BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 1 Issue 3(2009), Pages 99-108.

SOME PROPERTIES OF A QUARTER-SYMMETRIC METRIC CONNECTION ON A SASAKIAN MANIFOLD

(DEDICATED IN OCCASION OF THE 65-YEARS OF PROFESSOR R.K. RAINA)

ABUL KALAM MONDAL AND U. C. DE

ABSTRACT. The object of the present paper is to study a quarter-symmetric metric connection on a Sasakian manifold. The existence of the connection is given on a Riemannian manifold. We deduce the relation between the Riemannian connection and the quarter-symmetric metric connection on a Sasakian manifold. We study the projective curvature tensor with respect to the quarter-symmetric metric connection and also characterized ξ -projectively flat and ϕ -projectively flat Sasakian manifold with respect to the quarter-symmetric metric connection. Finally we study locally ϕ -symmetric Sasakian manifold with respect to the quarter-symmetric metric connection.

1. Introduction

In this paper we undertake a study of quarter-symmetric metric connection on a Sasakian manifold. In 1975, S. Golab[6] defined and studied quarter-symmetric connection in a differentiable manifold with affine connection.

A linear connection ∇ on an n-dimensional Riemannian manifold(M, g) is called a quarter-symmetric connection[6] if its torsion tensor T of the connection $\tilde{\nabla}$

$$T(X,Y) = \tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X,Y]$$

satisfies

$$T(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y, \qquad (1.1)$$

where η is a 1-form and ϕ is a (1, 1) tensor field.

In particular, if $\phi(X) = X$, then the quarter-symmetric connection reduces to the semi-symmetric connection[5]. Thus the notion of quarter-symmetric connection generalizes the idea of the semi-symmetric connection.

If moreover, a quarter-symmetric connection ∇ satisfies the condition

$$(\nabla_X g)(Y, Z) = 0 \tag{1.2}$$

²⁰⁰⁰ Mathematics Subject Classification. 53C25, 53C35, 53D10.

Key words and phrases. quarter-symmetric metric connection, projective curvature tensor, ϕ -projectively flat, ξ -projectively flat, locally ϕ -symmetric.

^{©2009} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted October, 2009. Published December, 2009.

for all $X, Y, Z \in T(M)$, where T(M) is the Lie algebra of vector fields of the manifold M, then $\tilde{\nabla}$ is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter-symmetric non-metric connection.

After S. Golab[6], S. C. Rastogi ([12],[13]) continued the systematic study of quarter-symmetric metric connection.

In 1980, R. S. Mishra and S. N. Pandey[9] studied quarter-symmetric metric connection in Riemannian, Kaehlerian and Sasakian manifolds.

In 1982, K. Yano and T. Imai[18] studied quarter-symmetric metric connection in Hermitian and Kaehlerian manifols.

In 1991, S. Mukhopadhyay, A. K. Roy and B. Barua[10] studied a quartersymmetric metric connection on a Riemannian manifold (M,g) with an almost complex structure ϕ .

In 1997, U. C. De and S. C. Biswas[2] studied a quarter-symmetric metric connection on a SP-Sasakian manifold. Also in 2008, Sular, Ozgur and De[14] studied a quarter-symmetric metric connection in a Kenmotsu manifold.

Apart from conformal curvature tensor, the projective curvature tensor is another important tensor from the differential geometric point of view. Let M be an n-dimensional Riemannian manifold. If there exists a one-to-one correspondence between each coordinate neighborhood of M and a domain in Euclidian space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 3$, M is locally projectively flat if and only if the well known projective curvature tensor Pvanishes. Here P is defined by [8]

$$P(X,Y)Z = R(X,Y)Z - \frac{1}{n-1} \{ S(Y,Z)X - S(X,Z)Y \},$$
(1.3)

for $X, Y, Z \in T(M)$, where R is the curvature tensor and S is the Ricci tensor. In fact, M is projectively flat (that is P = 0) if and only if the manifold is of constant curvature (pp. 84-85 of [17]). Thus, the projective curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

A Sasakian manifold is said to be an Einstein manifold if its Ricci tensor S satisfies the condition

$$S(X,Y) = \lambda g(X,Y)$$

where λ is a constant.

