# COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH HANKEL DETERMINANT 

## (DEDICATED IN OCCASION OF THE 65-YEARS OF PROFESSOR R.K. RAINA)

GANGADHARAN. MURUGUSUNDARAMOORTHY AND NANJUNDAN. MAGESH


#### Abstract

In this paper we obtain the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the class $f \in R(\alpha)$. Also we give sharp upper bound for $\left|a_{2} a_{4}-a_{3}^{2}\right|$. Our result extends corresponding previously known result.


## 1. Introduction and Preliminaries

Let $A$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the unit disc $U=\{z:|z|<1\}$. Let $P$ be the family of all functions $p$ analytic in $U$ for which $\operatorname{Re}\{p(z)\}>0$ and

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in U . \tag{1.2}
\end{equation*}
$$

In 1976, Noonan and Thomas [10] defined the $q$ th Hankel determinant of $f$ for $q \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \ldots & a_{n+2 q-2}
\end{array}\right| .
$$

Further, Fekete and Szegö 11 considered the Hankel determinant of $f \in A$ for $q=2$ and $n=1, H_{2}(1)=\left|\begin{array}{ll}a_{1} & a_{2} \\ a_{2} & a_{3}\end{array}\right|$. They made an early study for the estimates

[^0]of $\left|a_{3}-\mu a_{2}^{2}\right|$ when $a_{1}=1$ with $\mu$ real. The well known result due to them states that if $f \in A$, then
\[

\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{$$
\begin{array}{lll}
4 \mu-3 & \text { if } \quad \mu \geq 1 \\
1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right) & \text { if } \quad 0 \leq \mu \leq 1 \\
3-4 \mu & \text { if } \quad \mu \leq 0
\end{array}
$$\right.
\]

Furthermore, Hummel [3, 4] obtained sharp estimates for $\left|a_{3}-\mu a_{2}^{2}\right|$ when $f$ is convex functions and also Keogh and Merkes [6] obtained sharp estimates for $\left|a_{3}-\mu a_{2}^{2}\right|$ when $f$ is close-to-convex, starlike and convex in $U$.

Here we consider the Hankel determinant of $f \in A$ for $q=2$ and $n=2$,

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|
$$

In the present investigation we consider the following subclass $R(\alpha)$ of $A$ :

$$
\begin{equation*}
R(\alpha)=\left\{f(z) \in A: \operatorname{Re}\left\{(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)\right\}>0, \alpha>0, \quad z \in U\right\} \tag{1.3}
\end{equation*}
$$

and obtain sharp upper bound for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ of $f \in R(\alpha)$.
Remark. The subclass $R(1)=R$ was studied systematically by MacGregor [9] who indeed referred to numerous earlier investigations involving functions whose derivative has a positive real part.

To prove our main result, we need the following lemmas.
Lemma 1.1. 11] If $p \in P$, then $\left|c_{k}\right| \leq 2$ for each $k$.
Lemma 1.2. [2] The power series for $p(z)$ given in (1.2) converges in $U$ to $a$ function in $P$ if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n}  \tag{1.4}\\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, \quad n=1,2,3, \ldots
$$

and $c_{-k}=\overline{c_{k}}$, are all nonnegative. They are strictly positive except for

$$
p(z)=\sum_{k=1}^{m} \rho_{k} p_{0}\left(e^{i t_{k} z}\right), \rho_{k}>0, t_{k} \text { real }
$$

and $t_{k} \neq t_{j}$ for $k \neq j$ in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geq m$.

## 2. Main Result

Using the techniques of Libera and Zlotkiewicz [7, 8, we now prove the following theorem.

Theorem 2.1. Let $\alpha>0$. If $f \in R(\alpha)$, then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{(1+2 \alpha)^{2}} \tag{2.1}
\end{equation*}
$$

The result is sharp.

Proof. Since $f \in R(\alpha)$, it follows from (1.3) that

$$
\begin{equation*}
(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)=p(z) \tag{2.2}
\end{equation*}
$$

for some $p \in P$. Equating coefficients in (2.2), we have,

$$
\begin{equation*}
(1+\alpha) a_{2}=c_{1}, \quad(1+2 \alpha) a_{3}=c_{2}, \quad(1+3 \alpha) a_{4}=c_{3} \tag{2.3}
\end{equation*}
$$

From (2.3), it can be established that

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left|\frac{c_{1} c_{3}}{(1+\alpha)(1+3 \alpha)}-\frac{c_{2}^{2}}{(1+2 \alpha)^{2}}\right|
$$

We make use of Lemma 1.2 to obtain the proper bound on $\left|\frac{c_{1} c_{3}}{(1+\alpha)(1+3 \alpha)}-\frac{c_{2}^{2}}{(1+2 \alpha)^{2}}\right|$. We may assume without restriction that $c_{1}>0$. We begin by rewriting (1.4) for the cases $n=2$ and $n=3$,

