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On the Level Spaces of Fuzzy Topological Spaces ∗

S. S. Benchalli & G.P. Siddapur

Abstract
It is known that if (X,T ) is a fuzzy topological space and 0 ≤ � < 1
then the family T� = {�(G) : G ∈ T} where �(G) = {x ∈ X : G(x) > �},
forms a topology on X. In the present paper some level properties have
been modified and it is proved that a fuzzy topological space (X,T )
is �-compact (resp. �-Hausdorff, countably �-compact, �-Lindelöf, �-
connected, locally �-compact) if and only if the corresponding �-level
topological space (X,T�) is compact (resp. Hausdorff, countably com-
pact, Lindelöf, connected, locally compact). Some basic properties of �-
level sets have also been obtained.

1 Introduction

The investigation of fuzzy topological spaces by considering the properties which
a space may have to a certain degree or level was initiated by Gantner et. al
[3]. This approach resulted into the investigation of �-Hausdorff axiom [10],
countable �-compactness, �-Lindelöf property [6], local �-compactness [7], �-
closure [4] etc. in fuzzy topological spaces.

Throughout this paper Chang’s [1] definition of fuzzy topological space (ab-
breviated as fts) is used. If X is a set and T is a family of fuzzy subsets of X
satisfying the following conditions (i) to (iii) then T is called a fuzzy topology
on X ; (i) X,� ∈ T (ii) arbitrary union of members of T is again a member of
T and (iii) intersection of finitely many members of T is again a member of T .
Further (X,T ) is called a fuzzy topological space (fts). If (X,T ) is a fts and
0 ≤ � < 1 then the family T� = {�(G) : G ∈ T}, of all subsets of X of the form
�(G) = {x ∈ X : G(x) > �} called �-level sets, forms a topology on X [4] and
is called the �-level topology on X.

In this paper, some basic properties of �-level sets have been obtained. The
�-Hausdorff axiom [10] and the local �-compactness of [7] have been modified.
The �-connectedness has been proposed. It is proved that a fts (X,T ) is �-
compact (�-Hausdorff, countably �-compact, �-Lindelöf, �-connected, locally
�-compact) if and only if the corresponding �-level topological space (X,T�)
is compact (resp. Hausdorff, countably compact, Lindelöf, connected, locally
compact)
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Submitted May, 2009. Published September, 2009.

57



58 On the Level Spaces of Fuzzy Topological Spaces

2 �-Level Sets and Their Basic Properties

If G is any fuzzy set in a set X and 0 ≤ � < 1 (0 < � ≤ 1) then �(G) =
{x ∈ X : G(x) > �} (resp. �∗(G) = {x ∈ X : G(x) ≥ �}) is called an �-level
(resp. �∗-level) set in X.

The term crisp subset refers to an ordinary subset which is identified with
its characteristic function as a fuzzy subset.

If f : X → Y is a function and A is a fuzzy subset of X then f(A) is a fuzzy
subset of Y defined by f(A)(y) = sup

{
A(x) : x ∈ f−1(y)

}
for each y ∈ Y .

Further, if B is a fuzzy subset of Y then f−1(B) is a fuzzy subset of X defined
by f−1(B)(x) = B(f(x)) for each x ∈ X.

Some basic properties of �-level sets are given in the following.

Theorem 2.1 Let X, Y be any two sets and 0 ≤ � < 1. The following state-
ments are true.

1. If G is any fuzzy set in X then G(x) ≤ �(G)(x) holds for all x ∈ X with
G(x) > �.

2. If G ≤ H then �(G) ⊂ �(H) for any two fuzzy sets G, H in X.

3. �(G) = G if and only if G is a crisp susbet of X.

4. �(�(G)) = �(G) for any fuzzy set G in X.

5. �(
⋁
�

G�) =
∪
�

�(G�) for any family {G� : � ∈ Λ} of fuzzy sets in X.

6. �(
⋀
�

G�) =
∩
�

�(G�) for any family {G� : � ∈ Λ} of fuzzy sets in X.

