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ASYMPTOTIC BEHAVIOR AND OSCILLATION OF SOLUTIONS

OF THIRD ORDER NEUTRAL DYNAMIC EQUATIONS WITH

DISTRIBUTED DEVIATING ARGUMENTS

ORHAN ÖZDEMIR∗ AND ERCAN TUNÇ

Abstract. The authors obtain some new results on the asymptotic proper-

ties of solutions of a third order nonlinear neutral dynamic equation with dis-
tributed deviating arguments on an arbitrary time scale T. Several examples

are provided to illustrate the results.

1. Introduction

This article deals with the oscillation and asymptotic behavior of solutions of
the third order nonlinear neutral dynamic equation with distributed deviating ar-
guments

[
r2(t)

((
r1(t)

(
z∆(t)

)α1
)∆
)α2

]∆

+

∫ b

a

q(t, ξ)f (x (φ(t, ξ))) ∆ξ = 0, t ∈ [t0,∞)T,

(1.1)
where T is a time scale unbounded above with t0 ∈ T, z(t) = x(t) + p(t)x(g(t)),
αi are quotients of positive odd integers for i = 1, 2, and a, b ∈ R with 0 < a < b.
Standard notation and terminology for equations on time scales such as that found
in [9, 10] will be used here, and we assume that the following conditions hold
without further mention:

(C1) ri ∈ Crd ([t0,∞)T,R+) and∫ ∞
t0

1

(ri(t))1/αi
∆t =∞, i = 1, 2;

(C2) p ∈ Crd ([t0,∞)T,R) with p(t) ≥ 1, and p(t) 6≡ 1 eventually;
(C3) g ∈ Crd ([t0,∞)T,T) is strictly increasing, g(t) < t, and limt→∞ g(t) =∞;
(C4) q(t, ξ) ∈ Crd ([t0,∞)T × [a, b]T, [0,∞)), φ(t, ξ) ∈ Crd ([t0,∞)T × [a, b]T,T)

is non-increasing with respect to ξ, and

lim
t→∞

min
ξ∈[a,b]

φ(t, ξ) =∞;
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(C5) f ∈ C (R,R) satisfies uf(u) > 0 for u 6= 0 and there exist constants κ > 0
and β = α1α2 such that f(u)/uβ ≥ κ for u 6= 0.

The cases

g(σ(t)) ≥ φ(t, ξ), ξ ∈ [a, b], (1.2)

and

g(σ(t)) ≤ φ(t, ξ), ξ ∈ [a, b], (1.3)

are both considered, respectively.
For notational purposes, we let

z[1](t) := r1(t)
[
z∆(t)

]α1
and z[2](t) := r2(t)

[(
z[1](t)

)∆
]α2

.

By a solution of (1.1) we mean a nontrivial real valued function x ∈ C1
rd ([tx,∞)T ,R),

tx ∈ [t0,∞)T, which has the properties z ∈ C1
rd ([tx,∞)T ,R), z[1] ∈ C1

rd ([tx,∞)T ,R),

z[2] ∈ C1
rd ([tx,∞)T ,R), and satisfies (1.1) on [tx,∞)T. Our attention is restricted to

those solutions of (1.1) which exist on some half line [tx,∞)T and satisfy sup{|x(t)| :
t ∈ [T1,∞)T} > 0 for any T1 ∈ [tx,∞)T. Moreover, we tacitly assume that (1.1)
possesses such solutions. Such a solution is said to be oscillatory if it is neither
eventually positive nor eventually negative; otherwise, it is called nonoscillatory.

The oscillation and asymptotic behavior of solutions for different classes of neu-
tral differential equations and neutral dynamic equations on time scales is an active
and important area of research, and we refer the reader to the papers ([1], [7], [8],
[11]-[14], [16]-[19], [22]-[26], [29]-[39]) as examples of recent results on this topic.
However, oscillation and asymptotic behavior results for third order neutral dy-
namic equations with distributed deviating arguments are not very prevalent in the
literature, and most of the literature for dynamic equations of type (1.1) is devoted

to the cases where 0 ≤ p(t) ≤ p0 < 1 and/or 0 ≤ p(t) ≡
∫ b
a
p (t, η) ∆η ≤ p0 < 1; see,

e.g., ([12], [17], [22]) and the references cited therein.
To the best of our knowledge, there are few such results for third order neutral

dynamic equations with distributed deviating arguments of type (1.1) in the case
where p(t) ≥ 1, see, e.g, ([25], [33]), where the results obtained are for the special
case T = R. Motivated by the papers mentioned above and (see also, [2]-[6],
[15], [21], [27]), we shall establish some new sufficient conditions which guarantee
that any solution x(t) of (1.1) either oscillates or converges to zero as t→∞ on an
arbitrary time scale T in the case when p(t) ≥ 1, and moreover, the results obtained
here can easily be extended to more general third order neutral dynamic equations
with distributed deviating arguments. It is therefore hoped that the present paper
will contribute significantly to the growing body of research on third order neutral
dynamic equations with distributed deviating arguments.

2. Some Preliminary Lemmas

We begin with the some preliminary lemmas that are essential in the proofs of
our theorems. It will be convenient to employ the following notations:

φ1 (t) := φ (t, a) , φ2 (t) := φ (t, b) , d+ (t) := max (0, d (t)) ,

λ =
α2 + 1

α2
, R1 (t, t1) :=

∫ t

t1

∆s

r
1/α2

2 (s)
for t ≥ t1,
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R2 (t, t2) :=

∫ t

t2

(
R1 (s, t1)

r1 (s)

)1/α1

∆s for t ≥ t2 ≥ t1.

Throughout this paper, we assume that

ϕ1 (t) :=
1

p (g−1 (t))

(
1− 1

p (g−1 (g−1 (t)))

)
> 0 (2.1)

and

ϕ2 (t) :=
1

p (g−1 (t))

(
1− 1

p (g−1 (g−1 (t)))

R2

(
g−1

(
g−1 (t)

)
, t2
)

R2 (g−1 (t) , t2)

)
> 0 (2.2)

for all sufficiently large t, where g−1 denotes the inverse function of g, and we let

q1 (t) :=

∫ b

a

q (t, ξ) (ϕ1 (φ (t, ξ)))
β

∆ξ, q2 (t) :=

∫ b

a

q (t, ξ) (ϕ2 (φ (t, ξ)))
β

∆ξ,

ψ (t) =

{
δ (t) , if 0 < α2 ≤ 1
δα2 (t) , if α2 > 1

, and δ (t) =
R1 (t, t1)

R1 (σ (t) , t1)
.