The paper is organized as follows:

After preliminaries, in section 3 we prove the existence of the quarter-symmetric metric connection. In the next section we establish the relation between the Riemannian connection and the quarter-symmetric metric connection on a Sasakian manifold. Section 5 deals with the projective curvature tensor with respect to the quarter-symmetric metric connection and in the next section we prove that for a Sasakian manifold the Riemannian connection ∇ is ξ -projectively flat if and only if the quarter-symmetric metric connection $\tilde{\nabla}$ is so. We also study ϕ -projectively flat Sasakian manifold and prove that if a Sasakian manifold is ϕ -projectively flat then the manifold is an η -Einstein manifold with respect to the quarter-symmetric metric connection. Finally we characterized locally ϕ -symmetric Sasakian manifold with respect to the quarter-symmetric metric connection.

2. Preliminaries

An n(=2m+1)-dimensional smooth manifold M is said to be a contact manifold if it carries a global 1-form η such that $\eta \wedge (d\eta)^m \neq 0$ everywhere on M. For a given contact 1-form η there exist a unique vectore field ξ (the Reeb vector field) such that $d\eta(\xi, X) = 0$ and $\eta(\xi) = 1$. Polarizing $d\eta$ on the contact subbundle $\eta = 0$, one obtains a Riemannian metric g and a (1, 1)-tensor field ϕ such that

a)
$$d\eta(X,Y) = g(\phi X,Y)$$
 b) $\eta(X) = g(X,\xi)$ c) $\phi^2 = -X + \eta(X)\xi$ (2.1)

g is called an associated metric of η and (ϕ, η, ξ, g) a contact metric structure. The tensor $h = \frac{1}{2} \pounds_{\xi} \phi$ is known to be self-adjoint, anti-commutes with ϕ , and satisfies: $Tr.h = Tr.h\phi = 0$. A contact metric structure is said to be K - contact if ξ is a Killing with respect to g, equivalently, h = 0. If in such a manifold the relation

$$(\nabla_X \phi)Y = g(X, Y)\xi - \eta(Y)X \tag{2.2}$$

holds, where ∇ denotes the Levi-Civita connection of g, then M is called a Sasakian manifold. The contact structure on M is said to be normal if the almost complex structure on $M \times R$ defined by $J(X, fd/dt) = (\phi X - f\xi, \eta(X)d/dt)$, where f is a real function on $M \times R$, is integrable. Also, a normal contact metric manifold is a Sasakian manifold. It is well known that every Sasakian manifold is K- contact but converse is not true in general. However, a 3-dimensional K-contact manifold is Sasakian[7].

Let R and r denote respectively the curvature tensor of type (1,3) and scalar curvature of M. It is known that in a contact metric manifold M the Riemannian metric may be so chosen that the following relations hold [1], [19].

a)
$$\phi \xi = 0$$
 b) $\eta(\xi) = 1$ c) $\eta.\phi = 0$ (2.3)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \tag{2.4}$$

for any vector field X,Y. If M is a Sasakian manifold, then besides (2.2), (2.3) (2.4) and (2.5) the following relations hold:

$$\nabla_X \xi = -\phi X \tag{2.5}$$

$$(\nabla_X \eta)Y = g(X, \phi Y) \tag{2.6}$$

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y \tag{2.7}$$

$$R(\xi, X)Y = (\nabla_X \phi)Y \tag{2.8}$$

$$S(X,\xi) = (n-1)\eta(X).$$
(2.9)

$$S(\phi X, \phi Y) = S(X, Y) - (n - 1)\eta(X)\eta(Y).$$
(2.10)

for any vector fields X, Y.