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2}  \tag{2.4}\\
c_{1} & 2 & c_{1} \\
\overline{c_{2}} & c_{1} & 2
\end{array}\right|=8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4 c_{1}^{2} \geq 0
$$

which is equivalent to

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{2.5}
\end{equation*}
$$

for some $x,|x| \leq 1$. Then $D_{3} \geq 0$ is equivalent to

$$
\begin{equation*}
\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2}\right| \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|2 c_{2}-c_{1}^{2}\right|^{2} \tag{2.6}
\end{equation*}
$$

and from 2.6 with 2.5 , we have,

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{2.7}
\end{equation*}
$$

for some value of $z,|z| \leq 1$.
Suppose $c_{1}=c$ and $c \in[0,2]$. Using 2.5 along with 2.7 we obtain

$$
\begin{align*}
& \left|\frac{c_{1} c_{3}}{(1+\alpha)(1+3 \alpha)}-\frac{c_{2}^{2}}{(1+2 \alpha)^{2}}\right| \\
& =\left|\frac{\alpha^{2} c^{4}+2 \alpha^{2} c^{2}\left(4-c^{2}\right) x-\left(12 \alpha^{2}+16 \alpha+\alpha^{2} c^{2}+4\right)\left(4-c^{2}\right) x^{2}}{4(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}+\frac{c\left(4-c^{2}\right)\left(1-|x|^{2}\right) z}{2(1+\alpha)(1+3 \alpha)}\right| \\
& \leq \frac{\alpha^{2} c^{4}}{4(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}+\frac{c\left(4-c^{2}\right)}{2(1+\alpha)(1+3 \alpha)}+\frac{\alpha^{2} c^{2}\left(4-c^{2}\right) \rho}{2(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)} \\
& \quad+\frac{(c-2)\left(4-c^{2}\right)\left[\alpha^{2}(c-6)-8 \alpha-2\right] \rho^{2}}{4(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)} \\
& \equiv \tag{2.8}
\end{align*}
$$

with $\rho=|x| \leq 1$ and $\alpha>0$. We assume that the upper bound for 2.8 is attained at an interior point of the set $\{(\rho, c) \mid \rho \in[0,1], c \in[0,2]\}$, then

$$
\begin{equation*}
F^{\prime}(\rho)=\frac{\alpha^{2} c^{2}\left(4-c^{2}\right)}{2(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}+\frac{(c-2)\left(4-c^{2}\right)\left[\alpha^{2}(c-6)-8 \alpha-2\right] \rho}{2(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)} \tag{2.9}
\end{equation*}
$$

We note that $F^{\prime}(\rho)>0$ and consequently F is increasing and $\max F(\rho)=F(1)$, which contradicts our assumption of having the maximum value at the interior of
$\rho \in[0,1]$. Now let

$$
\begin{aligned}
G(c)=F(1)= & \frac{\alpha^{2} c^{4}}{4(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}+\frac{c\left(4-c^{2}\right)}{2(1+\alpha)(1+3 \alpha)}+\frac{\alpha^{2} c^{2}\left(4-c^{2}\right)}{2(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)} \\
& +\frac{(c-2)\left(4-c^{2}\right)\left[\alpha^{2}(c-6)-8 \alpha-2\right]}{4(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}
\end{aligned}
$$

then

$$
\begin{equation*}
G^{\prime}(c)=\frac{-2 c\left[\alpha^{2} c^{2}+4 \alpha+1\right]}{(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}=0 \tag{2.10}
\end{equation*}
$$

therefore 2.10 implies $c=0$, which is a contradiction. We note that

$$
G^{\prime \prime}(c)=\frac{-6 \alpha^{2} c^{2}-8 \alpha-2}{(1+\alpha)(1+2 \alpha)^{2}(1+3 \alpha)}<0
$$

Thus any maximum points of $G$ must be on the boundary of $c \in[0,2]$. However, $G(c) \geq G(2)$ and thus $G$ has maximum value at $c=0$. The upper bound for 2.8 corresponds to $\rho=1$ and $c=0$, in which case

$$
\left|\frac{c_{1} c_{3}}{(1+\alpha)(1+3 \alpha)}-\frac{c_{2}^{2}}{(1+2 \alpha)^{2}}\right| \leq \frac{4}{(1+2 \alpha)^{2}}, \quad \alpha>0
$$

This completes the proof of the Theorem 2.1.
Remark. If $\alpha=1$, then we get the corresponding functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the class $f \in R(1)=R$, studied in [5] as in the following corollary.
Corollary 2.2. If $f \in R$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}
$$

The result is sharp.
Acknowledgments. The authors would like to thank the referee for his valuable comments and suggestions.

## References

[1] M.Fekete and G.Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London. Math. Soc., 8(1933), 85-89.
[2] U.Grenander and G.Szegö, Toeplitz forms and their applications, Univ. of California Press, Berkeley and Los Angeles, 1958.
[3] J.Hummel, The coefficient regions of starlike functions, Pacific. J. Math., 7 (1957), 13811389.
[4] J.Hummel, Extremal problems in the class of starlike functions, Proc. Amer. Math. Soc., 11 (1960), 741-749.
[5] A.Janteng, S.A.Halim and M.Darus, Coefficient inequality for a function whose derivative has a positive real part, J.Ineq. Pure and Appl. Math., Vol.7, 2 (50) (2006), 1-5.
[6] F.R.Keogh and E.P.Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[7] R.J.Libera and E.J.Zlotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2) (1982), 225-230.
[8] R.J.Libera and E.J.Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2) (1983), 251-289.
[9] T.H.MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
[10] J.W.Noonan and D.K.Thomas, On the second Hankel determinant of areally mean $p$-valent functions, Trans. Amer. Math. Soc., 223 (2) (1976), 337-346.
[11] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

Gangadharan. Murugusundaramoorthy
School of Advanced Sciences, VIT University, Vellore - 632014, India.
E-mail address: gmsmoorthy@yahoo.com
Nanjundan. Magesh
Department of Mthematics, Government of Arts College(Men), Krishnagiri - 635001, India.
E-mail address: nmagi_2000@yahoo.co.in


[^0]:    2000 Mathematics Subject Classification. 30C45.
    Key words and phrases. Hankel determinant, Fekete-Szegö functional, positive real functions. © 2009 Universiteti i Prishtinës, Prishtinë, Kosovë.
    Submitted October, 2009. Published November, 2009.