Lemma 2.1. Let x(t) be an eventually positive solution of (1.1). Then z(t) only
satisfies the following two cases, for t sufficiently large,

(I) z(t) > 0, z∆(t) > 0,
(
z[1](t)

)∆
> 0 and

(
z[2](t)

)∆
< 0,

(II) z(t) > 0, z∆(t) < 0,
(
z[1](t)

)∆
> 0 and

(
z[2](t)

)∆
< 0.

The proof of the above lemma is standard; we omit its proof.

Lemma 2.2. Assume (2.1) and let x (t) be an eventually positive solution of (1.1)
with z (t) satisfying case (II) of Lemma 2.1. If∫ ∞

t0

(
1

r1 (v)

∫ ∞
v

(
1

r2 (u)

∫ ∞
u

q1 (s) ∆s

)1/α2

∆u

)1/α1

∆v =∞, (2.3)

then the solution x (t) converges to zero as t→∞.

Proof. Let x (t) be an eventually positive solution of (1.1). Then, there exists a
t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0 and x (φ (t, ξ)) > 0 for t ≥ t1 and
ξ ∈ [a, b]. From the definition of z(t), we have, (see also (8.6) in [1]),

x (t) =
1

p (g−1 (t))

(
z
(
g−1 (t)

)
− x

(
g−1 (t)

))
=

z
(
g−1 (t)

)
p (g−1 (t))

−
z
(
g−1

(
g−1 (t)

))
− x

(
g−1

(
g−1 (t)

))
p (g−1 (t)) p (g−1 (g−1 (t)))

≥
z
(
g−1 (t)

)
p (g−1 (t))

−
z
(
g−1

(
g−1 (t)

))
p (g−1 (t)) p (g−1 (g−1 (t)))

. (2.4)

Since g(t) < t and z(t) is decreasing, we have

z
(
g−1 (t)

)
≥ z

(
g−1

(
g−1 (t)

))
.

Substituting this into (2.4) gives

x (t) ≥ ϕ1 (t) z
(
g−1 (t)

)
for t ≥ t1. (2.5)

From (C4), we can choose t2 ≥ t1 such that φ (t, ξ) ≥ t1 for all t ≥ t2 and ξ ∈ [a, b].
Hence, from (2.5) we obtain

x (φ (t, ξ)) ≥ ϕ1 (φ (t, ξ)) z
(
g−1 (φ (t, ξ))

)
for t ≥ t2. (2.6)
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Now, from (2.6), conditions (C4)-(C5) and the fact that z(t) is decreasing, equation
(1.1) can be written as(

z[2] (t)
)∆

+ κq1 (t) zβ
(
g−1 (φ1 (t))

)
≤ 0 for t ≥ t2. (2.7)

Since z (t) > 0 and z∆ (t) < 0, there exists a constant L such that

lim
t→∞

z (t) = L <∞,

where L ≥ 0. If L > 0 then there exists t3 ≥ t2 such that g−1 (φ1 (t)) > t2 and

z(t) ≥ L for t ≥ t3.

Integrating (2.7) two times from t to ∞ gives,

−z∆ (t) ≥ γ

(
1

r1 (t)

∫ ∞
t

(
1

r2 (u)

∫ ∞
u

q1 (s) ∆s

)1/α2

∆u

)1/α1

where γ > 0 is a constant. An integration of the last inequality from t3 to∞ yields

z (t3) ≥ γ
∫ ∞
t3

(
1

r1 (v)

∫ ∞
v

(
1

r2 (u)

∫ ∞
u

q1 (s) ∆s

)1/α2

∆u

)1/α1

∆v,

which contradicts (2.3) and so we have L = 0. Thus, limt→∞ z(t) = 0. From
the fact that 0 < x (t) ≤ z (t) on [t1,∞)T, we conclude that limt→∞ x(t) = 0 and
completes the proof. �

Lemma 2.3. Assume (2.2) and let x(t) be an eventually positive solution of (1.1)
with z(t) satisfying case (I) of Lemma 2.1. Then z (t) satisfies the following in-
equality (

z[2] (t)
)∆

+ κq2 (t) zβ
(
g−1 (φ2 (t))

)
≤ 0, (2.8)

for sufficiently large t.

Proof. Let x (t) be an eventually positive solution of (1.1) such that x (t) > 0,
x (g (t)) > 0, x (φ (t, ξ)) > 0 and z (t) satisfies case (I) of Lemma 2.1 for t ≥ t1 ∈
[t0,∞)T and ξ ∈ [a, b]. Proceeding as in the proof of Lemma 2.2, we again arrive
at (2.4). Since

z[1] (t) = z[1] (t1) +

∫ t

t1

(
z[2] (s)

)1/α2

r
1/α2

2 (s)
∆s (2.9)

and z[2] (t) is decreasing, we see that

z[1] (t) ≥
(
z[2] (t)

)1/α2
∫ t

t1

1

r
1/α2

2 (s)
∆s (2.10)

or

z[1] (t) ≥
(
z[2] (t)

)1/α2

R1 (t, t1) (2.11)

for t ≥ t1. Thus, (
z[1] (t)

R1 (t, t1)

)∆

≤ 0. (2.12)
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Hence there exists a t2 ∈ [t1,∞)T such that

z (t) = z (t2) +

∫ t

t2

(
z[1] (s)

R1 (s, t1)

)1/α1 (
R1 (s, t1)

r1 (s)

)1/α1

∆s

≥ R2 (t, t2)

R
1/α1

1 (t, t1)

(
z[1] (t)

)1/α1

, (2.13)

which implies that (
z (t)

R2 (t, t2)

)∆

≤ 0 for t ≥ t2. (2.14)

From (2.14) and the fact that g−1 (t) < g−1
(
g−1 (t)

)
, we obtain

R2

(
g−1

(
g−1 (t)

)
, t2
)

R2 (g−1 (t) , t2)
z
(
g−1 (t)

)
≥ z

(
g−1

(
g−1 (t)

))
. (2.15)

Using (2.15) in (2.4) gives

x (t) ≥ ϕ2 (t) z
(
g−1 (t)

)
for t ≥ t2. (2.16)

Since lim
t→∞

min
ξ∈[a,b]

φ (t, ξ) = ∞, we can choose a t3 ≥ t2 such that φ (t, ξ) ≥ t2 for all

t ≥ t3, and hence, from (2.16) we have

x (φ (t, ξ)) ≥ ϕ2 (φ (t, ξ)) z
(
g−1 (φ (t, ξ))

)
for t ≥ t3. (2.17)

Substituting (2.17) into (1.1) gives (2.8) and completes the proof. �

Lemma 2.4. [20] If D and E are nonnegative and λ > 1, then

λDEλ−1 −Dλ ≤ (λ− 1)Eλ,

where equality holds if and only if D = E.