3. Existence of a quarter-symmetric metric connection

Let X and Y be any two vector fields on (M, g). Let us define a connection $\tilde{\nabla}_X Y$ by the following equation:

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) + g([X, Y], Z) - g([Y, Z], X) + g([Z, X], Y) + g(\eta(Y)\phi X - \eta(X)\phi Y, Z) + g(\eta(Y)\phi Z - \eta(Z)\phi Y, X) + g(\eta(X)\phi Z - \eta(Z)\phi X, Y),$$
(3.1)

which holds for all vector fields $X, Y, Z \in T(M)$.

It can easily be verified that the mapping

$$(X,Y) \longrightarrow \tilde{\nabla}_X Y$$

satisfies the following equalities:

$$\tilde{\nabla}_X(Y+Z) = \tilde{\nabla}_X Y + \tilde{\nabla}_X Z, \qquad (3.2)$$

$$\tilde{\nabla}_{X+Y}Z = \tilde{\nabla}_X Z + \tilde{\nabla}_Y Z, \qquad (3.3)$$

$$\tilde{\nabla}_{fX}Y = f\tilde{\nabla}_XY \tag{3.4}$$

and

$$\tilde{\nabla}_X(fY) = f\tilde{\nabla}_X Y + (Xf)Y \tag{3.5}$$

for all $X, Y, Z \in T(M)$ and $f \in F(M)$, the set of all differentiable mappings over M. From (3.2),(3.3),(3.4) and (3.5) we can conclude that $\tilde{\nabla}$ determine a linear connection on (M, g).

Now we have

$$2g(\tilde{\nabla}_X Y, Z) - 2g(\tilde{\nabla}_Y X, Z) = 2g([X, Y], Z) + 2g(\eta(Y)\phi X - \eta(X)\phi Y, Z).$$
(3.6)

Hence,

$$\tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X, Y] = \eta(Y)\phi X - \eta(X)\phi Y$$

or,

$$T(X,Y) = \eta(Y)\phi X - \eta(X)\phi Y.$$
(3.7)

Also we have

$$2g(\tilde{\nabla}_X Y, Z) + 2g(\tilde{\nabla}_X Z, Y) = 2Xg(Y, Z),$$

or,

$$(\nabla_X g)(Y, Z) = 0,$$

that is,

$$\tilde{\nabla}g = 0. \tag{3.8}$$

From (3.7) and (3.8) it follows that $\tilde{\nabla}$ determines a quarter-symmetric metric connection on (M, g). It can be easily verified that $\tilde{\nabla}$ determines a unique quarter-symmetric metric connection on (M, g). Thus we have

Theorem 3.1. Let M be a Riemannian manifold and η be a 1-form on it. Then there exist a unique linear connection $\tilde{\nabla}$ satisfying (3.7) and (3.8).

Remark: The above theorem prove the existence of a quarter-symmetric metric connection on (M, g).

4. Relation between the Riemannian connection and the quarter-symmetric metric connection

Let $\tilde{\nabla}$ be a linear connection and ∇ be a Riemannian connection of an almost contact metric manifold M such that

$$\tilde{\nabla}_X Y = \nabla_X Y + U(X, Y), \tag{4.1}$$

where U is a tensor of type (1,1). For $\tilde{\nabla}$ to be a quarter-symmetric metric connection in M, we have [6]

$$U(X,Y) = \frac{1}{2}[T(X,Y) + T'(X,Y) + T'(Y,X)], \qquad (4.2)$$

where

$$g(T'(X,Y),Z) = g(T(Z,X),Y).$$
(4.3)

From (1.1) and (4.3) we get

$$T'(X,Y) = g(\phi Y,X)\xi - \eta(X)\phi Y \tag{4.4}$$

and using (1.1) and (4.4) in (4.2) we obtain

$$U(X,Y) = -\eta(X)\phi Y.$$

Hence a quarter-symmetric metric connection $\tilde{\nabla}$ in a Sasakian manifold is given by

$$\tilde{\nabla}_X Y = \nabla_X Y - \eta(X)\phi Y. \tag{4.5}$$

Conversely, we show that a linear connection $\tilde{\nabla}$ on a Sasakian manifold defined by

$$\tilde{\nabla}_X Y = \nabla_X Y - \eta(X)\phi Y, \tag{4.6}$$

denotes a quarter-symmetric metric connection.

