On the local properties of factored Fourier series *

Mehmet Ali Sarigöl

Abstract

In this paper we have improved the result of Bor [Bull. Math. Anal. Appl.1, (2009), 15-21] on local property of $|\overline{N}, p_n, \theta_n|_k$ summability of factored Fourier series by proving under weaker conditions.

1 Introduction

Let $\sum a_n$ be a given series with partial sums (s_n) , and let (p_n) be a sequence of positive numbers such that $P_n = p_0 + p_1 + \cdots + p_n \to \infty$ as $n \to \infty$. The sequence-to-sequence transformation

$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$$

defines the sequence (T_n) of the (\overline{N}, p_n) means of the sequence (s_n) , generated by the sequence coefficients (p_n) . The series $\sum a_n$ is summable $|\overline{N}, p_n, \theta_n|_k$ summability, $k \ge 1$, if (see [4])

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |T_n - T_{n-1}|^k < \infty.$$
(1.1)

Let f be a function with period 2π , integrable (L) over $(-\pi,\pi)$. Without any loss of generality we may assume that the constant term in the Fourier series of is zero, so that

$$\int_{-\pi}^{\pi} f(t)dt = 0$$

and

$$f(t) \sim \sum_{n=1}^{\infty} \left(a_n \cos nt + b_n \sin nt \right) \equiv \sum_{n=1}^{\infty} C_n(t).$$
(1.2)

It is well known [5] that convergence of a Fourier series at any point t = x is a local property of f, i.e., for arbitrarily small $\delta > 0$, the behaviour of $(s_n(t))$, the

^{*} Mathematics Subject Classifications: 40G, 42A24, 42B24.

Key words: Absolute summabilitiy; Fourier series; Local property.

^{©2009} Universiteti i Prishtines, Prishtine, Kosovë.

Submitted November, 2009. Published March, 2009.

n-th partial sum of the series (1.2), depends only the natura of f in the interval $(x - \delta, x + \delta)$ and is not affected by the values it takes outside the interval. A sequence (λ_n) is said to be convex if $\Delta^2 \lambda_n \geq 0$ for every positive integers n, where $\Delta^2 \lambda_n = \Delta (\Delta \lambda_n)$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$.

Lemma 1 ([3]). If the sequence (p_n) satisfies the conditions

$$P_n = O\left(np_n\right) \tag{1.3}$$

and

$$P_n \Delta p_n = O\left(p_n p_{n+1}\right),\tag{1.4}$$

then

$$\Delta \left(P_n / n p_n \right) = O(1/n). \tag{1.5}$$

Lemma 2 ([2]). If (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent, then (λ_n) is non-negative and decreasing, and $n\Delta\lambda_n \to 0$ as $n \to \infty$.

2 Known result

Theorem A. Let $k \ge 1$ and (p_n) be a sequence such that the conditions (1.3) and (1.4) are satisfied. Let (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent. If (θ_n) is any sequence of positive constants such that

$$\sum_{v=1}^{\infty} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{v} \lambda_n^k < \infty$$
(2.1)

$$\sum_{v=1}^{\infty} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \Delta \lambda_v < \infty$$
(2.2)

$$\sum_{v=1}^{\infty} \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{v} \lambda_{v+1}^k < \infty$$
(2.3)

and

$$\sum_{n=\nu+1}^{\infty} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O\left(\left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{P_v}\right)$$
(2.4)

then the summability of $\left|\overline{N}, p_n, \theta_n\right|_k$ of the series

$$\sum_{n=1}^{\infty} C_n(t) \lambda_n P_n / n p_n \tag{2.5}$$

at a point can be ensured by local property of f.

50

3 The main result

The purpose of this paper is to improve Theorem A by proving under weaker conditions. Now, we give the following theorem.

Theorem. Let $k \ge 1$ and (p_n) be a sequence such that the condition (1.5) is satisfied. Also let (λ_n) is a convex sequence such that $\sum n^{-1}\lambda_n$ is convergent. If (θ_n) is any sequence of positive constants such that

$$\sum_{v=1}^{\infty} \theta_v^{k-1} \left(\frac{\lambda_v}{v}\right)^k < \infty$$
(3.1)

$$\sum_{v=1}^{\infty} \theta_v^{k-1} \frac{P_v}{v^k p_v} \Delta \lambda_v < \infty$$
(3.2)

and

$$\sum_{n=v+1}^{\infty} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} = O\left\{ \left(\frac{\theta_v p_v}{P_v}\right)^{k-1} \frac{1}{P_v} \right\}$$
(3.3)

then the summability of $\left|\overline{N}, p_n, \theta_n\right|_k$ of the series

$$\sum_{n=1}^{\infty} C_n\left(t\right) \lambda_n P_n / n p_n \tag{3.4}$$

at a point can be ensured by local property of f.

It may be remarked that (1.3) and (1.4) \Rightarrow (1.5) by Lemma 1. It is obvious that (1.3) and (2.1) \Rightarrow (3.1), and also (1.3) and (2.2) \Rightarrow (3.2). Furthermore, since (λ_n) monotonic decreasing, the conditions (2.1) and (2.3) are the same.