Lemma 2.5. [9, p. 259, Theorem 6.13] Let a, b ∈ T and a < b. Then for rd-
continuous functions f, g : [a, b]T → R, we have∫ b

a

|f (t) g (t)|∆t ≤

(∫ b

a

|f (t)|p ∆t

)1/p(∫ b

a

|g (t)|q ∆t

)1/q

,

where p > 1 and 1/p+ 1/q = 1.

3. Main results

Theorem 3.1. Assume (1.2) and (2.1)-(2.3). If there exists a positive function
η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
χ1 (s)−

η∆
+ (s)

Rα2
1 (s, t1)

)
∆s =∞ (3.1)

for all sufficiently large t1 ∈ [t0,∞)T, where

χ1 (t) = κη (σ (t)) q2 (t)
Rβ2
(
g−1 (φ2 (t)) , t2

)
Rα2

1 (σ (t) , t1)
,

and T > t2 ≥ t1, then any solution of equation (1.1) is either oscillatory or tends
to zero as t→∞.
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Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, from Lemma 2.2, we have
limt→∞ x(t) = 0.

Next, assume that case (I) holds. Proceeding as in the proof of Lemma 2.3, we
again arrive at (2.8)-(2.14). Define Riccati-type substitution by

ω (t) = η (t)
z[2] (t)(
z[1] (t)

)α2
for t ≥ t1. (3.2)

Clearly, ω(t) > 0, and from (2.8) and (3.2) we obtain

ω∆ (t) ≤ η∆
+ (t)

z[2] (t)(
z[1] (t)

)α2
− κη (σ (t)) q2 (t)

zβ
(
g−1 (φ2 (t))

)
zβ (σ (t))

zβ (σ (t))(
z[1] (σ (t))

)α2

−η (σ (t))

((
z[1] (t)

)α2
)∆

z[2] (t)(
z[1] (t)

)α2
(
z[1] (σ (t))

)α2
. (3.3)

From the conditions (C3), (C4) and (1.2), we have

g−1 (φ2 (t)) ≤ σ (t) ,

which together with (2.14) gives

z
(
g−1 (φ2 (t))

)
z (σ (t))

≥
R2

(
g−1 (φ2 (t)) , t2

)
R2 (σ (t) , t2)

. (3.4)

By the virtue of (2.13) and the fact that t ≤ σ (t), we have

(z (σ (t)))
β(

z[1] (σ (t))
)α2
≥ Rβ2 (σ (t) , t2)

Rα2
1 (σ (t) , t1)

. (3.5)

Using (3.4) and (3.5) in (3.3), we obtain

ω∆ (t) ≤ η∆
+ (t)

z[2] (t)(
z[1] (t)

)α2
− χ1 (t)− η (σ (t))

((
z[1] (t)

)α2
)∆

z[2] (t)(
z[1] (t)

)α2
(
z[1] (σ (t))

)α2
.(3.6)

From ([9], Theorem 1.90), we have((
z[1] (t)

)α2
)∆

≥

{
α2

(
z[1] (σ (t))

)α2−1 (
z[1] (t)

)∆
, if 0 < α2 ≤ 1,

α2

(
z[1] (t)

)α2−1 (
z[1] (t)

)∆
, if α2 > 1.

(3.7)

If 0 < α2 ≤ 1, from (3.6) and (3.7) we arrive at

ω∆ (t) ≤ η∆
+ (t)

z[2] (t)(
z[1] (t)

)α2
− χ1 (t)− α2η (σ (t))

r
1/α2

2 (t)

(
z[2] (t)

)λ(
z[1] (t)

)α2+1

z[1] (t)

z[1] (σ (t))
.(3.8)

If α2 > 1, from (3.6) and (3.7) we arrive at

ω∆ (t) ≤ η∆
+ (t)

z[2] (t)(
z[1] (t)

)α2
− χ1 (t)− α2η (σ (t))

r
1/α2

2 (t)

(
z[2] (t)

)λ(
z[1] (t)

)α2+1

(
z[1] (t)

)α2(
z[1] (σ (t))

)α2
.

(3.9)
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By the fact that t ≤ σ (t), it follows from (2.12) that

z[1] (t)

z[1] (σ (t))
≥ R1 (t, t1)

R1 (σ (t) , t1)
. (3.10)

In view of (3.10), combining (3.8) and (3.9) yields, for α2 > 0 and t ≥ t3,

ω∆ (t) ≤ η∆
+ (t)

z[2] (t)(
z[1] (t)

)α2
− χ1 (t)− α2η (σ (t))ψ (t)

r
1/α2

2 (t)

(
z[2] (t)

)λ(
z[1] (t)

)α2+1 .(3.11)

From (2.11), we have

z[2] (t)(
z[1] (t)

)α2
≤ 1

Rα2
1 (t, t1)

. (3.12)

Hence, from (3.12), z[1] (t) > 0 and z[2] (t) > 0, inequality (3.11) takes the form

ω∆ (t) ≤ −χ1 (t) +
η∆

+ (t)

Rα2
1 (t, t1)

. (3.13)

An integration of (3.13) from t3 to t yields∫ t

t3

(
χ1 (s)−

η∆
+ (s)

Rα2
1 (s, t1)

)
∆s ≤ ω (t3) (3.14)

which contradicts (3.1) and completes the proof. �

Theorem 3.2. Assume (1.2) and (2.1)-(2.3). If there exists a positive function
η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
χ1 (s)− 1

(α2 + 1)
α2+1

r2 (s)
(
η∆

+ (s)
)α2+1

(η (σ (s))ψ (s))
α2

)
∆s =∞ (3.15)

for all sufficiently large t1 ∈ [t0,∞)T, where χ1 (t) is as in Theorem 3.1 and T >
t2 ≥ t1, then any solution of equation (1.1) either oscillates or converges to zero as
t→∞.

Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, we have limt→∞ x(t) = 0 by
Lemma 2.2.

Assume that case (I) holds. Proceeding exactly as in the proof of Theorem 3.1,
we again arrive at (3.11). In view of (3.2), inequality (3.11) takes the form

ω∆ (t) ≤
η∆

+ (t)

η (t)
ω (t)− χ1 (t)− α2η (σ (t))ψ (t)

ηλ (t) r
1/α2

2 (t)
ωλ (t) . (3.16)

If we apply Lemma 2.4 with

D =
[α2η (σ (t))ψ (t)]

1/λ[
r

1/α2

2 (t) ηλ (t)
]1/λ ω (t) and E =

 α2

α2 + 1

[
r

1/α2

2 (t) ηλ (t)
]1/λ

[α2η (σ (t))ψ (t)]
1/λ

η∆
+ (t)

η (t)


α2

,

we see that

η∆
+ (t)

η (t)
ω (t)− α2η (σ (t))ψ (t)

ηλ (t) r
1/α2

2 (t)
ωλ (t) ≤ 1

(α2 + 1)
α2+1

r2 (t)
(
η∆

+ (t)
)α2+1

[η (σ (t))ψ (t)]
α2

. (3.17)
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Using (3.17) in (3.16) gives

ω∆ (t) ≤ 1

(α2 + 1)
α2+1

r2 (t)
(
η∆

+ (t)
)α2+1

[η (σ (t))ψ (t)]
α2
− κη (σ (t)) q2 (t)

Rβ2
(
g−1 (φ2 (t)) , t2

)
Rα2

1 (σ (t) , t1)
.