Using (4.6) the torsion tensor of the connection $\tilde{\nabla}$ is given by

$$aT(X,Y) = \tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X,Y]$$

= $\eta(Y)\phi X - \eta(X)\phi Y.$ (4.7)

The above equation shows that the connection $\tilde{\nabla}$ is a quarter-symmetric connection [6]. Also we have

$$a(\tilde{\nabla}_X g)(Y,Z) = Xg(Y,Z) - g(\tilde{\nabla}_X Y,Z) - g(Y,\tilde{\nabla}_X Z)$$

$$= \eta(X)[g(\phi Y,Z) + g(\phi Z,Y)]$$

$$= 0.$$
(4.8)

In virtue of (4.7) and (4.8) we conclude that $\tilde{\nabla}$ is a quarter-symmetric metric connection. Therefore equation (4.5) is the relation between the Riemannian connection and the quarter-symmetric metric connection on a Sasakian manifold.

5. Curvature tensor of a Sasakian manifold with respect to the quarter-symmetric metric connection

A relation between the curvature tensor of M with respect to the quartersymmetric metric connection $\tilde{\nabla}$ and the Riemannian connection ∇ is given by [4].

$$a\tilde{R}(X,Y)Z = R(X,Y)Z - 2d\eta(X,Y)\phi Z + \eta(X)g(Y,Z)\xi - \eta(Y)g(X,Z)\xi + \{\eta(Y)X - \eta(X)Y\}\eta(Z),$$
(5.1)

where R(X,Y)Z is the Riemannian curvature of the manifold. Also from (5.1) we obtain

$$\tilde{S}(Y,Z) = S(Y,Z) - 2d\eta(\phi Z,Y) + g(Y,Z) + (n-2)\eta(Y)\eta(Z),$$
(5.2)

where \tilde{S} and S are the Ricci tensors of the connections $\tilde{\nabla}$ and ∇ respectively. From (5.2) it is clear that in a Sasakian manifold the Ricci tensor with respect to the quarter-symmetric metric connection is symmetric.

Again contracting (5.2) we have

$$\tilde{r} = r + 2(n-1),$$

where \tilde{r} and r are the scalar curvature of the connections $\tilde{\nabla}$ and ∇ respectively.

6. Projective curvature tensor on a Sasakian manifold

The generalized projective curvature tensor of a Sasakian manifold with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ is defined by [8]

$$\tilde{P}(X,Y)Z = \tilde{R}(X,Y)Z + \frac{1}{n+1}[\tilde{S}(X,Y)Z - \tilde{S}(Y,X)Z]
+ \frac{1}{n^2 - 1}[\{n\tilde{S}(X,Z) + \tilde{S}(Z,X)\}Y
- \{n\tilde{S}(Y,Z) + \tilde{S}(Z,Y)\}X].$$
(6.1)

Since the Ricci tensor \tilde{S} of the manifold with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ is symmetric, the projective curvature tensor \tilde{P} reduces to

$$\tilde{P}(X,Y)Z = \tilde{R}(X,Y)Z - \frac{1}{n-1}[\tilde{S}(Y,Z)X - \tilde{S}(X,Z)Y].$$
(6.2)

Using (5.1) and (5.2), (6.2) reduces to

$$a\tilde{P}(X,Y)Z = P(X,Y)Z - 2d\eta(X,Y)\phi Z - \{\eta(Y)g(X,Z) - \eta(X)g(Y,Z)\}\xi + \frac{2}{n-1}[d\eta(\phi Z,Y)X - d\eta(\phi Z,X)Y] + \frac{1}{n-1}[\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y - g(Y,Z)X + g(X,Z)Y],$$
(6.3)

where P is the projective curvature tensor defined by (1.3).

