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SET VALUED CONTRACTION OF

SUZUKI-EDELSTEIN-WARDOWSKI TYPE AND BEST

PROXIMITY POINT RESULTS

AZHAR HUSSAIN, MUHAMMAD ADEEL, TANZEELA KANWAL, NAZRA SULTANA

Abstract. The aim of this paper is to show the existence of best proximity
points for multivalued Suzuki-Edelstein-Wardowski type α-proximal contrac-

tions in the setting of complete metric spaces and partially ordered metric
spaces. We give examples to illustrate the main results. Our results improve

and extend the corresponding results in the literature.

1. Introduction

Let A and B be two nonempty subsets of a metric space (X, d) and F : A →
CB(B). A point x∗ ∈ A is called a best proximity point of F if

D(x∗, Fx∗) = inf{d(x∗, y) : y ∈ Fx∗} = dist(A,B),

where

dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
If A∩B 6= φ, then x∗ is a fixed point of F. If A∩B = φ, then D(x, Fx) > 0 for all
x ∈ A and F has no fixed point.

Consider the following optimization problem:

min{D(x, Fx) : x ∈ A}. (1.1)

It is then important to study necessary conditions so that the above minimization
problem has at least one solution.

Since

d(A,B) ≤ D(x, Fx) (1.2)

for all x ∈ A. Hence the optimal solution to the problem

min{D(x, Fx) : x ∈ A} (1.3)

for which the value d(A,B) is attained is indeed a best proximity point of multival-
ued mapping F. Many authors has explored the existence and convergence of best
proximity points under different contractive conditions in certain distance spaces
(see e.g. [1, 2, 4, 5, 13, 14, 19, 20, 22, 26, 27, 31, 33] and references therein).
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Recently, Samet et al. [38] introduced the notion of α-ψ-contraction and proved
some fixed point theorems for such mappings in the context of complete metric
spaces. Some interesting multivalued generalizations of α-ψ-contractive type map-
pings are given in [3, 6, 7, 8, 10, 15, 16, 32, 35].

In 1962, Edelstein [21] obtained the following result:

Theorem 1.1. Let (X, d) be a compact metric space and T be a mapping on X.
Assume d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Then T has a unique fixed
point.

In 2008, Suzuki [40] introduced a new type of mapping and presented generaliza-
tion of Banach contraction principle in which the completeness can be characterized
by the existence of a fixed point of these mappings.

Theorem 1.2. Let (X, d) be a complete metric space, and let T be a mapping on
X. Define a non-increasing function θ : [0, 1)→ ( 1

2 , 1] by

θ(r) =


1 if 0 ≤ r ≤

√
5− 12

1−r
r2 if

√
5−1
2 ≤ r ≤ 1√

2
1

1+r if 1√
2
≤ r < 1.

Assume that there exists r ∈ [0, 1) such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤
rd(x, y) for all x, y ∈ X. Then there exists a unique fixed point z of T . Moreover,
lim
n→∞

Tnx = z for all x ∈ X.

Inspired by Theorem (1.2), Suzuki [40] proved a generalization of Edelstein’s
fixed point theorem.

Theorem 1.3. [41] Let (X, d) be a compact metric space, and let T be mapping on
X. Assume that ( 1

2 )d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y) for all x, y ∈ X.
Then T has a unique fixed point.

On the other hand, a generalized version of contraction mapping introduced by
Wardowski [43] called F-contraction, i.e. a mapping T : X → X satisfying

τ + F(d(Tx, Ty)) ≤ F(d(x, y))

for all x, y ∈ X with Tx 6= Ty, where τ > 0 and F : (0,∞) → R satisfy the
following conditions:

(F1) F is strictly increasing;
(F2) for all sequence {an} ⊆ R+, lim

n→∞
an = 0 if and only if limn→∞ F(an) =

−∞;
(F3) there exist 0 < k < 1 such that lim

a→0+
akF(a) = 0.