Proof of the Theorem. As mentioned in the beginning, the convergence of Fourier series at a point is a local property. Therefore in order to prove the theorem it is sufficient to prove that if (s_n) is bounded, then under the conditions of our theorem, the series $\sum \lambda_n a_n P_n / n p_n$ is summable $|\overline{N}, p_n; \theta_n|_k$. Now, let (T_n) denote the (\overline{N}, p_n) means of this series. Then we have

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} X_v \lambda_v a_v, \quad X_n = P_n / n p_n$$

Applying Abel's transformation to this sum we get

$$\begin{split} T_n - T_{n-1} &= \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n s_n \Delta \left(P_{v-1} X_v \lambda_v \right) + \frac{p_n s_n P_{n-1} X_n \lambda_n}{P_n P_{n-1}} \\ &= \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n s_v \lambda_{v+1} \Delta \left(P_{v-1} X_v \right) + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n s_v P_{v-1} X_v \Delta \lambda_v + \frac{s_n \lambda_n}{n} \\ &= T_1 + T_2 + T_3, \quad say. \end{split}$$

For the proof of the lemma, by Minkowski's inequality, it suffices to show that

$$\sum_{n=1}^{\infty} \theta_n^{k-1} |T_r|^k < \infty, \quad r = 1, 2, 3..$$

Now, since $s_n = O(1)$, It follows that

$$\sum_{n=2}^{m+1} \theta_n^{k-1} |T_1|^k = O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}}\right)^k \left\{ \sum_{v=1}^{n-1} \lambda_{v+1} |\Delta(P_{v-1} X_v)| \right\}^k.$$

On the other hand, in view of

$$\Delta\left(P_{v-1}X_{v}\right) = -p_{v}X_{v} + P_{v}\Delta X_{v} = -\frac{P_{v}}{v} + P_{v}\Delta X_{v} = P_{v}\left(-\frac{1}{v} + \Delta X_{v}\right),$$

it is clear that the condition $\Delta X_v = O(1/v)$ is equivalent to $\Delta(P_{v-1}X_v) = O\left(\frac{P_v}{v}\right)$. Therefore, making use of Hölder's inequality and lemma 2, we get

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} \left| \left| T_1 \right|^k &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k \left\{ \sum_{v=1}^{n-1} \lambda_{v+1} \frac{P_v}{v} \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k \left\{ \sum_{v=1}^{n-1} \lambda_v X_v p_v \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}} \right)^k \left\{ \sum_{v=1}^{n-1} \lambda_v^k X_v^k p_v \right\} \left\{ \sum_{v=1}^{n-1} p_v \right\}^{k-1} \\ &= O(1) \sum_{v=1}^m \lambda_v^k X_v^k p_v \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n} \right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m X_v^k |\lambda_v|^k p_v \left(\frac{\theta_v p_v}{P_v} \right)^{k-1} \frac{1}{P_v} \\ &= O(1) \sum_{v=1}^m \theta_v^{k-1} \left(\frac{\lambda_v}{v} \right)^k = O(1), \quad as \quad m \to \infty, \end{split}$$

by virtue of (3.1). Again, since $\sum_{v=1}^{n-1} P_{v-1} \Delta \lambda_v \leq P_{n-1} \sum_{v=1}^{n-1} \Delta \lambda_v = O(P_{n-1})$ by lemma 2, we get

$$\begin{split} \sum_{n=2}^{m+1} \theta_n^{k-1} |T_2|^k &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}}\right)^k \left\{ \sum_{v=1}^{n-1} P_{v-1} X_v \Delta \lambda_v \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n P_{n-1}}\right)^k \sum_{v=1}^{n-1} P_{v-1} X_v^k \Delta \lambda_v \left\{ \sum_{v=1}^{n-1} P_{v-1} \Delta \lambda_v \right\}^{k-1}. \\ &= O(1) \sum_{n=2}^{m+1} \theta_n^{k-1} \left(\frac{p_n}{P_n}\right)^k \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_{v-1} X_v^k \Delta \lambda_v \\ &= O(1) \sum_{v=1}^m P_{v-1} X_v^k \Delta \lambda_v \sum_{n=v+1}^{m+1} \left(\frac{\theta_n p_n}{P_n}\right)^{k-1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m \theta_v^{k-1} \frac{P_v \Delta \lambda_v}{v^k p_v} = O(1), as \ m \to \infty, \end{split}$$

by virtue of (3.2).

Finally, it is clear that

$$\sum_{n=1}^{m} \theta_n^{k-1} |T_3|^k = O(1) \sum_{n=1}^{m} \theta_n^{k-1} \left(\frac{\lambda_n}{n}\right)^k = O(1) \ as \ m \to \infty,$$

by virtue of (3.1). This completes the proof.

References

- H. Bor, On the local properties of factored Fourier Series, Bull. Math. Anal. Appl.1,(2009), 15-21.
- [2] H. C. Chow, On the summability factors of infinite series, J. London Math. Soc. 16,(1941), 215-220.
- [3] K. N. Mishra, Multipliers for $|\overline{N}, p_n|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica 14, (1986), 431-438.
- [4] W.T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115, (1992), 313-317.
- [5] E. C. Tichmarsh, The Theory of Functions, Oxford Univ. Press, London 1961.

MEHMET AL SARIGÖL Department of Mathematics, Pamukkale University, 20017 Denizli, Turkey e-mail : msarigol@pau.edu.tr