 ξ -conformally flat K-contact manifolds have been studied by Zhen, Cabrerizo and Fernandez [20]. Analogous to the definition of ξ -conformally flat K-contact manifold we define the ξ -projectively flat Sasakian manifold.

Definition 6.1 A Sasakian manifold M is called ξ -projectively flat if the condition $P(X, Y)\xi = 0$ holds on M.

From (6.3) it is clear that $\tilde{P}(X,Y)\xi = P(X,Y)\xi$. So we have the following:

Theorem 6.1. For a Sasakian manifold the Riemannian connection ∇ is ξ -projectively flat if and only if the quarter-symmetric metric connection $\tilde{\nabla}$ is so.

Analogous to the definition of ϕ -conformally flat contact manifold [3], we define ϕ -projectively flat Sasakian manifold.

Definition 6.2 A Sasakian manifold satisfying the condition

$$\phi^2 P(\phi X, \phi Y) \phi Z = 0 \tag{6.4}$$

is called ϕ -projectively flat[11].

Let us assume that M is a ϕ -projectively flat Sasakian manifold with respect to the quarter-symmetric metric connection. It can be easily seen that $\phi^2 \tilde{P}(\phi X, \phi Y) \phi Z = 0$ holds if and only if

$$g(P(\phi X, \phi Y)\phi Z, \phi W) = 0, \qquad (6.5)$$

for $X, Y, Z, W \in T(M)$.

Using (6.2) and (6.5), ϕ -projectively flat means

$$g(\tilde{R}(\phi X, \phi Y)\phi Z, \phi W) = \frac{1}{n-1} \{ \tilde{S}(\phi Y, \phi Z)g(\phi X, \phi W) - \tilde{S}(\phi X, \phi Z)g(\phi Y, \phi W) \}.$$
(6.6)

Let $\{e_1, e_2, \dots, e_{n-1}, \xi\}$ be a local orthonormal basis of the vector fields in Mand using the fact that $\{\phi e_1, \phi e_2, \dots, \phi e_{n-1}, \xi\}$ is also a local orthonormal basis, putting $X = W = e_i$ in (6.6) and summing up with respect to $i = 1, 2, \dots, n-1$, we have

$$\sum_{i=1}^{n-1} g(\tilde{R}(\phi e_i, \phi Y)\phi Z, \phi e_i)$$

= $\frac{1}{n-1} \sum_{i=1}^{n-1} \{\tilde{S}(\phi Y, \phi Z)g(\phi e_i, \phi e_i) - \tilde{S}(\phi e_i, \phi Z)g(\phi Y, \phi e_i)\}.$ (6.7)

Using (2.1), (2.3), (2.6) and (5.2), it can be easily verified that

$$a\sum_{i=1}^{n-1} g(\tilde{R}(\phi e_i, \phi Y)\phi Z, \phi e_i) = \sum_{i=1}^{n-1} g(R(\phi e_i, \phi Y)\phi Z, \phi e_i) - 2g(\phi Y, \phi Z)$$

= $S(Y, Z) - R(\xi, Y, Z, \xi)$
- $(n-1)\eta(Y)\eta(Z) - 2g(\phi Y, \phi Z)$
= $\tilde{S}(Y, Z) - 6g(Y, Z) - 2(n-4)\eta(Y)\eta(Z), (6.8)$

$$\sum_{i=1}^{n} g(\phi e_i, \phi e_i) = n - 1, \tag{6.9}$$

$$\sum_{i=1}^{n-1} \tilde{S}(\phi e_i, \phi Z) g(\phi Y, \phi e_i) = \tilde{S}(\phi Y, \phi Z).$$
(6.10)

