On the local properties of factored Fourier series *

Mehmet Ali Sarigöl

Abstract

In this paper we have improved the result of Bor [Bull. Math. Anal. Appl.1, (2009), 15-21] on local property of $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability of factored Fourier series by proving under weaker conditions.

1 Introduction

Let $\sum a_{n}$ be a given series with partial sums $\left(s_{n}\right)$, and let $\left(p_{n}\right)$ be a sequence of positive numbers such that $P_{n}=p_{0}+p_{1}+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The sequence- to- sequence transformation

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(T_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$, generated by the sequence coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ summability, $k \geq 1$, if (see [4])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

Let f be a function with period 2π, integrable (L) over $(-\pi, \pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of is zero, so that

$$
\int_{-\pi}^{\pi} f(t) d t=0
$$

and

$$
\begin{equation*}
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=1}^{\infty} C_{n}(t) \tag{1.2}
\end{equation*}
$$

It is well known [5] that convergence of a Fourier series at any point $t=x$ is a local property of f , i.e., for arbitrarily small $\delta>0$, the behaviour of $\left(s_{n}(t)\right)$, the

[^0]n -th partial sum of the series (1.2), depends only the natura of f in the interval $(x-\delta, x+\delta)$ and is not affected by the values it takes outside the interval.A sequence (λ_{n}) is said to be convex if $\Delta^{2} \lambda_{n} \geq 0$ for every positive integers n , where $\Delta^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.

Lemma 1 ([3]). If the sequence $\left(p_{n}\right)$ satisfies the conditions

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right) \tag{1.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta\left(P_{n} / n p_{n}\right)=O(1 / n) . \tag{1.5}
\end{equation*}
$$

Lemma 2 ([2]). If $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then $\left(\lambda_{n}\right)$ is non-negative and decreasing, and $n \Delta \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$.

2 Known result

Theorem A. Let $k \geq 1$ and $\left(p_{n}\right)$ be a sequence such that the conditions (1.3) and (1.4) are satisfied. Let $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent. If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{align*}
& \sum_{v=1}^{\infty}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v} \lambda_{n}^{k}<\infty \tag{2.1}\\
& \sum_{v=1}^{\infty}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \Delta \lambda_{v}<\infty \tag{2.2}\\
& \sum_{v=1}^{\infty}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v} \lambda_{v+1}^{k}<\infty \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{\infty}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right) \tag{2.4}
\end{equation*}
$$

then the summability of $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} P_{n} / n p_{n} \tag{2.5}
\end{equation*}
$$

at a point can be ensured by local property of f.

3 The main result

The purpose of this paper is to improve Theorem A by proving under weaker conditions. Now, we give the following theorem.

Theorem. Let $k \geq 1$ and $\left(p_{n}\right)$ be a sequence such that the condition (1.5) is satisfied. Also let $\left(\lambda_{n}\right)$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent. If $\left(\theta_{n}\right)$ is any sequence of positive constants such that

$$
\begin{align*}
\sum_{v=1}^{\infty} \theta_{v}^{k-1}\left(\frac{\lambda_{v}}{v}\right)^{k} & <\infty \tag{3.1}\\
\sum_{v=1}^{\infty} \theta_{v}^{k-1} \frac{P_{v}}{v^{k} p_{v}} \Delta \lambda_{v} & <\infty \tag{3.2}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=v+1}^{\infty}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}}=O\left\{\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}}\right\} \tag{3.3}
\end{equation*}
$$

then the summability of $\left|\bar{N}, p_{n}, \theta_{n}\right|_{k}$ of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} C_{n}(t) \lambda_{n} P_{n} / n p_{n} \tag{3.4}
\end{equation*}
$$

at a point can be ensured by local property of f.
It may be remarked that (1.3) and $(1.4) \Rightarrow(1.5)$ by Lemma 1 . It is obvious that (1.3) and $(2.1) \Rightarrow(3.1)$, and also (1.3) and (2.2) \Rightarrow (3.2). Furthermore, since $\left(\lambda_{n}\right)$ monotonic decreasing, the conditions (2.1) and (2.3) are the same.