7. If f : X → Y , then f(�(G)) = �(f(G)) for each fuzzy set G in X.

8. If f : X → Y , then f−1(�(G)) = �(f−1(G)) for each fuzzy set G in Y .

9. �(G×H) = �(G)×�(H) for any two fuzzy sets G,H in X where G×H
is a fuzzy set in X × Y given by (G × H)(x, y) = G(x) ∧ H(y) for each
(x, y) ∈ X × Y .

Proof. (1). Let x ∈ X with G(x) > �. Then x ∈ �(G) so that (�(G))(x) =
1 ≥ G(x) > � and therefore G(x) ≤ (�(G))(x).

(2) If x ∈ �(G) then G(x) > a and therefore H(x) ≥ G(x) > �. Conse-
quently x ∈ �(H).

(3) If G is crisp and if x ∈ X then G(x) = 0 or 1. If G(x) = 0 then x /∈ �(G)
and therefore (�(G))(x) = 0 which proves G(x) = �(G(x)). In case if G(x) = 1,
then G(x) = 1 > � and therefore x ∈ �(G) which proves (�(G))(x) = 1 = G(x).
The converse part follows as �(G) is crisp.
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(4) Follows from (3) as �(G) is crisp.

(5) If x ∈ �(
⋁
�

G�) then Sup(G�(x)) > �. Consequently there exists a �o

such that G�o(x) > � which implies x ∈ �(G�o) and hence x ∈
∪
�

�(G�).

Therefore �(
⋁
�

G�) ⊂
∪
�

�(G�). Similarly
∪
�

�(G�) ⊂ �(
⋁
�

G�) and hence the

equality.

(6) If x ∈ �(
⋀
�

G�) then (
⋀
�

G�)(x) > � and therefore G�(x) > � for each

�. This implies that x ∈ �(G�) for each � and therefore x ∈
⋀
�

�(G�). Thus

�(
⋀
�

G�) ⊂
∩
�

�(G�). Similarly
∩
�

�(G�) ⊂ �(
⋀
�

G�).

(7) If y ∈ f(�(G)) then there is an element x ∈ �(G) such that y = f(x).
Now G(x) > � and therefore Sup

{
G(x) : x ∈ f−1(y)

}
> � which implies

(f(G))(y) > �. Then y ∈ �(f(G)). Thus f(�(G)) ⊂ �(f(G)). Similarly it
can be shown that �(f(G)) ⊂ f(�(G)) and hence the result follows.

(8) Let x ∈ f−1(�(G)). Then f(x) = y ∈ �(G) so that G(y) = G(f(x)) > �.
Therefore

[
f−1(G)

]
(x) > � which implies x ∈ �

[
f−1(G)

]
and hence it follows

that f−1(�(G)) ⊂ �(f−1(G)). Similarly �(f−1(G)) ⊂ f−1(�(G)) and hence
the equality.

(9) If (x, y) ∈ �(G × H) then (G × H)(x, y) > � and therefore x ∈ �(G)
and y ∈ �(H). So (x, y) ∈ �(G) × �(H). Thus �(G × H) ⊂ �(G) × �(H).
Similarly it can be shown that �(G)×�(H) ⊂ �(G×H) and hence the equality
follows.

3 Level Spaces and Main Results

In the beginning of this section we deal with Rodabaugh’s [10] �-Hausdorff fts.

Definition 3.1 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be �-
Hausdorff (resp. �∗-Hausdorff) if for each x, y in X with x ∕= y, there exist G,
H in T such that G(x) > � (resp. G(x) ≥ �), H(y) > � (resp. H(y) ≥ �) and
G ∧H = 0.

We have the following

Theorem 3.2 Let 0 ≤ � < 1. If a fts (X,T ) is �-Hausdorff, then (X,T�) is
Hausdorff topological space.
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Proof. Let x, y ∈ X with x ∕= y. Then there are G,H in T such that G(x) > �,
H(y) > � and G ∧H = 0. Then �(G) and �(H) are open sets in (X,T�) and
x ∈ �(G), y ∈ �(H). Also �(G) ∩ �(H) = � since G ∧H = 0. Hence (X,T�) is
Hausdorff topological space.