So using (6.8), (6.9) and (6.10) the equation (6.7) becomes

$$\tilde{S}(Y,Z) - 6g(Y,Z) - 2(n-4)\eta(Y)\eta(Z) = \frac{n-2}{n-1}\tilde{S}(\phi Y,\phi Z).$$
(6.11)

Using (2.9), and (5.2), (6.11) reduces to

$$\tilde{S}(Y,Z) = 6(n-1)g(Y,Z) - 4(n-1)\eta(Y)\eta(Z).$$
(6.12)

Hence we can state the following:

Theorem 6.2. If a Sasakian manifold is ϕ -projectively flat with respect to the quarter-symmetric metric connection then the manifold is an η -Einstein manifold with respect to the quarter-symmetric metric connection.

7. Locally ϕ -symmetric Sasakian manifold with respect to the quarter-symmetric metric connection

Definition 7.1 A Sasakian manifold is said to be locally ϕ -symmetric if

$$\phi^2(\nabla_W R)(X, Y)Z = 0, \tag{7.1}$$

for all vector fields W, X, Y, Z orthogonal to ξ . This notion was introduced by Takahashi[16].

Analogous to the definition of ϕ -symmetric Sasakian manifold with respect to the Riemannian connection, we define locally ϕ -symmetric Sasakian manifold with respect to the quarter-symmetric metric connection by

$$\phi^2(\tilde{\nabla}_W \tilde{R})(X, Y)Z = 0, \tag{7.2}$$

for all vector fields W, X, Y, Z orthogonal to ξ .

Using (4.5) we can write

$$(\tilde{\nabla}_W \tilde{R})(X, Y)Z = (\nabla_W \tilde{R})(X, Y)Z - \eta(W)\phi\tilde{R}(X, Y)Z.$$
(7.3)

Now differentiating (5.1) with respect to W, we obtain

$$a(\nabla_{W}\tilde{R})(X,Y)Z = (\nabla_{W}R)(X,Y)Z - 2d\eta(X,Y)(\nabla_{W}\phi)Z - \{(\nabla_{W}\eta)(Y)g(X,Z) - (\nabla_{W}\eta)(X)g(Y,Z)\}\xi - \{\eta(Y)g(X,Z) - \eta(X)g(Y,Z)\}(\nabla_{W}\xi) + (\nabla_{W}\eta)(Y)\eta(Z)X + (\nabla_{W}\eta)(Z)\eta(Y)X - (\nabla_{W}\eta)(X)\eta(Z)Y - (\nabla_{W}\eta)(Z)\eta(X)Y.$$

$$(7.4)$$

Using (2.2), (2.4) and (2.5) we have

$$a(\nabla_W R)(X,Y)Z = (\nabla_W R)(X,Y)Z - 2d\eta(X,Y)\{g(Z,W)\xi$$

$$- 2g(\phi X,Y)\eta(Z)W\} + g(\phi W,Y)g(X,Z)\xi$$

$$- g(\phi W,X)g(Y,Z)\xi + \eta(Y)g(X,Z)\phi W$$

$$- \eta(X)g(Y,Z)\phi W - g(\phi W,Y)\eta(Z)X$$

$$- g(\phi W,Z)\eta(Y)X + g(\phi W,X)\eta(Z)Y$$

$$+ g(\phi W,Z)\eta(X)Y.$$
(7.5)

Using (7.5) and (2.3) in (7.3) we get

$$a\phi^{2}(\tilde{\nabla}_{W}\tilde{R})(X,Y)Z = \phi^{2}(\nabla_{W}R)(X,Y)Z + -2d\eta(X,Y)\{\eta(Z)W$$

$$- \eta(Z)\eta(W)\xi\} - \eta(Y)g(X,Z)\phi W$$

$$+ \eta(X)g(Y,Z)\phi W + g(\phi W,Y)\eta(Z)X$$

$$- g(\phi W,Y)\eta(Z)\eta(X)\xi + g(\phi W,Z)\eta(Y)X$$

$$- g(\phi W,X)\eta(Z)Y + g(\phi W,X)\eta(Z)\eta(Y)\xi$$

$$- g(\phi W,Z)\eta(X)Y - \eta(W)\phi^{2}(\phi\tilde{R})(X,Y)Z. \quad (7.6)$$

If we take W, X, Y, Z orthogonal to ξ , (7.6) reduces to

$$\phi^2(\tilde{\nabla}_W \tilde{R})(X, Y)Z = \phi^2(\nabla_W R)(X, Y)Z.$$

Hence we can state the following:

Theorem 7.1. For a Sasakian manifold the Riemannian connection ∇ is locally ϕ -symmetric if and only if the quarter-symmetric metric connection $\tilde{\nabla}$ is so.

Acknowledgment. The authors are thankful to the referee for his comments in the improvement of this paper.

References

- Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Note in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976.
- [2] Biswas, S. C. and De, U. C., Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series, 46(1997), 49-56.
- [3] Cabrerizo, J. L., Fernandez, L. M., Fernandez, M. and Zhen, G., The structure of a class of K-contact manifolds, Acta math. Hungar. 82(4)(1999), 331-340.
- [4] De, U.C. and Sengupta, J., Quarter-symmetric metric connection on a Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series A1, 49 (2000), 7-13.
- [5] Friedmann, A. and Schouten, J. A., Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Zeitschr., 21(1924), 211-223.
- [6] Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor N.S., 29(1975), 249-254.
- [7] Jun, J. B. and Kim, U. K., On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34(1994),293-301.
- [8] Mishra, R. S., Structures on differentiable manifold and their applications, Chandrama Prakasana, Allahabad, India, 1984.
- [9] Mishra, R. S. and Pandey, S. N., On quarter-symmetric metric F-connections, Tensor, N.S., 34(1980), 1-7.
- [10] Mukhopadhyay, S., Roy, A. K. and Barua, B., Some properties of a quarter-symmetric metric connection on a Riemannian manifold, Soochow J. of Math., 17(2), 1991,205-211.
- [11] Ozgur, C., On $\phi-{\rm conformally}$ flat Lorenzian para-Sasakian manifolds, Radovi Mathematiki, 12(2003), 99-106.
- [12] Rastogi, S. C., On quarter-symmetric metric connection, C.R. Acad. Sci. Bulgar, 31(1978), 811-814.
- [13] Rastogi, S. C., On quarter-symmetric metric connection, Tensor, 44, 2(1987), 133-141.
- [14] Sular, S., Ozgur, C. and De, U. C., Quarter-symmetric metric connection in a Kenmotsu manifold, SUT Journal of mathematics Vol. 44, No. 2(2008), 297-306.
- [15] Sasaki, S., Lecture notes on almost contact manifolds, Part-I, Tohoku Univ., 1965.
- [16] Takahashi, T., Sasakian ϕ -symmetric spaces, Tohoku Math J., 29(1977), 91-113.
- [17] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of Math. Studies 32 (Princeton University Press)1953.
- [18] Yano, K. and Imai, T., Quarter-symmetric metric connections and their curvature tensors, Tensor, N.S. 38(1982), 13-18.
- [19] Yano, K. and Kon, M., Structure on manifolds, World scientific, 1984.

[20] Zhen, G., Cabrerizo, J. L., Fernandez, L. M. and Fernandez, M., On ξ -conformally flat contact metric manifolds, Indian J. Pure Appl. Math. 28(1997) 725-734.

Abul Kalam Mondal, Dum Dum Subhasnagar High School(H.S.), 43, Sarat Bose Road, Kolkata-700065, West Bengal, India. *E-mail address:* kalam_ju@yahoo.co.in

UDAY CHAND DE, DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA, 35, BALLYGUNGE CIRCULAR ROAD, KOLKATA-700019, WEST BENGAL, INDIA. *E-mail address*: uc_de@yahoo.com