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Common Fixed Point Results and its

Applications to Best Approximation in Ordered

Semi-Convex Structure ∗

H. K. Pathak & M. S. Khan

Abstract

In this paper, we prove some results concerning the existence of invariant
best approximation in Banach spaces. Our main result improves the cor-
responding results of Jungck and Hussain, Hussain et.al. In the sequel,
we discuss some results on best simultaneous approximation in ordered
semi-convex structure.

1 Introduction

Fixed point theorems have been used in many instances in best approximation
theory. It is pertinent to say that in Best Approximation Theory, it is viable,
meaningful and potentially productive to know whether some useful properties
of the function being approximated is inherited by the approximating function.
In this perspective, Meinardus [25] observed the general principle that could
be applied, while doing so the author has employed a fixed point theorem as
a tool to establish it. Further, Brosowski [4] obtained a celebrated result and
generalized the Meinardus’s result. The result of Brosowski was further gen-
eralized by Habiniak [13], Smoluk [40] and Subrahmanyam [41]. Sahab, Khan
and Sessa [33] extended the result of Hicks and Humpheries [14] and Singh [37]
by considering one linear and the other nonexpansive mappings.

On the other hand, Ai-Thagafi and Shahzad [2], Singh [37, 38], Hussain,
O’Regan and Agarwal [15], Hussain and Rhoades [17], O’Regan and Hussain
[27], Pathak, Cho and Kang [30] and many others have used fixed point theorems
in approximation theory, to prove existence of best approximation. Various
types of applications of fixed point theorems may be seen in Klee [24], Meinardus
[25] and Pathak and Shahzad [31]. Some applications of the fixed point theorems
to best simultaneous approximation is given by Sahney and Singh [34]. For the
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detail survey of the subject we refer the reader to Cheney [6] and Singh, Watson
and Srivastava [39].

2 Preliminaries and Definitions

Let X, ‖ · ‖ be a normed space, M a subset of of X. We shall use N to denote
the set of positive integers, cl(M) to denote the closure of a set M , D(M) to
denote the derived set of M and wcl(M) to denote the weak closure of a set M .
Let I : M → M be a mapping. A mapping T : M → M is called

(1) an I-contraction if there exists 0 ≤ k < 1 such that ‖Tx−Ty‖ ≤ k‖Ix−Iy‖
for any x, y ∈ M . If k = 1, then T is called I-nonexpansive.

(2) asymptotically I-nonexpansive if there exists a sequence {kn} of real num-
bers with kn ≥ 1 and limnkn = 1 such that ‖Tnx− Tny‖ ≤ kn‖Ix− Iy‖ for all
x, y ∈ M and n = 1, 2, 3, ....

(3) uniformly asymptotically regular on M [3, 10], if for each η > 0, there exists
N(η) = N such that ‖Tnx− Tn+1x‖ < η for all η ≥ N and all x ∈ M .

The set of fixed points of T ( resp. I) is denoted by F (T )(resp. F (I)).
A point x ∈ M is a coincidence point ( common fixed point) of I and T if
Ix = Tx (x = Ix = Tx). The set of coincidence points of I and T is de-
noted by C(I, T ). A point x ∈ M is called an m-th order coincidence point
of the pair (I, T ) if Im(x) = Tm(x) and Im(x)(orTm(x) is called a point of
m-th order coincidence of the pair (I, T ). 1-st order coincidence point of the
pair (I, T ) is simply called coincidence point of (I, T ). The set of all m-th
order coincidence points of the pair (I, T ) in M is denoted by Cm

M (I, T ); i.e.,
Cm

M (I, T ) = {u ∈ M : u = Im(x) = Tm(x), for some x ∈ M}. It is conventional
to define C0

M (I, T ) = M .

It may be remarked that the set M need not always have a coincidence point.
To see this we observe the following example.

Example 2.1. Let X = l2 be endowed with usual norm and M = {(x1, x2, 0,
0, · · · ) : x1, x2 6= 0}. Define T, I : M → M by T (x) = (−x1,−x2, 0, 0, · · · ) and
I(x) = (x2, x1, 0, 0, · · · ) for all x = (x1, x2, 0, 0, · · · ) in M . Then C2

M (I, T ) = M ,
but C1

M (I, T ) = ∅.

Let T, I : M → M be mappings. Then the pair {I, T} is called

(1◦) commuting if TIx = ITx for all x ∈ M,

(2◦) R-weakly commuting if for all x ∈ M, there exists R > 0 such that
‖ITx − TIx‖ ≤ R‖Ix − Tx‖. If R = 1, then the maps are called weakly com-
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muting;

(3◦) compatible if limn ‖TIxn − ITxn‖ = 0 whenever {xn} is a sequence such
that limn Txn = limn Ixn = t for some t in M ;

(4◦) weakly compatible if they commute at their coincidence points, i.e.,if ITx =
TIx whenever Ix = Tx.

The set M is called q-starshaped with q ∈ M , if the segment [q, x] =
{(1 − k)q + kx : 0 ≤ k ≤ 1} joining q to x is contained in M for all x ∈ M.
Suppose that M is q-starshaped with q ∈ F (I) and is both T - and I-invariant.
Then T and I are called

(5◦) Cq-commuting [2, 17] if ITx = TIx for all x ∈ Cq(I, T ), where Cq(I, T ) =
∪{C(I, Tk) : 0 ≤ k ≤ 1} where Tk = (1− k)q + kT ;

(6◦) R-subweakly commuting on M if for all x ∈ M, there exists a real number
R > 0 such that ‖ITx− TIx‖ ≤ Rdist(Ix, [q, Tx]);

(7◦) uniformly R-subweakly commuting on M \ {q} (see [3]) if there exists a
real number R > 0 such that ‖ITnx − TnIx‖ ≤ Rdist(Ix, [q, Tnx]), for all
x ∈ M \ {q} and n ∈ N.