The converse of the above theorem holds for the case of � = 0, which is
given in the following.

Theorem 3.3 Let (X,T ) be a fts. If (X,T0) is Hausdorff topological space,
then (X,T ) is 0-Hausdorff fts.

Proof. Let x, y ∈ X with x ∕= y. Then there are open sets U, V in (X,T0) such
that x ∈ U , y ∈ V and U ∩V = �. Let U = 0(G), V = 0(H) for some G,H in T .
Then it follows that G(x) > 0 and H(y) > 0. Further G∧H = 0 as U ∩ V = �.
Hence (X,T ) is 0-Hausdorff.

Definition 3.4 Let X be a set and 0 ≤ � < 1 (0 < � ≤ 1). A family {G�}� of

fuzzy sets in X is said to be �-disjoint (resp. �∗-disjoint) if
⋀
�

G� ≤ � (resp.⋀
�

G� < �).

It is evident that two fuzzy sets G,H in X are �-disjoint (�∗-disjoint) if and
only if for each x in X either G(x) ≤ � (resp. G(x) < �) or H(x) ≤ �
(resp.H(x) < �).

Rodabaugh’s definition is suitably modified in the following.

Definition 3.5 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be �-
Hausdorff (resp. �∗-Hausdorff) if for each x, y in X with x ∕= y, there exist G,
H in T such that G(x) > � (resp. G(x) ≥ �), H(y) > � (resp. H(y) ≥ �) and
G,H are �-disjoint (resp. �∗-disjoint).

For the modified class of �-Hausdorff fuzzy topological spaces we have the fol-
lowing.

Theorem 3.6 Let 0 ≤ � < 1. A fts (X,T ) is a �-Hausdorff if and only if
(X,T�) is Hausdorff topological space.

Proof. Let (X,T ) be �-Hausdorff. Let x, y ∈ X with x ∕= y. Then there exist
G,H in T with G(x) > �, H(y) > � and G∧H ≤ �. Then �(G), �(H) are open
sets in (X,T�) such that x ∈ �(G), y ∈ �(H) and �(G) ∩ �(H) = �(G ∩H) =
{x ∈ X : (G ∧H)(x) > �} = � as G∧H ≤ �. Therefore (X,T�) is �-Hausdorff.

Conversely, suppose (X,T�) is �-Hausdorff. Let x, y ∈ X with x ∕= y. Then
there exist open sets U, V in (X,T�) such that x ∈ U , y ∈ V and U ∩V = �. Let
U = �(G) and V = �(H) for some G,H ∈ T . Then x ∈ �(G) and y ∈ �(H).
Therefore G(x) > � and H(y) > �. Further G ∧H ≤ � as U ∩ V = �. Hence
(X,T ) is �-Hausdorff.
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Let 0 ≤ � < 1 (0 < � ≤ 1). A family {G� : � ∈ Λ} of fuzzy subsets of a fts
(X,T ) is said to be an �-shading ( �∗-shading) of X if for each x ∈ X, there
exists a G�o

in {G� : � ∈ Λ} such that G�o
(x) > � (≥ �).

The following definition is due to Gantner et. al [3].

Definition 3.7 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be �-
compact (resp. �∗-compact) if each �-shading (resp. �∗-shading) of X by open
fuzzy sets has a finite �-subshading (resp. �∗-subshading).

We have the following

Theorem 3.8 Let 0 ≤ � < 1. A fts (X,T ) is �-compact if and only if (X,T�)
is compact topological space.

Proof. Let (X,T ) be �-compact. Let U = {U� : � ∈ Λ} be an open cover of
(X,T�). Then, since for each U�, there exists a G� in T such that U� = �(G�),
we have U ={�(G�) : � ∈ Λ}. Then the family V = {G� : � ∈ Λ} is an �-
shading of (X,T ). To see this, let x ∈ X. Since U is an open cover of (X,T�),
there is an U�o

∈ U such that x ∈ U�o
. But U�o

= �(G�o
), for some G�o

∈ T .
Therefore x ∈ �(G�o

) which implies that G�o
(x) > �. By �-compactness of

(X,T ), V has a finite �-subshading say {G�i
}ki=1. Then {�(G�i

)}ki=1 forms a
finite subcover of U and thus (X,T�) is compact.