Integrating the last inequality from t3 to t yields∫ t

t3

(
χ1 (s)− 1

(α2 + 1)
α2+1

r2 (s)
(
η∆

+ (s)
)α2+1

[η (σ (s))ψ (s)]
α2

)
∆s ≤ ω (t3) ,

which contradicts (3.15) and completes the proof. �

Theorem 3.3. Let α2 ≥ 1 and assume (1.2) and (2.1)-(2.3). If there exists a
positive function η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
χ1 (s)−

r
1/α2

2 (s)
(
η∆

+ (s)
)2

4α2η (σ (s))ψ (s) [R1 (s, t1)]
α2−1

)
∆s =∞ (3.18)

for all sufficiently large t1 ∈ [t0,∞)T, where χ1 (t) is as in Theorem 3.1 and T >
t2 ≥ t1, then any solution of equation (1.1) either oscillates or converges to zero as
t→∞.

Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, we again have limt→∞ x(t) =
0.

Next, suppose that case (I) holds. Proceeding exactly as in the proof of Theorem
3.2, we again arrive at (3.16) which can be written as

ω∆ (t) ≤
η∆

+ (t)

η (t)
ω (t)− χ1 (t)− α2η (σ (t))ψ (t) (ω (t))

1
α2
−1

ηλ (t) r
1/α2

2 (t)
ω2 (t) , (3.19)

for t ≥ t3. From (3.2) and (2.11),

(ω (t))
1
α2
−1

= (η (t))
1
α2
−1

(
z[2] (t)

) 1
α2
−1(

z[1] (t)
)1−α2

= (η (t))
1
α2
−1

(
z[1] (t)(

z[2] (t)
)1/α2

)α2−1

≥ (η (t))
1
α2
−1

(R1 (t, t1))
α2−1

. (3.20)

Using (3.20) in (3.19), we conclude that

ω∆ (t) ≤
η∆

+ (t)

η (t)
ω (t)− χ1 (t)− α2η (σ (t))ψ (t) (R1 (t, t1))

α2−1

η2 (t) r
1/α2

2 (t)
ω2 (t)(3.21)

for t ≥ t3. Completing square with respect to ω, it follows from (3.21) that

ω∆ (t) ≤ −χ1 (t) +
r

1/α2

2 (t)
(
η∆

+ (t)
)2

4α2η (σ (t))ψ (t) [R1 (t, t1)]
α2−1 . (3.22)
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Integrating this inequality from t3 to t yields∫ t

t3

(
χ1 (s)−

r
1/α2

2 (s)
(
η∆

+ (s)
)2

4α2η (σ (s))ψ (s) [R1 (s, t1)]
α2−1

)
∆s ≤ ω (t3) ,

which contradicts (3.18). The proof is complete. �

Next, we present three results for the case when (1.3) holds.

Theorem 3.4. Assume (1.3) and (2.1)-(2.3). If there exists a positive function
η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
χ2 (s)−

η∆
+ (s)

Rα2
1 (s, t1)

)
∆s =∞ (3.23)

for all sufficiently large t1 ∈ [t0,∞)T, where

χ2 (t) = κη (σ (t)) q2 (t)
Rβ2 (σ (t) , t2)

Rα2
1 (σ (t) , t1)

,

and T > t2 ≥ t1, then any solution of (1.1) either oscillates or tends to zero as
t→∞.

Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, we have limt→∞ x(t) = 0 by
Lemma 2.2.

Next, assume that case (I) holds. Proceeding as in the proof of Theorem 3.1, we
again arrive at (3.3) and (3.5). Since

σ (t) ≤ g−1 (φ2 (t)) , (3.24)

from z∆(t) > 0 we see that

z
(
g−1 (φ2 (t))

)
z (σ (t))

≥ 1. (3.25)

Using (3.25) and (3.5) in (3.3), we obtain

ω∆ (t) ≤ η∆
+ (t)

z[2] (t)(
z[1] (t)

)α2
− χ2(t)− η (σ (t))

((
z[1] (t)

)α2
)∆

z[2] (t)(
z[1] (t)

)α2
(
z[1] (σ (t))

)α2
. (3.26)

The remainder of the proof is similar to that of Theorem 3.1, and so the details are
omitted. �

Theorem 3.5. Assume (1.3) and (2.1)-(2.3). If there exists a positive function
η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
χ2 (s)− 1

(α2 + 1)
α2+1

r2 (s)
(
η∆

+ (s)
)α2+1

(η (σ (s))ψ (s))
α2

)
∆s =∞ (3.27)

for all sufficiently large t1 ∈ [t0,∞)T, where χ2 (t) is as in Theorem 3.4 and T >
t2 ≥ t1, then any solution of equation (1.1) either oscillates or converges to zero as
t→∞.

The above theorem follows from (3.25) and Theorem 3.2; so we omit its proof.
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Theorem 3.6. Let α2 ≥ 1 and assume (1.3) and (2.1)-(2.3). If there exists a
positive function η ∈ C1

rd ([t0,∞)T,R) such that

lim sup
t→∞

∫ t

T

(
χ2 (s)−

r
1/α2

2 (s)
(
η∆

+ (s)
)2

4α2η (σ (s))ψ (s) [R1 (s, t1)]
α2−1

)
∆s =∞ (3.28)

for all sufficiently large t1 ∈ [t0,∞)T, where χ2 (t) is as in Theorem 3.4 and T >
t2 ≥ t1, then any solution of equation (1.1) either oscillates or converges to zero as
t→∞.

The above theorem follows from (3.25) and Theorem 3.3; so its proof is omitted.
The following sequel gives Philos-type oscillation criteria for equation (1.1).

First, we need to introduce the class of functions P which will be used in the
sequel.