The ordered pair (T, I) of two self maps of a metric space (X, d) is called a
Banach operator pair, if the set F (I) is T -invariant, namely T (F (I)) ⊆ F (I).
Obviously commuting pair (T, I) is Banach operator pair but not conversely in
general, see [5]. If (T, I) is Banach operator pair then (I, T ) need not be Banach
operator pair (cf. Example 1 [5]). If the self-maps T and I of X satisfy

d(ITx, Tx) ≤ kd(Ix, x),

for all x ∈ X and k ≥ 0, then (T, I) is Banach operator pair. In particular ,
when I = T and X is a normed space, the above inequality can be rewritten as

‖T 2x− Tx‖ ≤ k‖Tx− x‖

for all x ∈ X. Such T is called Banach operator of type k in [41] and [13].

Now we introduce the following definition which encompasses the class of
Cq-commuting mappings.

Definition 2.2. Let T, I : M → M be mappings. Suppose that M is q-
starshaped with q ∈ F (I) and is both T - and I-invariant. Then T and I are
called Cm−1

q -commuting for some m ∈ N if ITx = TIx for all x ∈ Cm−1
q (I, T ),

where Cm−1
q (I, T ) = ∪{Cm−1(I, Tk) : 0 ≤ k ≤ 1} where Tk = (1− k)q + kT .

Definition 2.3. Let T, I : M → M be mappings. Suppose that M is q-
starshaped with q ∈ F (I) and is both T - and I-invariant. Then T and I are
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called uniformly Cm−1
q -commuting for some m ∈ N if ITnx = TnIx for all

x ∈ Cm−1
q (I, T ) and n ∈ N, where Cm−1

q (I, T ) = ∪{Cm−1(I, Tk) : 0 ≤ k ≤ 1}
where Tk = (1− k)q + kT .

Now we give the notion of convex structure introduced by Gudder [12](see
also, Petrusel [32]).

Definition 2.4. Let X be a set and F : [0, 1]×X ×X → X a mapping. Then
the pair (X, F ) forms a convex prestructure. Let (X, F ) be a convex prestruc-
ture. If F satisfies the following conditions:

(i) F (λ, x, F (µ, y, z)) = F (λ + (1 − λ)µ, F (λ(λ + (1 − λ)µ)−1, x, y), z) for
every λ, µ ∈ (0, 1) with λ + (1− λ)µ 6= 0 and x, y, z ∈ X.
(ii) F (λ, x, x) = x for any x ∈ X and λ ∈ (0, 1),

then (X, F ) forms a semi-convex structure. If (X, F ) is a semi-convex structure,
then

(SC1) F (1, x, y) = x for any x, y ∈ X.

A semi-convex structure is said to be regular if

(SC2) λ ≤ µ ⇒ F (λ, x, y) ≤ F (µ, x, y) where λ, µ ∈ (0, 1).

A semi-convex structure (X, F ) is said to form a convex structure if F also
satisfies the conditions

(iii) F (λ, x, y) = F (1− λ, y, x) for every λ ∈ (0, 1) and x, y ∈ X.
(iv) if F (λ, x, y) = F (λ, x, z) for some λ 6= 1, x ∈ X then y = z.

Let (X, F ) be a convex structure. A subset Y of X is called

(a) F-starshaped if there exist p ∈ Y so that for any x ∈ Y and λ ∈ (0, 1), F (λ, x, p) ∈
Y .

(b) F-convex if for any x, y in Y and λ ∈ (0, 1), F (λ, x, y) ∈ Y .

For F (λ, x, y) = λx + (1 − λ)y, we obtain the known notion of starshaped
convexity from linear spaces. Petrusel [32] noted with an example that a set can
be a F -semi convex structure without being a convex structure. Let (X, F ) be
a semi-convex structure. A subset Y of X is called F semi-starshaped if there
exists p ∈ Y so that for any x ∈ Y and λ ∈ (0, 1), F (λ, x, p) ∈ Y . A Banach
space X with semi-convex structure F is said to satisfy condition (P1) at p ∈ K
(where K is semi-starshaped and p is star centre) if F is continuous relative to
the following argument : for any x, y ∈ X, λ ∈ (0, 1)

‖ (F (λ, x, p)− F (λ, y, p) ≤ λ ‖ x− y ‖ .
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In this paper, we prove some results in approximation theory using the gen-
eral type of starshaped condition on Banach space with semi-convex structure,
based upon the general theory of convexity given by Gudder [12].

3 Common Fixed Point results

Theorem 3.1. Let M be a subset of metric space (X, d), and I and T be
weakly compatible self-maps of M . Assume that cl

(
T (M)

)
⊂ I(M), clT (M) is

complete, and for some m ∈ N, D(clT (M)) ⊂ I(Cm−1
M (I, T )) and suppose that

T and I satisfy for all x, y ∈ M and 0 < h < 1,

d(Tx, Ty) ≤ h max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), d(Ix, Ty), d(Iy, Tx)}
(3.1)

Then I(Cm−1
M (I, T )) ∩ F (I) ∩ F (T ) is a singleton.