Conversely, let (X,T�) be compact and U ={G� : � ∈ Λ} be an open �-
shading of (X,T ). Then the family V = {�(G�) : � ∈ Λ} is an open cover of
(X,T�). For, let x ∈ X. Then there exists a G�o

in U such that G�o
(x) > �.

Therefore x ∈ �(G�o
) and (G�o

) ∈ V . By compactness of (X,T�), V has
a finite subcover say {�(G�i

)}ni=1. Then the family {G�i
}ni=1 forms a finite

�-subshading of U and hence (X,T ) is �-compact.
Countable compact fts have been studied in [6, 11-13].

Definition 3.9 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be count-
ably �-compact (resp. countably �∗-compact) if every countable open �-shading
(resp. countable open �∗-shading) of X has a finite �-subshading (resp. finite
�∗-subshading).

It is easy to verify the following

Theorem 3.10 Let 0 ≤ � < 1. A fts (X,T ) is countably �-compact if and only
if (X,T�) is countably compact topological space.

Lindelöf fuzzy topological spaces were studied in [6, 8, and 12]. Lindelöf
fuzzy topological spaces, using shading families, were introduced in [16].

Definition 3.11 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be
�-Lindelöf (resp. �∗-Lindelöf) if and only if every open �-shading (resp. open
�∗-shading) of X has a countable �-subshading (resp. countable �∗-subshading).

Again it is easy to verify the following.
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Theorem 3.12 Let 0 ≤ � < 1. A fts (X,T ) is �-Lindelöf if and only if (X,T�)
is Lindelöf topological space.

Definition 3.13 Let 0 ≤ � < 1 (0 < � ≤ 1). Let X be a non-empty set. A
fuzzy set A in X is said to be an empty fuzzy set of order � (resp. order �∗) if
A(x) ≤ � (resp. A(x) < �) for each x ∈ X.

A fuzzy set A in X is said to be non-empty of order � (resp. order �∗) if
there exists xo ∈ X such that A(xo) > � (resp. A(xo) ≥ �).

Connectedness in fuzzy topological spaces was studied in [5, 9].
Connectedness, using shading families, is given in the following.

Definition 3.14 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be
�-disconnected (resp. �∗-disconnected) if there exists an �-shading (resp. �∗-
shading) family of two open fuzzy sets in X which are non-empty of order �
(resp. order �∗) and �-disjoint (resp. �∗-disjoint).

Definition 3.15 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be
�-connected (resp. �∗-connected) if there does not exist an �-shading (resp.
�∗-shading) family of two open fuzzy sets in X which are non-empty of order �
(resp. order �∗) and �-disjoint (resp. �∗-disjoint).

We now prove the following

Theorem 3.16 Let 0 ≤ � < 1. A fts (X,T ) is �-connected if and only if
(X,T�) is connected topological space.

Proof. Let (X,T ) be �-connected. Suppose (X,T�) is disconnected. Then
there exist non-empty disjoint open sets U, V in (X,T�) such that U ∪ V = X.
Now U = �(G), V = �(H) for some G,H ∈ T . Since U, V are non-empty sets
it follows that G and H are non-empty fuzzy sets of order �. Further {G,H} is
an �-shading of X: For if x ∈ X then x ∈ U or x ∈ V and therefore x ∈ �(G) or
x ∈ �(H) which implies that G(x) > � or H(x) > �. Also G,H are �-disjoint:
For, U ∩ V = � implies that �(G) ∩ �(H) = �. Therefore �(G ∧H) = �. That
is {x ∈ X : (G ∧H)(x) > �} = �. Therefore for each x ∈ X,(G ∧ H)(x) ≤ �
and so G,H are �-disjoint. Thus it follows that {G,H} is an �-shading of open
fuzzy sets which are non-empty of order � and are �-disjoint. Therefore (X,T )
is �-disconnected, which contradicts the hypothesis. Hence (X,T�) is connected
topological space.