It was also proved that every F-contraction on a complete metric space has a unique
fixed point. In 2014, Piri and Kumam [37] combined the concept of F-contraction
with Suzuki as

1

2
d(x, Tx) < d(x, y)⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y)).

Gopal et al. [23] introduced the concept of α-type-F-contraction by using function
α : X ×X → {−∞} ∪ (0,+∞) such that for all x, y ∈ X satisfying d(Tx, Ty) > 0,

τ + α(x, y)F(d(Tx, Ty)) ≤ F(d(x, y))
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and proved some fixed point results. Recently, Turinici in [42] relaxed the condition
(F2) by

(F ′2) for all sequence {an} ⊆ R+, lim
n→∞

an = 0 then lim
n→∞

F(an) = −∞.

Then the implication

(F ′′2 ) F(an)→ −∞ implies an →∞
can be derived from (F1). Recently, Wardowski [44] consider the class of F-
contractions in a generalized way by taking constant τ as a function ϕ on R+

to itself and defined (ϕ,F)-contraction (nonlinear contraction) on a metric space
(X, d) satisfying

(H1) F satisfies (F1) and (F ′2);
(H2) lim infs→t+ ϕ(s) > 0 for all t ≥ 0;
(H3) ϕ(d(x, y))+F(d(Tx, Ty)) ≤ F(d(x, y)) for all x, y ∈ X such that Tx 6= Ty.

Wardowski [44] proved a fixed point result for such nonlinear contraction by omit-
ting (F3). For more work concerning F -contraction, we refer to [12, 16, 29, 30] and
references therein.

The purpose of this paper is to consider the condition

(H′3) for all x, y ∈ A,

φ((D(x, Tx))− α(x, y)D(A,B) ≤ α(x, y)d(x, y)

implies

ϕ(d(x, y)) + α(x, y)F(D(y, Ty)) ≤ F(M(x, y))

where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(x, Ty)

2
,

D(y, Ty)[1 +D(x, Tx)]

1 + d(x, y)
,
D(y, Tx)[1 +D(x, Ty)]

1 + d(x, y)

}
, (1.4)

where A and B are subsets of X, φ : [0,∞) → [0,∞) a nondecreasing functions
such that lim

n→∞
φn(t) = 0, φ(t) < t for all t > 0 [34] and T : A → C(B) and to

prove multivalued and single valued best proximity point results for such nonlinear
contractions omitting (F3) in the framework of complete metric spaces and partially
ordered complete metric spaces. Some fixed point results for such mappings will be
obtained as an applications of our results.

2. Preliminaries

In the sequel, (X, d) a metric space. C(X), CB(X) and K(X) by the families
of all nonempty closed subsets, nonempty closed and bounded subsets, nonempty
compact subsets of (X, d) and Φ the set of all functions φ respectively. For any
A,B ∈ CB(X) and x ∈ X, define

A0 = {a ∈ A : there exists some b ∈ B such that d(a, b) = D(A,B)}
B0 = {a ∈ A : there exists some a ∈ A suchthat d(a, b) = D(A,B)}

D(x,A) = inf{d(x, a) : a ∈ A}.
We present now the necessary definitions and results which will be useful in the
sequel.
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Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d). A
point x is called a best proximity point of mapping T : A→ B if

D(x, Tx) = D(A,B).

Definition 2.2. [5] Let (A,B) be a pair of nonempty subsets of a metric space
(X, d). Then the pair (A,B) is said to have the weak P -property if and only if for
any x1, x2 ∈ A and y1, y2 ∈ B,

d(x1, y1) = D(A,B)
d(x2, y2) = D(A,B)

}
implies d(x1, x2) ≤ d(y1, y2).

Definition 2.3. [5] Let A and B be two nonempty subsets of a metric space (X, d).
A mapping T : A→ C(B) is called α-proximal admissible if there exists a mapping
α : A×A→ [0,∞) such that

α(x1, x2) ≥ 1
d(u1, y1) = D(A,B)
d(u2, y2) = D(A,B)

 implies α(u1, u2) ≥ 1,

where x1, x2, u1, u2 ∈ A, y1 ∈ Tx1 and y2 ∈ Tx2.