Proof. It follows from our assumption that T (M) ⊂ I(M). So, we can
choose xn ∈ M , for n ∈ N, such that Txn = Ixn+1. Set yn = Txn and let
O(yk;n) = {yk, yk+1, · · · yk+n}. Then following the arguments of [28, Lemma
2.1], we infer that {yn} = {Txn} is a Cauchy sequence. It follows from the
completeness of clT (M) that Txn → w for some w ∈ D(clT (M)) and hence
Ixn → w as n →∞. As a consequence we have

limnIxn = limnTxn = w ∈ D(clT (M)) ⊂ I(Cm−1
M (I, T ))

for some m ∈ N. Thus w = Iy for some y ∈ Cm−1
M (I, T ). For n ≥ 1, we notice

that

d(w, Ty) ≤ d(w, Txn) + d(Txn, T y)
≤ d(w, Txn) + h max{d(Ixn, Iy), d(Ixn, Txn),

d(Iy, Ty), d(Ixn, T y), d(Iy, Txn)}.

Letting n →∞, we obtain Ty = w = Iy. Since y ∈ Cm−1
M (I, T ), it follows that

Tmx = w = Imx for some y = Tm−1x = Im−1x in Cm−1
M (I, T ). We now show

that the point of m-th order coincidence Tmx is unique. So, we suppose that
for some z ∈ M,Tmz = w = Imz. Then, from inequality (2.1), we obtain

d(Imx, Imz) = d(Tmx, Tmz)
≤ h max{d(Imx, Imz), d(Imx, Tmx), d(Imz, Tmz),

d(Imx, Tmz), d(Imz, Tmx)}
≤ h d(Imx, Imz),

a contradiction. Hence Imz = Imx = Tmx. Thus the point Tmx = w = Imx of
m-th order coincidence is unique.
Since I and T are weakly compatible and IIm−1x = TTm−1x; i.e., y = Tm−1x =
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Im−1x is a coincidence point of T and I, it follows that Tw = TImx =
TIIm−1x = ITTm−1x = ITmx = Iw . Now using (2.1) we obtain

d(w, Tw) = d(TIm−1x, TTmx)
≤ h max{d(Imx, ITmx), d(Imx, TIm−1x), d(ITmx, TTmz),

d(Imx, TTmx), d(ITmx, Tmx)}
≤ h d(w, Tw).

Hence Tw = w as h ∈ (0, 1). Thus w = Tu is a common fixed point of T and I.
But w = Tmx = Imx = Iu, a common fixed point of T and I, is also a point of
m-th order coincidence of T and I, and is therefore unique.

It may be observe that Theorem 3.1 is more sharper than the following result
due to Jungck and Hussain ([21], Theorem 2.1) from geometrical point of view
in the sense that geometrically we can identify the location of common fixed
point of T and I in a restricted region of M . Indeed, when m = 1, we have
Cm−1

M (I, T ) = M and so in view of the hypothesis clT (M) ⊂ I(M) the condi-
tion D(clT (M)) ⊂ I(Cm−1

M (I, T )) is trivially true. Thus we have the following
result as corollary of Theorem 3.1.

Corollary 3.2.([21]) Let M be a subset of metric space (X, d), and I and T
be weakly compatible self-maps of M . Assume that clT (M) ⊂ I(M), clT (M) is
complete, and T and I satisfy for all x, y ∈ M and 0 < h < 1,

d(Tx, Ty) ≤ h max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), d(Ix, Ty), d(Iy, Tx)}

Then M ∩ F (I) ∩ F (T ) is a singleton.

Example 3.3. Let X = R be endowed with usual metric and let M =
{0, 1, 2, 3}. Define maps T, I : M → M by T0 = T1 = T2 = 0, I0 = I1 =
0, I2 = 1, T3 = 1 and I3 = 2. Then C1

M (I, T ) = {0 ∈ M : 0 = I0 = T0, 0 =
I1 = T1}, C2

M (I, T ) = {0 ∈ M : 0 = I22 = T 22}, C3
M (I, T ) = {0 ∈ M : 0 =

I33 = T 33} and Cm
M (I, T ) = ∅ for all m > 3. Clearly T0 = 0 is the unique

point of 1-th, 2-nd and 3-rd order coincidence of the pair (I, T ), whereas 0 and
1 are 1-st order concidence points of the pair (I, T ) in M , 2 is a 2-nd order
coincidence point of the pair (I, T ) in M and 3 is a 3-rd order coincidence point
of the pair (I, T ) in M . Moreover, for any h ∈ [ 12 , 1), the hypothesis of Theo-
rem 2.5 is satisfied. Clearly, I(Cm−1

M (I, T ))∩F (I)∩F (T ) = {0} for m = 1, 2, 3, 4.

We can extend these concepts on F -starshaped set in the convex structure
(X, F )(see [15, 16]). We define

Y T nx
p = {F (λ, Tnx, p) : 0 ≤ λ ≤ 1}.

Let (X, F,≤) be an ordered semi-convex structure and M a nonempty subset
of X. Call M to be weakly closed if the weak limit of every weakly convergent
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sequence from M belongs to M . Notice that every weakly closed subspace of a
normed linear space is closed.

The following result improves and extends Lemma 3.3 [4].
Lemma 3.4. Let (X, F,≤) be an ordered semi-convex structure and, I and T
be self-maps on a nonempty subset M of X. Suppose that M is F -starshaped
with respect to an element p in F (I), I satisfies F (λ, Ix, p) = I(F (λ, x, p)) and
I(M) = M . Assume that T and I are uniformly Cm−1

p -commuting and satisfy
for each n ≥ 1

‖Tnx− Tny‖ ≤ knmax

{
‖Ix− Iy‖, dist(Ix, Y T nx

p ), dist(Iy, Y T ny
p ),

dist(Ix, Y T ny
p ), dist(Iy, Y T nx

p )

}
(3.2)

for all x, y ∈ M , where {kn} is a sequence of real numbers with kn ≥ 1 and
limnkn = 1. For each n ≥ 1, define a mapping Tn on M by

Tnx = F (µn, Tnx, p)

where µn = λn

kn
and {λn} is a sequence of numbers in (0, 1) such that limnλn = 1.