Conversely, suppose (X,T�) is connected. Let (X,T ) be �-disconnected.
Then there exist an �-shading {G,H} of two open fuzzy sets in X which are
non-empty of order � and �-disjoint. Clearly �(G), �(H) are open sets in
(X,T�). Further �(G), �(H) are non-empty as G,H are non-empty of order
�. Also �(G) ∩ �(H) = �(G ∧ H) = {x ∈ X : (G ∧H)(x) > �} = � since
(G∧H)(x) ≤ � as G,H are �-disjoint. Finally �(G)∪�(H) = X: For if x ∈ X
then either G(x) > � or H(x) > � as {G,H} is an �-shading of X. Therefore
x ∈ �(G) or x ∈ �(H) and therefore x ∈ �(G)∪�(H). Thus X ⊂ �(G)∪�(H).
Also �(G) ∪ �(H) ⊂ X is obvious. Therefore �(G) ∪ �(H) = X. Hence it
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follows that X is the union of two non-empty disjoint open sets in (X,T�)
and therefore (X,T�) is disconnected, which contradicts the hypothesis. Hence
(X,T ) is �-connected fts.

Local compactness in fuzzy topological spaces was studied in [2, 3, 7, 14].
The definition of local compactness in [7] is modified in the following.

Definition 3.17 Let 0 ≤ � < 1 (0 < � ≤ 1). A fts (X,T ) is said to be locally
�-compact (resp. locally �∗-compact) if for each p ∈ X there exists an open
fuzzy set N such that N(p) > � (resp. N(p) ≥ �) and �(N) (resp. �∗(N) ) is
�-compact (resp. �∗-compact).

We prove the following

Theorem 3.18 Let 0 ≤ � < 1. A fts (X,T ) is locally �-compact if and only if
(X,T�) is locally compact topological space.

Proof. Let (X,T ) be locally �-compact. Let x ∈ X. There exists an open
fuzzy set N in (X,T ) such that N(x) > � and �(N) is �-compact. Therefore
�(N) is an open set in (X,T�) containing x such that �(N) is compact subset
in (X,T�): For if {U� = �(G�) : � ∈ Λ, G� ∈ T} is an open cover of �(N) in
(X,T�) then the family {G� : � ∈ Λ} is an open �-shading of �(N) in (X,T ).

Since �(N) is �-compact {G� : � ∈ Λ} has a finite �-subshading say {G�i}
k
i=1.

Then {�(G�i
) = U�i

: i = 1, 2, ......, k} is a finite subcover of {U� : � ∈ Λ} for
�(N). So �(N) is a compact subset of (X,T�). Thus for each x ∈ X, there
exists an open set �(N) in (X,T�) such that x ∈ �(N) and �(N) is compact.
Hence (X,T�) is locally compact topological space.

Conversely, suppose (X,T�) is locally compact. Let p ∈ X. Then there
exists an open set �(G) in (X,T�), where G ∈ T , such that p ∈ �(G) and
�(G) is compact set in (X,T�). Now G ∈ T and G(p) > �. Further �(G) is �-
compact in (X,T ): For if {H�}�∈Λ is an open �-shading of �(G) in (X,T ), then

{�(H�) : � ∈ Λ} is an open cover of �(G). Since �(G) is compact in (X,T�),
{�(H�) : � ∈ Λ} has a finite subcover say {�(H�i

) : i = 1, 2, ......., k}. Then
{H�i

: i = 1, 2, ......., k} is a finite �-subshading of {H�}�∈Λ for �(G). Therefore

every open �-shading for �(G) has a finite �-subshading and therefore �(G) is
�-compact. Thus for each p ∈ X there exists an open fuzzy set G in (X,T )
such that G(p) > � and �(G) is �-compact in (X,T ). Hence (X,T ) is locally
�-compact .
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