Definition 2.4. Let A and B be two nonempty subsets of a metric space (X, d). Let
α : A×A→ [0,∞) and T : A→ C(B). We say that T is an α∗-continuous mapping
on (X, d), if for given given x ∈ X and sequence {xn} with α(xn, xn+1) ≥ 1 for all

n ∈ N ∪ {0} and x ∈ A such that xn → x∗ as n→∞ then Txn
H−→ Tx∗.

3. Best Proximity Point Results in Metric Spaces

Throughout the paper, we denote F the class of all functions F satisfying (H1),
(H2) and (H′3). First we introduce the notion of Suzuki-Edelstein-Wardowski type
α-proximal contraction as follows:

Definition 3.1. Suppose A and B are two non-empty subsets of a metric space
(X, d). A multivalued mapping T : A → C(B) is said to be Suzuki-Edelstein-
Wardowski type α-proximal contraction if there exist functions α : A×A→ [0,∞),
φ ∈ Φ along with conditions (H1), (H2) and (H′3).

Example 3.2. Let X = R with usual metric d. Let A = {1+ 1
pn−1 : p, n ∈ N, p > 1}

and B = { 1
pn−1 : p, n ∈ N, p > 1} are subsets of R. Then D(A,B) = 1. Define

T : A→ C(B) by

Tx =

{ {1, 1
pn } if x = 1 + 1

pn−1

{0, 1p} if x = 2,

α : A×A→ [0,∞) by

α(x, y) =


pn+1 if x = 1 + 1

pn−1 , y = 1 + 1
pn

p if x = y = 1 + 1
pn−1

0 if x = 2,

ϕ : (0,∞) → (0,∞) by ϕ(t) = 1
t + 1

p , φ ∈ Φ by φ(t) = t
p for all t and F ∈ F by

F(t) = ln(t). Then

D(x, Tx) =

{ 1
pn if x = 1 + 1

pn−1

0 if x = 1, 2.



SET VALUED CONTRACTION OF SUZUKI-EDELSTEIN-WARDOWSKI TYPE 57

Now for x = 1 + 1
pn−1 , n > 1, Tx = {1, 1

pn }. Thus for y = 1 + 1
pn , we have

φ(D(x, Tx))− α(x, y)D(A,B) =

(
1

p

)(
1

pn

)
− pn+1(1) =

1

pn+1
− pn+1 (3.1)

and

α(x, y)d(x, y) = (pn+1)

(
1

pn

)
= p. (3.2)

From (3.1) and (3.2) we have

φ(D(x, Tx))− α(x, y)D(A,B) ≤ α(x, y)d(x, y). (3.3)

Now

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(x, Ty)

2
,

D(y, Ty)[1 +D(x, Tx)]

1 + d(x, y)
,
D(y, Tx)[1 +D(x, Ty)]

1 + d(x, y)

}

= max

{
1

pn
,

1

pn
,

1

pn+1
, 0

1

pn+1
, 0

}
=

1

pn
.

So

ϕ(d(x, y)) + α(x, y)F(D(y, Ty)) = ϕ

(
1

pn

)
+ pn+1F

(
1

pn+1

)
= pn +

1

p
+ pn+1ln

(
1

pn+1

)
< −ln(pn) = ln

(
1

pn

)
= F(M(x, y)).

This implies

ϕ(d(x, y)) + α(x, y)F(D(y, Ty)) ≤ F(M(x, y)). (3.4)

Thus T is Suzuki-Edelstein-Wardowski type α-proximal contraction.

Theorem 3.3. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A0 is non-empty and T : A→ K(B) be continuous multival-
ued mapping satisfying the following assertions:

(i) T is Suzuki-Edelstein-Wardowski type α-proximal contraction;
(ii) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;
(iii) T is α-proximal admissible;
(iv) there exists x0, x1 ∈ A0 with α(x0, x1) ≥ 1 and y1 ∈ Tx0 such that

d(x1, y1) = D(A,B).