Then for each n ≥ 1, Tn and I have exactly one common fixed point xn in
Cm−1

M (I, Tn) such that

Ixn = xn = F (µn, Tnxn, p)

provided one of the following conditions hold:
(i) M is closed and for each n, clTn(M) is complete andD(clT (M)) ⊂ I(Cm−1

M (I, T )),
(ii) M is weakly closed and for each n, wclTn(M) is complete and D(clT (M)) ⊂
I(Cm−1

M (I, T )).

Proof. By definition,

Tnx = F (µn, Tnx, p).

As I and T are uniformly Cm
p -commuting and F (λ, Ix, p) = I(F (λ, x, p)), then

for each y ∈ Cm−1
M (I, Tn) ⊆ Cm−1

p (I, Tn) for which Iy = Tny,

TnIy = F (µn, TnIy, p)
= F (µn, ITny, p)
= I(F (µn, Tny, p))
= ITny.

Hence I and Tn are weakly compatible for all n. Also by (3.2),

‖Tnx− Tny‖ = µn‖Tnx− Tny‖
≤ λn max{‖Ix− Iy‖, dist(Ix, Y T nx

p ), dist(Iy, Y T ny
p ),

dist(Ix, Y T ny
p ), dist(Iy, Y T nx

p )}
≤ λn max{‖Ix− Iy‖, ‖Ix− Tnx‖ , ‖Iy − Tny‖ ,

‖Ix− Tny‖ , ‖Iy − Tnx‖},
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for each x, y ∈ M .
(i) As M is closed, therefore, for each n, clTn(M) ⊂ M = I(M) andD(clT (M)) ⊂
I(Cm−1

M (I, T )). By Theorem 3.1, for each n ≥ 1, there exists xn ∈ I(Cm−1
M (I, T ))

such that xn = Ixn = Tnxn. Thus for each n ≥ 1, I(Cm−1
M (I, T )) ∩ F (Tn) ∩

F (I) 6= ∅.
(ii) As wclTn(M) ⊂ M = I(M) and D(clT (M)) ⊂ I(Cm−1

M (I, T )), for each n,
by Theorem 3.1, the conclusion follows.

The following result extends the recent results due to Al-Thagafi and Shahzad
[2], Theorems 2.2-2.4) to asymptotically I-nonexpansive maps defined on F -
starshaped domain.

Theorem 3.5. Let (X, F,≤) be an ordered semi-convex structure with F reg-
ular and, I and T be self-maps on a nonempty subset M of X. Suppose that M
is F -starshaped with respect to an element p in F (I), I satisfies F (λ, Ix, p) =
I(F (λ, x, p)) and I(M) = M . Assume that T and I are uniformly Cm−1

p -
commuting maps, T is uniformly asymptotically regular and asymptotically
I-nonexpansive map on I(Cm−1

M (I, T )). Then F (T ) ∩ F (I) 6= ∅, provided one
of the following conditions holds;
(i) M is closed and clT (M) is compact and D(clT (M)) ⊂ I(Cm−1

M (I, T )),
(ii) X is complete, M is weakly closed, I is weakly continuous, wclT (M) is
weakly compact, D(clT (M)) ⊂ I(Cm−1

M (I, T )) and either Id − T is demiclosed
at 0 or X satisfies Opial’s condition.

Proof. (i) Notice that compactness of clT (M) implies that clTn(M) is
compact and hence complete. From Theorem 3.1, for each n ≥ 1, there exists
xn ∈ I(Cm−1

M (I, Tn)) such that xn = Ixn = Tnxn = F (µn, Tnxn, p). Hence
xn ∈ Cm−1

p (I, Tn).

Therefore xn − Tn+1xn = Tnxn − Tn+1xn

= F (µn, Tnxn, p)− Tn+1xn

≤ F (limsup
n→∞

µn, Tnxn, p)− Tn+1xn

≤ F (1, Tnxn, p)− Tn+1xn

≤ Tnxn − Tn+1xn.
Applying the same argument as above, we also have

xn − Tnxn ≤ 0.

Since T is uniformly asymptotically regular on I(Cm−1
M (I, T )) it follows that

Tnxn − Tn+1xn → 0 as n →∞.

Therefore xn − Tn+1xn → 0 as n →∞.

Now ‖ xn − Txn ‖≤‖ xn − Tn+1xn ‖ + ‖ Tn+1xn − Txn ‖
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≤‖ xn − Tn+1 ‖ +k1 ‖ S(Tnxn)− Sxn ‖ for some k1 ≥ 1

=‖ xn − Tn+1xn ‖ +k1 ‖ Tnxn − xn ‖

Since I commutes with Tn on Cm−1
p (I, Tn) and xn ∈ Cm−1

p (I, Tn), xn = Ixn,
therefore (Id − T )xn → 0 as n →∞
Since clT (M) is compact, there exists a subsequence {Txm} of {Txn} such
that Txm → z as m → ∞. By the continuity of I and T and the fact
‖xm − Txm‖ → 0, we have z ∈ F (T ) ∩ F (I). Thus F (T ) ∩ F (I) 6= ∅.