Let D0 ≡ {(t, s) ∈ T2 : t > s ≥ t0}, D ≡ {(t, s) ∈ T2 : t ≥ s ≥ t0} and
H,h ∈ Crd (D,R). The function H ∈ Crd (D,R) is said to belongs to the class P if

(i) H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 on D0,
(ii) H has a nonpositive rd-continuous ∆-partial derivative H∆s(t, s) on D0

with respect to second variable and satisfies

H∆s(t, s) +H(t, s)
η∆(s)

η(σ(s))
=

h(t, s)

η(σ(s))
H1/λ(t, s),

where the function η is as in Theorem 3.1.

Theorem 3.7. Assume (1.2) and (2.1)-(2.3). Suppose also that there exist func-
tions η ∈ C1

rd ([t0,∞)T,R+) and H,h ∈ Crd (D,R) with H belongs to the class P
such that

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

[
H (t, s)χ3 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s =∞,

(3.29)
where

χ3(t) = κη (t) q2 (t)
Rβ2
(
g−1 (φ2 (t)) , t2

)
Rα2

1 (σ (t) , t1)
,

and t∗ > t2 ≥ t1 for sufficiently large t1 ∈ [t0,∞)T , then any solution of equation
(1.1) is either oscillatory or converges to zero as t→∞.

Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, we have limt→∞ x(t) = 0 by
Lemma 2.2.

Next, assume that case (I) holds. Then again (2.8), (3.4), (3.5), (3.7) and (3.10)
are satisfied. Define the function w as in (3.2) and using (2.8), (3.4), and (3.5), we
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arrive at

ω∆ (t) =
η (t)(

z[1] (t)
)α2

(
z[2] (t)

)∆

+

(
η (t)(

z[1] (t)
)α2

)∆

z[2] (σ (t))

≤ −κη (t) q2 (t)
Rβ2
(
g−1 (φ2 (t)) , t2

)
Rα2

1 (σ (t) , t1)
+
η∆ (t)ω (σ (t))

η (σ (t))

−η (t)
z[2] (σ (t))

((
z[1] (t)

)α2
)∆

(
z[1] (t)

)α2
(
z[1] (σ (t))

)α2
for t ≥ t3. (3.30)

If 0 < α2 ≤ 1, from (3.7) and (3.30) we see that

ω∆ (t) ≤ −χ3(t) +
η∆ (t)ω (σ (t))

η (σ (t))
− α2η (t)

z[2] (σ (t))
(
z[1] (t)

)∆(
z[1] (t)

)α2
z[1] (σ (t))

. (3.31)

If α2 > 1, from (3.7) and (3.30) we see that

ω∆ (t) ≤ −χ3(t) +
η∆ (t)ω (σ (t))

η (σ (t))
− α2η (t)

z[2] (σ (t))
(
z[1] (t)

)∆
z[1] (t)

(
z[1] (σ (t))

)α2
. (3.32)

Using the fact that z[1](t) is increasing and z[2](t) is decreasing, we get z[1](t) ≤
z[1](σ(t)) and

(
z[1](t)

)∆ ≥ (z[2](σ(t))
)1/α2

/ (r2(t))
1/α2 , respectively.

Thus, (3.31) and (3.32) can be written as

ω∆ (t) ≤ −χ3 (t) +
η∆ (t)ω (σ (t))

η (σ (t))
−

α2η(t)
(
z[2] (σ (t))

)λ
r

1/α2

2 (t)
(
z[1] (σ(t))

)α2+1

z[1] (t)

z[1] (σ(t))
(3.33)

and

ω∆ (t) ≤ −χ3 (t) +
η∆ (t)ω (σ (t))

η (σ (t))
−

α2η(t)
(
z[2] (σ (t))

)λ
r

1/α2

2 (t)
(
z[1] (σ(t))

)α2+1

(
z[1] (t)

)α2(
z[1] (σ(t))

)α2
,(3.34)

respectively.
Combining (3.33) and (3.34) and using (3.10), we obtain, for α2 > 0 and t ≥ t3,

ω∆ (t) ≤ −χ3 (t) +
η∆ (t)ω (σ (t))

η (σ (t))
− α2η (t)ψ (t)

r
1/α2

2 (t)

ωλ (σ (t))

ηλ (σ (t))
, (3.35)

and hence, in view of (i) and (ii), for t ≥ T ≥ t3, we have∫ t

T

H (t, s)χ3 (s) ∆s ≤ −
∫ t

T

H (t, s)ω∆ (s) ∆s+

∫ t

T

H (t, s)
η∆ (s)

η (σ (s))
ω (σ (s)) ∆s

−
∫ t

T

H (t, s)
α2η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s. (3.36)



42 O. ÖZDEMIR AND E. TUNÇ

Using integrating by parts formula on time scales, (3.36) yields∫ t

T

H (t, s)χ3 (s) ∆s ≤ H (t, T )ω (T ) +

∫ t

T

H∆s (t, s)ω (σ (s)) ∆s

+

∫ t

T

H (t, s)
η∆ (s)ω (σ (s))

η (σ (s))
∆s−

∫ t

T

H (t, s)
α2η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s

≤ H (t, T )ω (T ) +

∫ t

T

h+ (t, s)

η (σ (s))
H1/λ (t, s)ω (σ (s)) ∆s

−
∫ t

T

H (t, s)
α2η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s. (3.37)

Applying Lemma 2.4 with

D =
[α2η (s)ψ (s)H (t, s)]

1/λ
ω (σ (s))[

r
1/α2

2 (s) ηλ (σ (s))
]1/λ and E =

 α2

α2 + 1

[
r

1/α2

2 (s) ηλ (σ (s))
]1/λ

[α2η (s)ψ (s)]
1/λ

h+ (t, s)

η (σ (s))


α2

,

we obtain,

h+ (t, s)

η (σ (s))
H1/λ (t, s)ω (σ (s))−H (t, s)α2η (s)ψ (s)

1

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))

≤ 1

(α2 + 1)
α2+1

r2 (s) (h+ (t, s))
α2+1

(η (s)ψ (s))
α2

. (3.38)

Substituting (3.38) into (3.37) gives∫ t

T

[
H (t, s)χ3 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s ≤ H(t, T )ω (T ) .(3.39)

So, for every t ≥ t3, we have∫ t

t3

[
H (t, s)χ3 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s ≤ H(t, t3)ω (t3) ,

which contradicts (3.29). The proof is complete. �

Theorem 3.8. Assume (1.2) and (2.1)-(2.3). Let H and h be as in Theorem 3.7
and suppose that

0 < inf
s≥t0

{
lim inf
t→∞

H (t, s)

H (t, t0)

}
≤ ∞. (3.40)

Suppose also that there exist a positive function η ∈ C1
rd ([t0,∞)T,R) and Ψ (t) ∈

Crd ([t0,∞)T ,R) such that

lim sup
t→∞

1

H (t, t∗)

∫ t

t∗

r2 (s) (h+ (t, s))
α2+1

(η (s)ψ (s))
α2

∆s <∞, (3.41)

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s)χ3 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s ≥ Ψ (T )(3.42)
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for T ≥ t∗, and ∫ ∞
t∗

η (s)ψ (s)

r
1/α2

2 (s) ηλ (σ (s))
Ψλ

+ (σ (s)) ∆s =∞, (3.43)

where χ3 (t) is as in Theorem 3.7 and t∗ > t2 ≥ t1 for sufficiently large t1 ∈ [t0,∞)T.
Then any solution of equation (1.1) is either oscillatory or converges to zero as
t→∞.

Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, we have limt→∞ x(t) = 0 by
Lemma 2.2.

Assume that case (I) holds and proceeding as in the proof of Theorem 3.7,
we again arrive at (3.37) and (3.39). In view of (3.39) and (3.42), we have, for
t > T ≥ t3,

Ψ (T ) ≤ ω (T ) (3.44)

and

lim sup
t→∞

1

H (t, T )

∫ t

T

H (t, s)χ3 (s) ∆s ≥ Ψ (T ) for T ≥ t3. (3.45)

On the other hand, setting

A (t) =
1

H (t, t3)

∫ t

t3

h+ (t, s)

η (σ (s))
H1/λ (t, s)ω (σ (s)) ∆s for t > t3

and

B (t) =
1

H (t, t3)

∫ t

t3

H (t, s)
α2η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s for t > t3,

it follows from (3.37) that

lim inf
t→∞

[B (t)−A (t)] ≤ ω (t3)− lim sup
t→∞

1

H (t, t3)

∫ t

t3

H (t, s)χ3 (s) ∆s

≤ ω (t3)−Ψ (t3) <∞. (3.46)

Now, we claim that ∫ ∞
t3

η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s <∞. (3.47)

To prove it, suppose to the contrary that∫ ∞
t3

η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s =∞. (3.48)

By (3.40), there exists a constant ε1 > 0 such that

inf
s≥t0

{
lim inf
t→∞

H (t, s)

H (t, t0)

}
> ε1 > 0. (3.49)

Let K1 > 0 be arbitrary number. Then, it follows from (3.48) that there exists
t4 > t3 such that∫ t

t3

η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s ≥ K1

α2ε1
for t ≥ t4.
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Now, we have, for every t ≥ t4 > t3,

B (t) =
1

H (t, t3)

∫ t

t3

α2H (t, s)
η (s)ψ (s)

r
1/α2

2 (s)

ωλ (σ (s))

ηλ (σ (s))
∆s

=
1

H (t, t3)

∫ t

t3

α2H (t, s)

(∫ s

t3

η (u)ψ (u)

r
1/α2

2 (u)

ωλ (σ (u))

ηλ (σ (u))
∆u

)∆s

∆s

=
1

H (t, t3)

∫ t

t3

[
−α2H

∆s(t, s)

∫ σ(s)

t3

η (u)ψ (u)

r
1/α2

2 (u)

ωλ (σ (u))

ηλ (σ (u))
∆u

]
∆s

≥ 1

H (t, t3)

∫ t

t4

[
−α2H

∆s(t, s)

∫ s

t3

η (u)ψ (u)

r
1/α2

2 (u)

ωλ (σ (u))

ηλ (σ (u))
∆u

]
∆s

≥ 1

H (t, t3)

∫ t

t4

[
−α2H

∆s (t, s)
K1

α2ε1

]
∆s =

K1

ε1

H (t, t4)

H (t, t3)
.

From (3.49), we have lim inf
t→∞

H(t,t4)
H(t,t0) > ε1 and so we can choose a t5 ≥ t4 such that

H(t,t4)
H(t,t3) ≥ ε1 for every t ≥ t5. Hence, B (t) ≥ K1 for all t ≥ t5. Since K1 is arbitrary,

we have

lim
t→∞

B (t) =∞. (3.50)

Next, we consider a sequence {Tn}∞n=1 in (t3,∞)T with limn→∞ Tn = ∞ and such
that

lim
n→∞

[B (Tn)−A (Tn)] = lim inf
t→∞

[B (t)−A (t)] .

Then, from (3.46), there exists a constant K2 such that

B (Tn)−A (Tn) ≤ K2, (3.51)

for all sufficiently large integer n. Since (3.50) ensures that

lim
n→∞

B (Tn) =∞, (3.52)

(3.51) implies that

lim
n→∞

A (Tn) =∞. (3.53)

From (3.51) and (3.52), we have

A (Tn)

B (Tn)
− 1 ≥ −K2

B (Tn)
>
−K2

2K2
=
−1

2
,

i.e.

A (Tn)

B (Tn)
>

1

2

for large enough positive integer n, which together with (3.53) implies that

lim
n→∞

[A (Tn)]
α2+1

[B (Tn)]
α2

= lim
n→∞

[
A (Tn)

B (Tn)

]α2

A (Tn) =∞. (3.54)

On the other hand, using Lemma 2.5, we obtain
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A (Tn) =
1

H (Tn, t3)

∫ Tn

t3

h+ (Tn, s)

η (σ (s))
H1/λ (Tn, s)ω (σ (s)) ∆s

=

∫ Tn

t3


[
α2H(Tn, s)η (s)ψ (s)

H (Tn, t3)

]1/λ

× ω (σ (s))[
r

1/α2

2 (s) ηλ (σ (s))
]1/λ


×h+(Tn, s)H

1/λ(Tn, s) (r2 (s))
1/(α2+1)

H (Tn, t3)
×
[
α2H(Tn, s)η (s)ψ (s)

H (Tn, t3)

]−1/λ

∆s

≤

[∫ Tn

t3

α2H(Tn, s)η (s)ψ (s)

H (Tn, t3) r
1/α2

2 (s) ηλ (σ (s))
ωλ (σ (s)) ∆s

]1/λ

×

∫ Tn

t3

(
h+(Tn, s)H

1/λ(Tn, s) (r2 (s))
1/(α2+1)

H (Tn, t3)

)α2+1

×
(
α2H(Tn, s)η (s)ψ (s)

H (Tn, t3)

)−α2

∆s

] 1
α2+1

= B1/λ (Tn)

[
α−α2

2

H (Tn, t3)

∫ Tn

t3

r2 (s) (h+(Tn, s))
α2+1

(η (s)ψ (s))
α2

∆s

] 1
α2+1

, (3.55)

and accordingly

[A (Tn)]
α2+1

[B (Tn)]
α2
≤ α−α2

2

H (Tn, t3)

∫ Tn

t3

r2 (s) (h+(Tn, s))
α2+1

(η (s)ψ (s))
α2

∆s. (3.56)