Then the mapping T has a best proximity point.

Proof. By hypothesis (iv), there exists x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = D(A,B), α(x0, x1) ≥ 1. (3.5)

If y1 ∈ Tx1, we obtain

D(A,B) ≤ D(x1, Tx1) ≤ d(x1, y1) = D(A,B)
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and so x1 is best proximity point of T and the proof is complete. So we suppose
that y1 6∈ Tx1. Since Tx ⊆ B0 for all x ∈ A0, then there exist x2 ∈ A0 and y2 ∈ Tx1
such that

d(x2, y2) = D(A,B). (3.6)

Now we have
α(x0, x1) ≥ 1
d(x1, y1) = D(A,B)
d(x2, y2) = D(A,B)

 . (3.7)

Since T is α-proximal admissible so,

α(x1, x2) ≥ 1.

Thus, we have

d(x2, y2) = D(A,B) and α(x1, x2) ≥ 1. (3.8)

If y2 ∈ Tx2, we obtain

D(A,B) ≤ D(x2, Tx2) ≤ d(x2, y2) = D(A,B)

and x2 is best proximity point of T . Thus we suppose that y2 6∈ Tx2. Again since
Tx ⊆ B0 for all x ∈ A0, then there exist x3 ∈ A0 and y3 ∈ Tx2 such that

d(x3, y3) = D(A,B). (3.9)

Now we have
α(x1, x2) ≥ 1
D(x2, y2) = D(A,B)
D(x3, y3) = D(A,B)

 . (3.10)

Since T is α-proximal admissible. This implies

α(x2, x3) ≥ 1.

Thus we have

d(x3, y3) = D(A,B) and α(x2, x3) ≥ 1. (3.11)

Continuing this process we construct sequences {xn} ⊆ A0 and {yn} ⊆ B0 such
that α(xn, xn+1) ≥ 1 and xn 6= xn+1, yn ∈ Txn−1 and yn 6∈ Txn and

d(xn, yn) = D(A,B). (3.12)

Since (A,B) satisfies weak P-property, we have

d(xn−1, xn) ≤ d(yn−1, yn) (3.13)

for all n ∈ N.
Now

φ(D(xn−1, Txn−1)) ≤ D(xn−1, Txn−1)

≤ α(xn−1, xn)D(xn−1, Txn−1)

≤ α(xn−1, xn)(d(xn−1, xn) +D(xn, Txn−1))

≤ α(xn−1, xn)(d(xn−1, xn) +D(A,B)

≤ α(xn−1, xn)(d(xn−1, xn)) + α(xn−1, xn)D(A,B),

we have

φ(D(xn−1, Txn−1))− α(xn−1, xn)D(A,B) ≤ α(xn−1, xn)d(xn−1, xn). (3.14)
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Since T is Suzuki-Edelstein-Wardowski type α-proximal multivalued contraction,
we get that

ϕ(d(xn−1, xn)) + α(xn−1, xn)F(D(xn, Txn)) ≤ F(M(xn−1, xn)) (3.15)

where

M(xn−1, xn) = max

{
d(xn−1, xn), D(xn−1, Txn−1), D(xn, Txn),

D(xn−1, Txn) +D(xn, Txn−1)

2
,

D(xn, Txn)[1 +D(xn−1, Txn−1)]

1 + d(xn−1, xn)
,
D(xn, Txn−1)[1 +D(xn−1, Txn)]

1 + d(xn−1, xn)

}
.

Since Txn−1 and Txn are compact, we have

M(xn−1, xn) = max

{
d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, xn)

2
,

d(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
,
d(xn, xn)[1 + d(xn−1, xn+1)]

1 + d(xn−1, xn)

}

= max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)

2

}
.