(ii) The weak compactness of wclT (M) implies that wclTn(M) is weakly
compact and hence complete due to completeness of X (see [2, 18]). From
Theorem 3.1, for each n ≥ 1, there exists xn ∈ M such that xn = Ixn =
F (µn, Tnxn, p). The analysis in (i), implies that ‖xn − Txn‖ → 0 as n → ∞.
The weak compactness of wclT (M) implies that there is a subsequence {xm}
of {xn} converging weakly to z ∈ M as m →∞. As I is weakly continuous, so
Iz = z. Also we have, Ixm − Txm = xm − Txm → 0 as m → ∞. If I − T is
demiclosed at 0, then Iz = Tz. Thus F (T ) ∩ F (I) 6= ∅.

If X satisfies Opial’s condition and z 6= Tz, then

lim inf
m→∞

‖xm − z‖ < lim inf
m→∞

‖xm − Tz‖

≤ lim inf
m→∞

‖xm − Txm‖+ lim inf
m→∞

‖Txm − Tz‖

= lim inf
m→∞

‖Txm − Tz‖ ≤ lim inf
m→∞

km‖Ixm − Iz‖

= lim inf
m→∞

‖xm − z‖,

which is a contradiction. Thus Iz = Tz = z and hence F (T ) ∩ F (I) 6= ∅.
This completes the proof.

Corollary 3.6. (see, [4], Theorem 3.4) Let I and T be continuous self-maps on
a q-starshaped subset M of a normed space X. Assume that clT (M) ⊂ I(M),
q ∈ F (I), I is linear, T is uniformly asymptotically regular and asymptotically
I-nonexpansive . If clT (M) is compact, T and I are uniformly R-subweakly
commuting on M , then F (T ) ∩ F (I) 6= ∅.

Remark 3.7 . Notice that the conditions of the continuity and linearity of S
are not needed in Theorem 3.4 of Beg et al. [3]. The result is also true for affine
mapping S.

Now we introduce the concept of lower semi-convex structure in a Banach
space as follows:

Definition 3.7. Let (X, ‖ · ‖) be a Banach space with semi-convex structure
F . A continuous map F : [0, 1

2 ]×X ×X → X is said to be a lower semi-convex
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structure on X if for all x, y in X, λ in [0, 1
2 ],

‖u− F (λ, x, F (λ, y, y))‖ ≤ λ‖u− x‖+ (1− λ)‖u− y‖

for all u in X.

Definition 3.8. Let (X, ‖ . ‖) be a Banach space with lower semi-convex struc-
ture F . Then the triplet (X, F, ‖ · ‖) is called a lower semi-convex Banach space
(or, in brief, LSCBS).

Definition 3.9. Let (X, F, ‖ · ‖) be a lower semi-convex Banach space, K a
subset of X and let ‘ ≤’ be an order relation defined on K by

x ≤ y iff y − x ∈ K.

Then the triplet (X, F, ‖ ·‖) is said to be an ordered LSCBS induced by (K,≤).

The following result extends main theorems in [7, 8, 9, 20].

Lemma 3.10. Let M be a nonempty, closed subset of an ordered LSCBS
(X, F, ‖ · ‖) induced by (M,≤) , and T, I : M → M be weakly compatible pair
satisfying the following condition:

‖Tx− Ty‖p ≤ a‖Ix− Iy‖p + (1− a) max{‖Tx− Ix‖p, ‖Ty − Iy‖p} (3.3)

for all x, y ∈ M , where 0 < a < 1 and 0 < p ≤ 1. If Cm−1
q (T, I) is nonempty and

cl(T (M)) ∪ F
(
[0, 1

2 ] × T (M) × T (M)
)
⊆ I(M), D(clT (M)) ⊂ I(Cm−1

M (I, T )),
where F is a lower semi-convex structure on M , then T and I have a unique com-
mon fixed point in I(Cm−1

M (I, T )); i.e., I(Cm−1
M (I, T ))∩F (T )∩F (I) is singleton.

Proof. Let x be an arbitrary point of M . Choose points x1, x2, x3 in M and
some λ ∈ [0, 1

2 ] such that

Ix1 = Tx, Ix2 = Tx1, Ix3 = F (λ, Tx1, Tx2).

This choice is possible because Tx, Tx1, Tx2, F (λ, Tx1, Tx2) are in I(M).
By (3.1), we have

‖Ix1 − Ix2‖p = ‖Tx− Tx1‖p

≤ a ‖Ix− Ix1‖p + (1− a) max{‖Ix− Tx‖p, ‖Ix1 − Tx1‖p}
= a ‖Ix− Ix1‖2 + (1− a) max{‖Ix− Ix1‖2, ‖Ix1 − Ix2‖2}.

Hence we have
‖Ix1 − Ix2‖ ≤ ‖Ix− Ix1‖. (3.4)

Form (3.3) and (3.4),

‖Ix2 − Tx2‖p = ‖Tx1 − Tx2‖p

≤ a ‖Ix1 − Ix2‖p + (1− a) max{‖Ix1 − Tx1‖p, ‖Ix2 − Tx2‖p}
≤ a ‖Ix− Ix1‖p + (1− a) max{‖Ix− Ix1‖p, ‖Ix2 − Tx2‖p}
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which implies
‖Ix2 − Tx2‖ ≤ ‖Ix− Ix1‖ (3.5)

As f(x) = xp is increasing for x ≥ 0, we have from (3.3),

‖Ix1 − Tx2‖p = ‖Tx− Tx2‖p

≤ a ‖Ix− Ix2‖p + (1− a) max{‖Ix− Tx‖p, ‖Ix2 − Tx2‖p}

≤ a [‖Ix− Ix1‖+ ‖Ix1 − Ix2‖]p + (1− a) max{‖Ix− Ix1‖p, ‖Ix2 − Tx2‖p}.