Now, in view of (3.54), it follows from (3.56) that

lim
n→∞

1

H (Tn, t3)

∫ Tn

t3

r2 (s) (h+(Tn, s))
α2+1

(η (s)ψ (s))
α2

∆s =∞, (3.57)

from which, we arrive that

lim sup
t→∞

1

H (t, t3)

∫ t

t3

r2 (s) (h+(t, s))
α2+1

(η (s)ψ (s))
α2

∆s =∞,

which contradicts (3.41) and so (3.47) holds. Thus, from (3.44) and (3.47) we get∫ ∞
t3

η (s)ψ (s)

r
1/α2

2 (s) ηλ (σ (s))
Ψλ

+ (σ (s)) ∆s ≤
∫ ∞
t3

η (s)ψ (s)ωλ (σ (s))

r
1/α2

2 (s) ηλ (σ (s))
∆s <∞ (3.58)

which contradicts (3.43) and completes the proof. �

Theorem 3.9. Assume (1.2) and (2.1)-(2.3). Let H and h be as in Theorem 3.7
and (3.40) holds. Suppose also that there exist a positive function η ∈ C1

rd ([t0,∞)T,R)
and Ψ (t) ∈ Crd ([t0,∞)T ,R) such that (3.43) and the following conditions hold:

lim inf
t→∞

1

H (t, t∗)

∫ t

t∗

H(t, s)χ3 (s) ∆s <∞ (3.59)
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and

lim inf
t→∞

1

H (t, T )

∫ t

T

[
H (t, s)χ3 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s ≥ Ψ (T )(3.60)

for T ≥ t∗, where χ3 (t) is as in Theorem 3.7 and t∗ > t2 ≥ t1. Then any solution
of equation (1.1) is either oscillatory or converges to zero as t→∞.

Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, we have limt→∞ x(t) = 0 by
Lemma 2.2.

Next, assume that case (I) holds and proceeding as in the proof of Theorem 3.7,
we again arrive at (3.37) and (3.39). In view of (3.39) and (3.60), we have

Ψ (T ) ≤ ω (T ) (3.61)

and

lim inf
t→∞

1

H (t, T )

∫ t

T

H(t, s)χ3 (s) ∆s ≥ Ψ (T ) for T ≥ t3. (3.62)

Define again the functions A(t) and B(t) as in Theorem 3.8, we see from (3.37)
that

lim sup
t→∞

[B (t)−A (t)] ≤ ω (t3)− lim inf
t→∞

1

H (t, t3)

∫ t

t3

H (t, s)χ3 (s) ∆s

≤ ω (t3)−Ψ (t3) <∞. (3.63)

Next, by using condition (3.60) and (3.62), we obtain

Ψ (t3) ≤ lim inf
t→∞

1

H (t, t3)

∫ t

t3

[
H (t, s)χ3 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s

≤ lim inf
t→∞

1

H (t, t3)

∫ t

t3

H (t, s)χ3 (s) ∆s

−lim inf
t→∞

1

H (t, t3)

∫ t

t3

r2 (s) (h+(t, s))
α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

∆s. (3.64)

Hence from (3.59) and (3.64), we get

lim inf
t→∞

1

H (t, t3)

∫ t

t3

r2 (s) (h+(t, s))
α2+1

(η (s)ψ (s))
α2

∆s <∞. (3.65)

Therefore, there exists a sequence {Tn}∞n=1 in (t3,∞)T with limn→∞ Tn = ∞ and
such that

lim
n→∞

1

H (Tn, t3)

∫ Tn

t3

r2 (s) (h+(Tn, s))
α2+1

(η (s)ψ (s))
α2

∆s <∞. (3.66)

Following the procedure of the proof of Theorem 3.8, we see that (3.57) holds, which
contradicts (3.66). This contradiction proves that (3.48) fails. The rest of the proof
is similar to that of Theorem 3.8. �
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Theorem 3.10. Assume (1.3) and (2.1)-(2.3) hold and let η, H and h be as in
Theorem 3.7. If

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

[
H (t, s)χ4 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s =∞, (3.67)

where

χ4 (t) = κη (t) q2 (t)
Rβ2 (σ (t) , t2)

Rα2
1 (σ (t) , t1)

.

and t∗ > t2 ≥ t1 for sufficiently large t1 ∈ [t0,∞)T, then any solution of equation
(1.1) is either oscillatory or converges to zero as t→∞.

Proof. Let x (t) be a nonoscillatory solution of (1.1). Without loss of generality,
we may assume that there exists t1 ∈ [t0,∞)T such that x (t) > 0, x (g (t)) > 0,
x (φ (t, ξ)) > 0, (2.1)-(2.2) hold and z (t) satisfies either case (I) or case (II) of
Lemma 2.1 for t ≥ t1 and ξ ∈ [a, b]. If case (II) holds, we have limt→∞ x(t) = 0 by
Lemma 2.2.

Next, assume that case (I) holds. Then again (2.8), (3.5), (3.7), (3.10), (3.24)
and (3.25) hold. Define the function w as in (3.2) and using (2.8), (3.5), (3.24) and
(3.25), we arrive at

ω∆ (t) =
η (t)(

z[1] (t)
)α2

(
z[2] (t)

)∆

+

(
η (t)(

z[1] (t)
)α2

)∆

z[2] (σ (t))

≤ −κη (t) q2 (t)
Rβ2 (σ (t) , t2)

Rα2
1 (σ (t) , t1)

+
η∆ (t)ω (σ (t))

η (σ (t))

−η (t)
z[2] (σ (t))

((
z[1] (t)

)α2
)∆

(
z[1] (t)

)α2
(
z[1] (σ (t))

)α2
. (3.68)

The remainder of the proof is similar to that of Theorem 3.7, and so the details are
omitted. �

The proof of the the following two theorems follows from Theorems 3.7-3.10; we
omit the details.

Theorem 3.11. Assume (1.3) and (2.1)-(2.3). Let η, H and h be as in The-
orem 3.8 such that (3.40) and (3.41) holds. If there exists a function Ψ (t) ∈
Crd ([t0,∞)T ,R) such that (3.43) holds and

lim sup
t→∞

1

H (t, T )

∫ t

T

[
H (t, s)χ4 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s ≥ Ψ (T )(3.69)

for T ≥ t∗, where χ4 (t) is as in Theorem 3.10 and t∗ > t2 ≥ t1, then any solution
of equation (1.1) either oscillates or converges to zero as t→∞.

