, where ∆2λn = ∆(∆λn)
and ∆λn = λn − λn+1.
Let f(t) be a periodic function with period 2π, and integrable (L) over (−π, π).
Without any loss of generality we may assume that the constant term in the
Fourier series of f(t) is zero, so that∫ π

−π

f(t)dt = 0 (1.7)

and

f(t) ∼
∞∑

n=1

(an cos nt + bn sinnt) =
∞∑

n=1

An(t). (1.8)

2 Known result

Mohanty [11] has demonstrated that the summability | R, log n, 1 | of∑
An(t)/ log(n + 1), (2.1)

at t = x, is a local property of the generating function of
∑

An(t). Later on
Matsumoto [9] improved this result by replacing the series (2.1) by∑

An(t)/ log log(n + 1)1+ε, ε > 0. (2.2)

Generalizing the above result Bhatt [1] proved the following theorem.

Theorem A. If (λn) is a convex sequence such that
∑

n−1λn is convergent,
then the summability | R, log n, 1 | of the series

∑
An(t)λn log n at a point can

be ensured by a local property.
Also, Mishra [10] has proved the following most general theorem on this matter.

Theorem B. If (pn) is a sequence such that

Pn = O(npn) (2.3)
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Pn∆pn = O(pnpn+1), (2.4)

then the summability | N̄ , pn | of the series
∞∑

n=1

An(t)λnPn/npn (2.5)

at a point can be ensured by local property, where (λn) is as in Theorem A.
On the other hand Bor [3] has generalized Theorem B for | N̄ , pn |k summability
in the following form.

Theorem C. Let k ≥ 1 and (pn) be a sequence such that the conditions (2.3)
and (2.4) of Theorem B are satisfied. Then the summability | N̄ , pn |k of the
series (2.5) at a point can be ensured by local property , where (λn) is as in
Theorem A.

3 Main result

The aim of this paper is to generalize Theorem C for | N̄ , pn, θn |k summability.
We shall prove the following theorem.

Theorem. Let k ≥ 1 and (pn) be a sequence such that the conditions (2.3)-
(2.4) of Theorem B are satisfied. If (θn) is any sequence of positive constants
such that

m∑
v=1

(
θvpv

Pv

)k−1 1
v
(λv)k = O(1) (3.1)

m∑
v=1

(
θvpv

Pv

)k−1

∆λv = O(1) (3.2)

m∑
v=1

(
θvpv

Pv

)k−1 1
v
(λv+1)k = O(1) (3.3)

and
m+1∑

n=v+1

(
θnpn

Pn

)k−1
pn

PnPn−1
= O

{(
θvpv

Pv

)k−1 1
Pv

}
, (3.4)

then the summability | N̄ , pn, θn |k of the series (2.5) at a point can be ensured
by local property, where (λn) is as in Theorem A.

It should be noted that if we take θn = Pn

pn
, then we get Theorem C. In this case

the conditions (3.1)-(3.3) are obvious and the condition (3.4) reduces to

m+1∑
n=v+1

pn

PnPn−1
= O

(
1
Pv

)
,
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which always holds.

We need the following lemmas for the proof of our theorem.

Lemma 1 ([10]). If the sequence (pn) is such that the conditions (2.3) and
(2.4) of Theorem B are satisfied, then

∆(Pn/npn) = O(1/n). (3.5)

Lemma 2 ([5]). If (λn) is a convex sequence such that
∑

n−1λn is convergent,
then (λn) is non-negative and decreasing, and n∆λn → 0 as n →∞.

Lemma 3. Let k ≥ 1 .If (sn) is bounded and all conditions of the Theorem are
satisfied, then the series

∞∑
n=1

AnλnPn/npn (3.6)

is summable | N̄ , pn, θn |k, where (λn) is as in Theorem A.

Remark. Since (λn) is a convex sequence, therefore (λn)k is also convex se-
quence and

∑
(1/n)(λn)k < ∞.

Proof of Lemma 3. Let (Tn) denotes the (N̄ , pn) mean of the series (3.6).
Then, by definition, we have

Tn =
1

Pn

n∑
v=0

pv

v∑
r=0

arλrPr/rpr =
1

Pn

n∑
v=0

(Pn − Pv−1)avλvPv/vpv.