Hence, using (3.4) and (3.5), we have

‖Ix1 − Tx2‖p ≤ (2pa + 1− a) ‖Ix− Ix1‖p. (3.6)

Now using Definition 3.9 and convexity of f(x) = xp(p ≥ 1), we have

‖Ix1 − Ix3‖p = ‖Ix1 − F (λ, Tx1, Tx2)‖p

= ‖Ix1 − F (λ, Tx1, F (λ, Tx2, Tx2))‖p

≤ [λ ‖Ix1 − Tx1‖+ (1− λ) ‖Ix1 − Tx2‖]p

≤ λp ‖Ix1 − Ix2‖p + (1− λ)p ‖Ix1 − Tx2‖p.

Hence, from (3.4) and (3.6), we obtain

‖Ix1 − Ix3‖p ≤ [λp + (1− λ)p{2pa + (1− a)}]‖Ix− Ix1‖p. (3.7)

Further,
‖Ix2 − Ix3‖p = ‖Ix2 − F (λ, Tx1, Tx2)‖p

= ‖Ix2 − F (λ, Tx1, F (λ, Tx2, Tx2))‖p

≤ [λ ‖Ix2 − Ix2‖+ (1− λ) ‖Ix2 − Tx2‖]p

hence by (3.5) we get

‖Ix2 − Ix3‖ ≤ (1− λ) ‖Ix− Ix1‖. (3.8)

Now we choose x4 ∈ M such that Ix4 = Tx3. Then from (3.3), (3.4) and
(3.5) we have

‖Ix3 − Ix4‖p = ‖Tx3 − F (λ, Tx1, Tx2)‖p

= ‖Tx3 − F (λ, Tx1, F (λ, Tx2, Tx2))‖p

≤ [λ ‖Tx1 − Tx3‖+ (1− λ) ‖Tx2 − Tx3‖]p

≤ λp [a [‖Ix1 − Ix3‖p + (1− a) max{‖Ix1 − Ix2‖p, ‖Ix3 − Ix4‖p}]

+(1− λ)p [a [‖Ix2 − Ix3‖p + (1− a) max{‖Ix2 − Tx2‖p, ‖Ix3 − Ix4‖p}]

≤ a [λp ‖Ix1 − Ix3‖p + (1− λ)p ‖Ix2 − Ix3‖p]

+(1− a)[λp + (1− λ)p]max{‖Ix− Ix1‖p, ‖Ix3 − Ix4‖p}.
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Hence, using (3.7) and (3.8), we have

‖Ix3 − Ix4‖p ≤ µp max{‖Ix− Ix1‖p, ‖Ix3 − Ix4‖p},

where µp =
(
aλp[λp +(1−λ)p{2pa+(1−a)}+(1−λ)p]+(1−a)[λp +(1−λ)p]

)
.

Since p ≥ 1, 0 < a < 1 and λ ∈ [0, 1
2 ], we obtain µp < 1. To see this, we observe

that

µp =
(
aλp[λp+(1−λ)p{2pa+(1−a)}+(1−λ)p]+(1−a)[λp+(1−λ)p]

)
=

(
aλp[λp+(1−λ)p+a(1−λ)p{2p−1}+(1−λ)p]+(1−a)[λp+(1−λ)p]

)
≤

(
a 2−p[21−p + a2−p{2p − 1}+ 2−p] + (1− a)21−p

)
=

(
3a 2−2p + a2(2−p − 2−2p) + (1− a)21−p

)
<

(
3a 2−2p + a(2−p − 2−2p) + (1− a)21−p

)
, as 0 < a2 < a < 1

=
(
2a 2−2p + a2−p + 21−p − 2a2−p

)
=

(
2a 2−2p + 21−p − a2−p

)
=

(
21−p − a(2−p − 21−2p)

)
< 1, as 0 < a < 1 and p ≥ 1.

Therefore,
‖Ix3 − Ix4‖ ≤ µ ‖Ix− Ix1‖ (0 < k < 1). (3.9)

Now we shall consider the sequence {Sxn}∞n=0 which possess the properties (3.4),
(3.5), (3.8) and (3.9); i.e., the sequence {Ixn}∞n=0 is defined as follows:

Ix3k+1 = Tx3k; Ix3k+2 = Tx3k+1; Ix3(k+1) = F (λ, Tx3k+1, Tx3k+2), k = 0, 1, 2, · · ·

By induction it can easily be shown that from (3.9), (3.4) and (3.8) we have

‖Ix3k − Ix3k+1‖ ≤ µ ‖Ix3(k−1) − Ix3(k−1)+1‖ ≤ · · · ≤ µk ‖Ix− Ix1‖,

‖Ix3k+1 − Ix3k+2‖ ≤ ‖Ix3k − Ix3k+1‖ ≤ µk ‖Ix− Ix1‖,

‖Ix3k+2− Ix3(k+1)‖ ≤ (1−λ) ‖Ix3k− Ix3k+1‖ ≤ (1−λ) µk ‖Ix− Ix1‖. (3.10)

Hence for m > n > N , we have

‖Ixm − Ixn‖ ≤
∞∑

i=N

‖Ixi − Ixi+1‖ ≤
(
(3− λ)µ[N/3]/(1− µ)

)
‖Ix− Ix1‖,

where [N/3] means the greatest integer not exceeding N/3. Take x0 = x, then
it follows from the above inequality that the sequence {Ixn}∞n=0 is a Cauchy
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sequence in M , hence convergent. So, let lim
n→∞

Ixn = u.

As Tx3k = Ix3k+1, Tx3k+1 = Ix3k+2, from (3.5) and (3.10) we have

‖Tx3k+2 − Ix3k+2‖ ≤ ‖Ix3k − Ix3k+1‖ ≤ µp‖Ix− Ix1‖.