Proof of the Theorem. As mentioned in the beginning, the convergence of Fourier series at a point is a local property. Therefore in order to prove the theorem it is sufficient to prove that if $\left(s_{n}\right)$ is bounded, then under the conditions of our theorem, the series $\sum \lambda_{n} a_{n} P_{n} / n p_{n}$ is summable $\left|\bar{N}, p_{n} ; \theta_{n}\right|_{k}$. Now, let $\left(T_{n}\right)$ denote the $\left(\bar{N}, p_{n}\right)$ means of this series. Then we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} X_{v} \lambda_{v} a_{v}, \quad X_{n}=P_{n} / n p_{n}
$$

Applying Abel's transformation to this sum we get

$$
\begin{aligned}
T_{n}-T_{n-1} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} s_{n} \Delta\left(P_{v-1} X_{v} \lambda_{v}\right)+\frac{p_{n} s_{n} P_{n-1} X_{n} \lambda_{n}}{P_{n} P_{n-1}} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} s_{v} \lambda_{v+1} \Delta\left(P_{v-1} X_{v}\right)+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} s_{v} P_{v-1} X_{v} \Delta \lambda_{v}+\frac{s_{n} \lambda_{n}}{n} \\
& =T_{1}+T_{2}+T_{3}, \quad \text { say. }
\end{aligned}
$$

For the proof of the lemma, by Minkowski's inequality, it suffices to show that

$$
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{r}\right|^{k}<\infty, \quad r=1,2,3 \ldots
$$

Now, since $s_{n}=O(1)$, It follows that

$$
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{1}\right|^{k}=O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} \lambda_{v+1}\left|\Delta\left(P_{v-1} X_{v}\right)\right|\right\}^{k}
$$

On the other hand, in view of

$$
\Delta\left(P_{v-1} X_{v}\right)=-p_{v} X_{v}+P_{v} \Delta X_{v}=-\frac{P_{v}}{v}+P_{v} \Delta X_{v}=P_{v}\left(-\frac{1}{v}+\Delta X_{v}\right)
$$

it is clear that the condition $\Delta X_{v}=O(1 / v)$ is equivalent to $\Delta\left(P_{v-1} X_{v}\right)=$ $O\left(\frac{P_{v}}{v}\right)$. Therefore, making use of Hölder's inequality and lemma 2, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{1}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} \lambda_{v+1} \frac{P_{v}}{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} \lambda_{v} X_{v} p_{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} \lambda_{v}^{k} X_{v}^{k} p_{v}\right\}\left\{\sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} \lambda_{v}^{k} X_{v}^{k} p_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} X_{v}^{k}\left|\lambda_{v}\right|^{k} p_{v}\left(\frac{\theta_{v} p_{v}}{P_{v}}\right)^{k-1} \frac{1}{P_{v}} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1}\left(\frac{\lambda_{v}}{v}\right)^{k}=O(1), \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of (3.1). Again, since $\sum_{v=1}^{n-1} P_{v-1} \Delta \lambda_{v} \leq P_{n-1} \sum_{v=1}^{n-1} \Delta \lambda_{v}=O\left(P_{n-1}\right)$ by lemma 2, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\left\{\sum_{v=1}^{n-1} P_{v-1} X_{v} \Delta \lambda_{v}\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k} \sum_{v=1}^{n-1} P_{v-1} X_{v}^{k} \Delta \lambda_{v}\left\{\sum_{v=1}^{n-1} P_{v-1} \Delta \lambda_{v}\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k} \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v-1} X_{v}^{k} \Delta \lambda_{v} \\
& =O(1) \sum_{v=1}^{m} P_{v-1} X_{v}^{k} \Delta \lambda_{v} \sum_{n=v+1}^{m+1}\left(\frac{\theta_{n} p_{n}}{P_{n}}\right)^{k-1} \frac{p_{n}}{P_{n} P_{n-1}} \\
& =O(1) \sum_{v=1}^{m} \theta_{v}^{k-1} \frac{P_{v} \Delta \lambda_{v}}{v^{k} p_{v}}=O(1), \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of (3.2).
Finally, it is clear that

$$
\sum_{n=1}^{m} \theta_{n}^{k-1}\left|T_{3}\right|^{k}=O(1) \sum_{n=1}^{m} \theta_{n}^{k-1}\left(\frac{\lambda_{n}}{n}\right)^{k}=O(1) \text { as } m \rightarrow \infty
$$

by virtue of (3.1). This completes the proof.

References

[1] H. Bor, On the local properties of factored Fourier Series, Bull. Math. Anal. Appl.1,(2009), 15-21.
[2] H. C. Chow, On the summability factors of infinite series, J. London Math. Soc. 16,(1941), 215-220.
[3] K. N. Mishra, Multipliers for $\left|\bar{N}, p_{n}\right|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica 14, (1986), 431-438.
[4] W.T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115, (1992), 313-317.
[5] E. C. Tichmarsh, The Theory of Functions, Oxford Univ. Press, London 1961.

MEHMET AL SARIGÖL
Department of Mathematics,
Pamukkale University,
20017 Denizli, Turkey
e-mail : msarigol@pau.edu.tr

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 40G, 42A24, 42B24.
 Key words: Absolute summabilitiy; Fourier series; Local property.
 © 2009 Universiteti i Prishtines, Prishtine, Kosovë.
 Submitted November, 2009. Published March, 2009.