Since

d(xn−1, xn+1)

2
≤ d(xn−1, xn) + d(xn, xn+1)

2
≤ max{d(xn−1, xn), d(xn, xn+1)},

it follows that

M(xn−1, xn) ≤ max{d(xn−1, xn), d(xn, xn+1)}. (3.16)

Suppose that d(xn−1, xn) < d(xn, xn+1), then (3.15) implies that

ϕ(d(xn−1, xn)) + F(d(xn, xn+1)) ≤ ϕ(d(xn−1, xn)) + α(xn−1, xn)F(d(xn, xn+1))

≤ F(d(xn, xn+1)),

a contradiction. Hence M(xn−1, xn) ≤ d(xn−1, xn), therefore (3.15) implies that

ϕ(d(xn−1, xn)) + α(xn−1, xn)F(D(xn, Txn)) ≤ F(d(xn−1, xn)). (3.17)

Since Txn is compact, we have

ϕ(d(xn−1, xn)) + F(d(xn, xn+1)) ≤ ϕ(d(xn−1, xn)) + α(xn−1, xn)F(d(xn, xn+1))

≤ F(d(xn−1, xn)).

This implies that

ϕ(d(xn−1, xn)) + F(d(xn, xn+1)) ≤ F(d(xn−1, xn))

and hence

F(d(xn, xn+1)) ≤ F(yn, yn+1) ≤ F(d(xn−1, xn))− ϕ(d(xn−1, xn)) (3.18)

for all n ≥ 1. Let βn = d(xn−1, xn) for all n ≥ 0. Without loss of generality we can
assume that βn > 0 for all n ∈ N. From (3.18), there exists c > 0, we have

F(βn+1) ≤ F(βn)− ϕ(βn)for all n ∈ N.
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From F1 we get that (βn) is decreasing, and hence, βn ↘ t, t ≥ 0. From (H2) there
exists c > 0 and n0 ∈ N such that ϕ(βn) > 0 for all n ≥ n0.
In consequence, we have

F(βn) ≤ F(βn−1)− ϕ(βn−1) ≤ · · · F(β1)−
n−1∑
i=1

ϕ(βi)

= F(β1)−
n0−1∑
i=1

ϕ(βi)−
n−1∑
i=n0

ϕ(βi) < F(β1)− (n− n0)c, n > n0

Tending with n→∞ we get F(βn)→∞ and, by (F ′′2 ), βn → 0.
To show that (xn) is the Cauchy sequence. Suppose on contrary that (xn) is not
Cauchy. From (F1) the set ∇ of all discontinuity points of F is at most countable.
There exists γ > 0, γ 6∈ ∇ such that for every k ≥ 0 one can find mk, nk ∈ N
satisfying

k ≤ mk < nk and d(xmk
, xnk

) > γ. (3.19)

Denote by mk the least of mk satisfying (3.19) and by nk the least of nk such that
mk < nk and d(xmk

, xnk
) > γ. Naturally

d(xmk
, xnk

) > γ (3.20)

Observe that taking k0 ∈ N such that βk < γ for all k ≥ k0, we have

γ < d(xmk
, xnk

) ≤ d(xmk
, xnk−1) + d(xnk−1, xnk

) ≤ γ + βnk
, for all k ≥ k0.

We have

lim
k→∞

d(xmk
, xnk

)→ γ. (3.21)

For all k ≥ 0 we observe that

d(xmk
, xnk

)− βmk+1 − βnk+1 ≤ d(xmk+1, xnk+1)

≤ βmk+1 + d(xmk
, xnk

) + βnk+1.

Again, we have

lim
k→∞

d(xmk+1, xnk+1)→ γ. (3.22)

From (3.18), we get

ϕ(d(xmk
, xnk

)) ≤ F(d(xmk
, xnk

))−F(d(xmk+1, xnk
+ 1)), k ≥ 0.