Therefore,

lim
n→∞

Txn = lim
n→∞

Ixn = u.

Let z ∈ Cm−1
q (T, I). Then from (3.3) we have

‖ Txn − Tz ‖p≤ a ‖ Ixn − Iz ‖p +(1− a) max{‖ Txn − Ixn ‖p, ‖ Tz − Iz ‖p}.

Letting n →∞, we obtain

‖ u− Tz ‖p≤ a ‖ u− Tz ‖p,

a contradiction. Hence, Tz = u = Iz. Since, T and I commutes at each
z ∈ Cm−1

q (T, I) we have TIz = ITz = Iu = IIz. Again, from (3.3) we have

‖ TIz − Tz ‖p≤ a ‖ IIz − Iz ‖p +(1− a) max{‖ TIz − IIz ‖p, ‖ Tz − Iz ‖p}

‖ Iu− u ‖p≤ a ‖ Iu− u ‖p,

which gives Iu = u. Hence, Tu = Iu = u; i.e., u is a common fixed point of T
and I. Condition (3.3) ensures that u is the unique common fixed point of T
and I; i.e., I(Cm−1

q (T, I)) ∩ F (T ) ∩ F (I) is singleton.

Theorem 3.11. Let (X, F, ‖ · ‖) be an ordered LSCBS induced by (M,≤),
where F is a lower semi-convex structure on M and let T, I : M → M be
Cm−1

p -commuting pair of continuous mappings. Let M be closed F -starshaped
with respect to an element p ∈ F (I) and I satisfies F (λ, Ix, p) = I(F (λ, x, p))
for each x ∈ M . If M = I(M), cl(T (M)) is compact, D(clT (M))
⊂ I(Cm−1

M (I, T )), and satisfies, for all x, y ∈ M , and all k ∈ (0, 1),

‖ Tx− Ty ‖≤‖ Ix− Iy ‖ +
1− k

k
max{dist(Ix, Y Tx

p ), dist(Iy, Y Ty
p )}, (3.11)

then I(Cm−1
p (I, T ))

⋂
F (I)

⋂
F (T ) 6= ∅.

Proof. Define Tn : M → M by

Tnx = F (kn, Tx, p)

for some p ∈ F (I) and all x ∈ M and a fixed sequence of real numbers kn(0 <
kn < 1) converging to 1. As I and T are Cm−1

p -commuting and F (λ, Ix, p) =
I(F (λ, x, p)) with Ip = p, then for each u ∈ Cm−1

p (I, Tn) for which Iu = Tnu,

TnIu = F (kn, T Iu, p)
= F (kn, ITu, p)
= I(F (kn, Tu, p))
= ITnu.
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Thus ITnu = TnIu for each u ∈ Cm−1
p (I, Tn) ⊂ Cm−1

p (I, T ). Hence I and Tn

are weakly compatible for all n. Also

‖ Tnx− Tny ‖ = kn ‖ Tx− Ty ‖

≤ kn{‖ Ix− Iy ‖ +
1− kn

kn
max{‖ Ix− Tnx ‖, ‖ Iy − Tny ‖}}

= kn ‖ Ix− Iy ‖ +(1− kn) max{‖ Ix− Tnx ‖, ‖ Iy − Tny ‖}

for each x, y ∈ M and 0 < kn < 1. By Lemma 3.10, for each n ≥ 1, there
exist an xn ∈ I(Cm−1

p (I, Tn)) such that xn = Ixn = Tnxn. The compactness
of cl(T (M)) implies that there exists a subsequence xni such that xni → z as
i →∞. Since T is continuous, T (xni

) → T (z) as i →∞. Again

z = lim xni
= lim Tni

(xni
) = lim F (kni

, T (xni
), p) = F (1, T (z), p) = T (z).

By continuity of I, we have Iz = z. This shows that I(Cm−1
p (I, T )) ∩ F (I) ∩

F (T ) 6= ∅.

Theorem 3.11 extends Theorem 2.2 [1] and Theorem 2.2 [2].

Lemma 3.12. Let M be a nonempty, closed subset of an ordered LSCBS
(X, F, ‖ · ‖) induced by (M,≤) , and T, I : M → M be a pair of maps satisfying
inequality (3.3), where F is a lower semi-convex structure on M and F (I). Sup-
pose that cl(T (M)) is complete, D(clT (M)) ⊂ I(Cm−1

M (I, T )), (T, I) is Banach
operator pair, I is continuous and F (I) is nonempty, then T and I have a unique
common fixed point in I(Cm−1

M (I, T )).

Proof. By our assumptions, T (F (I)) ⊆ F (I) and F (I) is nonempty closed and
has a lower semi-convex structure. Further for all x, y ∈ F (I), we have by
inequality (3.3),

‖Tx− Ty‖ ≤ a ‖ Ix− Iy ‖p +(1− a) max{‖ Tx− Ix ‖p, ‖ Ty − Iy ‖p}
= a ‖ x− y ‖p +(1− a) max{‖ Tx− x ‖p, ‖ Ty − y ‖p}

By Lemma 3.10, T has a unique fixed point y in F (I) and consequently I(Cm−1
q (T, I))∩

F (T ) ∩ F (I) is singleton.

The following result extends and improves Theorem 3.3 of [5].