Then

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pv
avλv

vpv
, n ≥ 1, (P−1 = 0).

By Abel’s transformation, we have

Tn − Tn−1 = − pn

PnPn−1

n−1∑
v=1

pvPvsvλv
1

vpv

+
pn

PnPn−1

n−1∑
v=1

PvsvPv∆λv
1

vpv

+
pn

PnPn−1

n−1∑
v=1

Pvλv+1∆(Pv/vpv)sv + snλn
1
n

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

To prove the lemma, by Minkowski’s inequality, it is sufficient to show that
∞∑

n=1

θk−1
n | Tn,r |k< ∞, for r = 1, 2, 3, 4. (3.7)
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Now, applying Hölder’s inequality, we have that

m+1∑
n=2

θk−1
n | Tn,1 |k ≤

m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑
v=1

| sv |k pv

(
λvPv

vpv

)k

×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

pv

(
Pv

pv

)k

(λv)k 1
vk

m+1∑
n=v+1

(
θnpn

Pn

)k−1
pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1

(λv)k 1
vk

(
θvpv

Pv

)k−1

= O(1)
m∑

v=1

vk−1(λv)k 1
vk

(
θvpv

Pv

)k−1

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1 1
v
(λv)k = O(1) as m →∞,

by virtue of the hypotheses of the Theorem. Since

n−1∑
v=1

Pv∆λv ≤ Pn−1

n−1∑
v=1

∆λv ⇒
1

Pn−1

n−1∑
v=1

Pv∆λv ≤
n−1∑
v=1

∆λv = O(1),

by Lemma 2, we have that

m+1∑
n=2

θk−1
n | Tn,2 |k ≤

m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑
v=1

(
Pv

vpv

)k

Pv∆λv | sv |k

×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

vpv

)k 1
vk

Pv∆λv

m+1∑
n=v+1

(
θnpn

Pn

)k−1
pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

vpv

)k 1
vk

∆λv

(
θvpv

Pv

)k−1

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1

∆λv

= O(1) as m →∞,

in view of the hypotheses of the Theorem and Lemma 2.
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Using the fact that ∆(Pv/vpv) = O(1/v) by Lemma 1, we have that

m+1∑
n=2

θk−1
n | Tn,3 |k =

m∑
n=1

θk−1
n

(
pn

Pn

)k 1
P k

n−1

|
n−1∑
v=1

Pvλv+1∆(Pv/vpv)sv |k

= O(1)
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
P k

n−1

{
n−1∑
v=1

Pv

pv
pvλv+1

1
v

}k

= O(1)
m+1∑
n=2

θk−1
n

(
pn

Pn

)k 1
Pn−1

n−1∑
v=1

(
Pv

pv

)k

pv(λv+1)k 1
vk

×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

(
Pv

pv

)k

pv(λv+1)k 1
vk

m+1∑
n=v+1

(
θnpn

Pn

)k−1
pn

PnPn−1

= O(1)
m∑

v=1

(
Pv

pv

)k−1

(λv+1)k 1
vk

(
θvpv

Pv

)k−1

= O(1)
m∑

v=1

vk−1(λv+1)k 1
vk

(
θvpv

Pv

)k−1

= O(1)
m∑

v=1

(
θvpv

Pv

)k−1 1
v
(λv+1)k = O(1) as m →∞,

by virtue of the hypotheses of the Theorem. Finally, we have that

m∑
n=1

θk−1
n | Tn,4 |k =

m∑
n=1

θk−1
n (λn)k 1

nk

= O(1)
m∑

n=1

θk−1
n (λn)k | sn |k

1
nk−1

1
n

= O(1)
m∑

n=1

(
θnpn

Pn

)k−1 1
n

(λn)k

= O(1) as m →∞,

in view of the hypotheses of the Theorem. Therefore we get that
m∑

n=1

θk−1
n | Tn,r |k= O(1) as m →∞, for r = 1, 2, 3, 4.

which completes the proof of the Lemma 3.

Remark. If we take k = 1, then we get a result due to Mishra [10].
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4 Proof of the Theorem

Since the behaviour of the Fourier series, as far as convergence is concerned, for a
particular value of x depends on the behaviour of the function in the immediate
neighborhood of this point only, hence the truth of the Theorem is necessary
consequence of Lemma 3.
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