Theorem 3.12. Assume (1.3) and (2.1)-(2.3). Let H and h be as in Theo-
rem 3.9 and (3.40) holds. Suppose also that there exist a positive function η ∈
C1
rd ([t0,∞)T,R) and Ψ (t) ∈ Crd ([t0,∞)T ,R) such that (3.43) and the following

conditions hold:
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lim inf
t→∞

1

H (t, t∗)

∫ t

t∗

H(t, s)χ4 (s) ∆s <∞ (3.70)

and

lim inf
t→∞

1

H (t, T )

∫ t

T

[
H (t, s)χ4 (s)− r2 (s) (h+(t, s))

α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

]
∆s ≥ Ψ (T )(3.71)

for T ≥ t∗, where χ4 (t) is as in Theorem 3.10 and t∗ > t2 ≥ t1. Then any solution
of equation (1.1) is either oscillatory or converges to zero as t→∞.

Example 3.13. Let T := qZ={qk : k ∈ Z, q > 1}∪{0} and consider the third order
neutral dynamic equation[(

(x(t) + 8x(t/2))
∆∆
)3
]∆

+

∫ b

a

(
t2 + ξ

)
x3(t/2− ξ)∆ξ = 0, (3.72)

for t ∈ 2Z with t ≥ t0 := 2. Here we have α1 = 1, α2 = 3, g(t) = t/2, q(t, ξ) =
t2 + ξ, r1(t) = r2(t) = 1, φ(t, ξ) = t/2− ξ, f(u) = uβ and p(t) = 8. It is clear that
conditions (C1)-(C5) and (1.2) hold with κ = 1, β = 3 and

ϕ1(t) = 7/64 > 0. (3.73)

Since

1− 1

p (g−1 (g−1(t)))

R2(g−1(g−1(t)), t2)

R2(g−1(t), t2)
=

2t− 7

4t− 8
,

we see that

ϕ2(t) ≥ 1

64
for t ≥ t2 = 4. (3.74)

In view of (3.73) and (3.74), we see that

q1(t) =

b∫
a

(t2 + ξ)(
7

64
)3∆ξ = (b− a)(

7

64
)3(t2 +

b+ a

3
), (3.75)

q2(t) ≥
b∫
a

(t2 + ξ)(
1

64
)3∆ξ = (b− a)(

1

64
)3(t2 +

b+ a

3
) for t ≥ t2 = 4. (3.76)

With (3.75), condition (2.3) becomes∫ ∞
t0

(
1

r1 (v)

∫ ∞
v

(
1

r2 (u)

∫ ∞
u

q1 (s) ∆s

)1/α2

∆u

)1/α1

∆v

=

∞∫
2

∞∫
v

 ∞∫
u

(7/64)
3

(b− a)

(
s2 +

b+ a

3

)
∆s

1/3

∆u∆v =∞

due to
∞∫
u

(
s2 + b+a

3

)
∆s =∞ for u ≥ 2, and so condition (2.3) holds.
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With η(t) = t and the fact that (3.76), we see that

lim sup
t→∞

t∫
T

χ1(s)∆s ≥ lim sup
t→∞

t∫
4

(b− a)2s

(64)3

(
s2 +

b+ a

3

)(
s2 − (4b+ 6)s+ 4b2 + 12b+ 8

6s− 6

)3

∆s

≥ lim sup
t→∞

2(b− a)

(384)3

t∫
4

(
s2 − (4b+ 6)s+ 4b2 + 12b+ 8

)3
∆s =∞

and

lim sup
t→∞

t∫
T

η∆
+ (s)

Rα2
1 (s, t1)

∆s = lim sup
t→∞

t∫
4

1

(s− 2)
3 ∆s <∞,

so condition (3.1) holds. Thus, all conditions of Theorem 3.1 are satisfied. There-
fore, by Theorem 3.1, any solution of (3.72) is either oscillatory or converges to
zero.

Example 3.14. Consider the neutral differential equation 1

t5

[(
t+ 2

2

[
x(t) +

10t+ 11

t+ 1
x(t− 2)

]′)′]5
′ + ∫ 2

1

(t+ ξ)x5(t− 2− ξ)dξ = 0,

(3.77)
for t ≥ 2. Here we have T = R, α1 = 1, α2 = 5, g(t) = t−2, q(t, ξ) = t+ξ, r1(t) =
(t+ 2)/2, r2(t) = 1/t5, φ(t, ξ) = t− 2− ξ, f(u) = uβ and p(t) = (10t+ 11)/(t+ 1).
It is clear that conditions (C1)-(C5) and (1.2) hold with κ = 1 and β = 5. In view
of the fact that

10 ≤ p(t) < 11,

we see that

ϕ1(t) ≥ 9

110
> 0. (3.78)

Since

1

p (g−1(g−1(t)))

R2(g−1(g−1(t)), t2)

R2(g−1(t), t2)
≤ 1

10

t+ 3

t− 1
≤ 3

10
,

for t ≥ t2 = 3, we obtain

ϕ2(t) ≥ 7

110
. (3.79)

In view of (3.78) and (3.79), we see that

q1(t) ≥
2∫

1

(t+ ξ)(
9

110
)5dξ = (

9

110
)5(t+ 3/2), (3.80)

q2(t) ≥
2∫

1

(t+ ξ)(
7

110
)5dξ = (

7

110
)5(t+ 3/2) for t ≥ t2 = 3. (3.81)
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By (3.80), condition (2.3) becomes∫ ∞
t0

(
1

r1 (v)

∫ ∞
v

(
1

r2 (u)

∫ ∞
u

q1 (s) ∆s

)1/α2

∆u

)1/α1

∆v

≥
∞∫

2

 2

v + 2

∞∫
v

 1

1/u5

∞∫
u

(9/110)
5

(s+ 3/2) ds

1/5

du

 dv =∞,

due to
∞∫
u

(s+ 3/2) ds =∞ for u ≥ 2, and so condition (2.3) holds.

With η(t) = t, H(t, s) = (t− s)2 and the fact that (3.81), it is clear that

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

H (t, s)κη (s) q2 (s)
Rβ2
(
g−1 (φ2 (s)) , t2

)
Rα2

1 (σ (s) , t1)
∆s

≥ lim sup
t→∞

(
7

110

)5
1

(t− 4)2

t∫
4

s (t− s)2
(s+ 3/2)

(
s2 − 8s+ 15

s2 − 4

)5

ds =∞

and

lim sup
t→∞

1

H(t, t∗)

∫ t

t∗

r2 (s) (h+(t, s))
α2+1

(α2 + 1)
α2+1

(η (s)ψ (s))
α2

∆s

= lim sup
t→∞

1

(t− 4)2

t∫
4

(t− 3s)6

66s10(t− s)4
ds ≤ lim sup

t→∞

1

(t− 4)2

t∫
4

(t− s)2

66s10
ds <∞,

so condition (3.29) holds. Hence, by Theorem 3.7, any solution of (3.77) either
oscillates or converges to zero.
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