Theorem 3.13. Let (X, F, ‖ · ‖) be an ordered LSCBS induced by (M,≤)
and let T, I : M → M be pair of continuous mappings. Let M be closed F -
starshaped with respect to an element p in F (I). Assume that (T, I) is Banach
operator pair on M , F (I) is F -starshaped with respect to an element p ∈ F (I),
where F is a lower semi-convex structure on M and F (I). If cl(T (M)) is com-
pact, D(clT (M)) ⊂ I(Cm−1

M (I, T )) and (T, I) satisfies (3.11), for all x, y ∈ M ,
and all k ∈ (0, 1), then I(Cm−1

M (I, T )) ∩ F (I) ∩ F (T ) 6= ∅.
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Proof. Define Tn : M → M as in Theorem 3.11. As F (I) is F -starshaped with
respect to an element p in F (I), for each x ∈ F (I), Tnx = F (kn, Tx, q) ∈ F (I),
since Tx ∈ F (I). Thus (Tn, I) is Banach operator pair for each n. Also

‖ Tnx− Tny ‖ = kn ‖ Tx− Ty ‖

≤ kn{‖ Ix− Iy ‖ + 1−kn

kn
max{‖ Ix− Tnx ‖, ‖ Iy − Tny ‖}}

= kn ‖ Ix− Iy ‖ +(1− kn) max{‖ Ix− Tnx ‖, ‖ Iy − Tny ‖}

for each x, y ∈ M and 0 < kn < 1. By Lemma 3.12, for each n ≥ 1, there exist
an xn ∈ M such that xn = Ixn = Tnxn. The compactness of cl(T (M)) implies
that there exist a subsequence xni

such that xni
→ z as i → ∞. Since T is

continuous, T (xni
) → T (z) as i →∞. Again

z = lim xni
= lim Tni

(xni
) = lim F (kni

, T (xni
), p) = F (1, T (z), p) = T (z).

By continuity of I, we also have Iz = z. This shows that I(Cm−1
q (T, I))∩F (I)∩

F (T ) 6= ∅.

4 Some Invariant Approximation Results

Let M be a subset of a Banach space (X, ‖ . ‖). The set PM (u) = {x ∈ M :‖
x − u ‖= dist(u, M)} is called the set of best approximants to u ∈ X out of
M , where dist(u, M) = inf{‖ y − u ‖: y ∈ M}. Suppose A ,G, are bounded
subsets of X, then we write

rG(A) = infg∈Gsupa∈A ‖ a− g ‖

centG(A) = {g0 ∈ G : supa∈A ‖ a− g0 ‖= rG(A)}.

The number rG(A) is called the Chebyshev radius of A w.r.t G and an element
y0 ∈ centG(A) is called a best simultaneous approximation of A w.r.t G. If
A = {u}, then rG(A) = d(u, G) and centG(A) is the set of all best approxima-
tions, PG(u), of u out of G. We also refer the reader to Cheney [6], Klee [24]
and Milman [26] for further details.

Sahab et al. [33], Jungck and Sessa [22] and Al-Thagafi [1] generalized main
result of Singh [38] to nonexpansive mapping T with respect to continuous
mapping S in the context of best approximation in normed linear space. In this
section, as an application of our common fixed point results, we prove the cor-
responding results in semi-convex structure in the context of best simultaneous
approximation for more general pair of mappings.

In the following result we extend Theorem 3.1-3.4 due to Al-Thagafi and
Shahzad [2] to asymptotically I-nonexpansive maps defined on F -starshaped
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domain.

Theorem 4.1. Let (X, F,≤) be an ordered semi-convex structure with F
regular and, G and A are nonempty subset of X such that centG(A), set of
best simultaneous approximation of elements in A by G, is nonempty. Let T
and I are self mapping on centG(A). Suppose that centG(A) is F-starshaped
with respect to an element p in F (I), F (λ, Ix, p) = I(F (λ, x, p)) for all x ∈
centG(A) and I(centG(A)) = centG(A). Assume that T and I are uniformly
Cm−1

p −commuting, T is uniformly asymptotically regular and asymptotically
I−nonexpansive. Then F (T ) ∩ F (I) ∩ centG(A) 6= ∅, provided one of the fol-
lowing conditions holds:
(i) centG(A) is closed and clT (centG(A)) is compact.
(ii) X is complete, centG(A) is weakly closed, I is weakly continuous, wclT (cen
tG(A)) is weakly compact and either Id − T is demiclosed at 0 or X satisfies
Opial’s condition.

Proof. In both of the cases (i) -(ii), Lemma 3.10 implies that, for each n ≥ 1,
there exists xn ∈ centG(A) such that xn = Ixn = F (µn, Tnxn, p). The result
now follows from Theorem 3.5.

Corollary 4.2.([42], Theorem 2.3) Let K be a nonempty subset of a normed
space X and y1, y2 ∈ X. Suppose that T and S are self-mappings of K such that
T is asymptotically I−nonexpansive. Suppose that the set F (S), fixed point of
I, is nonempty. Let the set D, of best simultaneous K-approximates to y1 and
y2, is nonempty compact and starshaped with respect to an element p in F (I)
and D is invariant under T . Assume further that T and I are commuting, T
is uniformly asymptotically regular on D, I is affine with I(D) = D. Then D
contains a T− and I−invariant point.

Remark 4.3. As an application of Theorems 3.11 and 3.13, invariant best si-
multaneous approximation results similar to Theorem 4.1 can be established for
Cp-commuting and Banach operator pair (T, I) which extend the recent results
of Al-Thagafi [1], Al-Thagafi and Shahzad [2], Chen and Li [5], Habiniak [13],
Hussain, O’Regan and Agarwal [15], Hussain and Rhoades [17], Jungck and
Sessa [22], Khan et al. [23], Sahab, Khan and Sessa [33], Sahney and Singh [34],
Singh [37, 38], Smoluk [40], Subrahmanyam [41] and Vijayraju [42] to ordered
semi-convex structure (X, F,≤).
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