Now, using (3.20)-(3.22) and from above inequality and by the continuity of F at
γ we get

lim inf
s→γ+

ϕ(s) ≤ lim inf
k→∞

ϕ(d(xmk
, xnk

)) ≤ lim
k→∞

(F(d(xmk
, xnk

)))−F(d(xmk+1, xnk
+1)) = 0,

which is contradiction to (H2). Therefore (xn) is Cauchy. Similarly, we can show
that {yn} is a Cauchy sequence in B. Since A and B are closed subsets of a complete
metric space (X, d), there exist x∗ ∈ A and y∗ ∈ B such that xn → x∗ and yn → y∗

as n→∞, respectively. Since d(xn, yn)→ D(A,B) for all n ∈ N, we conclude that

lim
n→∞

d(xn, yn) = d(x∗, y∗) = D(A,B).

Since T is continuous, we have lim
n→∞

H(Txn, Tx
∗) = 0. On the other hand, since

yn+1 ∈ Txn, we have

D(y∗, Tx∗) ≤ d(y∗, yn+1) +D(yn+1, Tx
∗) ≤ d(y∗, yn+1) +H(Txn, Tx

∗).
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Letting n→∞, we obtain

D(y∗, Tx∗) ≤ 0,

which leads to y∗ ∈ Tx∗. Furthermore, one has

D(A,B) ≤ D(x∗, Tx∗) ≤ d(x∗, y∗) = D(A,B)

which gives

D(A,B) ≤ D(x∗, Tx∗) ≤ D(A,B).

Hence

D(x∗, Tx∗) = D(A,B).

Therefore, x∗ is a best proximity point of T . This completes the proof. �

Example 3.4. Let X = R with usual metric d and let A = {1, 3, 5, ..., 2n+ 1} and
B = {0, 2, 4, ..., 2n}, n ≥ 1 be subsets of R. Then D(A,B) = 1. Define T : A →
K(B), α : A×A→ [0,∞), F : R+ → R, ϕ : (0,∞)→ (0,∞) and φ ∈ Φ by

Tx =

{
{0} if x = 1

{0, 2, 4, ..., x− 1} if x ≥ 3,

α(x, y) =

{
1 if x 6= y
0 if x = y,

F(x) = ln(x) + x, ϕ(t) = 1
t and φ(t) = t

2 for all t respectively. Notice that
A0 = A,B0 = B, and Tx ⊆ B0 for each x ∈ A0. Also the pair (A,B) satisfies
weak P−property. Let x0, x1 ∈ A0 with α(x0, x1) ≥ 1, then Tx0, Tx1 ⊆ B0.
Consider y1 ∈ Tx0, y2 ∈ Tx1, and u1, u2 ∈ A such that d(u1, y1) = D(A,B)
and d(u2, y2) = D(A,B). Then we have α(u1, u2) ≥ 1. Hence T is α-proximal
admissible. For x0 = 3 ∈ A0 and y1 = 2 ∈ Tx0 ⊆ B0, we have x1 = 1 ∈ A0 such
that d(x1, y1) = 1 = D(A,B) and α(x0, x1) = 1. Now let x = 2m+1 and y = 2m+3
where 1 ≤ m ≤ n, then Tx = {0, 2, 4, ..., 2m} and Ty = {0, 2, 4, ..., 2m+ 2}. So, we
have

φ(D(x, Tx))− α(x, y)D(A,B) = φ(1)− 1 =
1

2
− 1 = −1

2
(3.23)

and

α(x, y)d(x, y) = 2. (3.24)

From (3.23) and (3.24) we have

φ(D(x, Tx))− α(x, y)D(A,B) ≤ α(x, y)d(x, y). (3.25)

Now

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(x, Ty)

2
,

D(y, Ty)[1 +D(x, Tx)]

1 + d(x, y)
,
D(y, Tx)[1 +D(x, Ty)]

1 + d(x, y)

}

= max {2, 1, 1, 3 + 1

2
,

1(1 + 1)

1 + 2
,

3(1 + 1)

1 + 2
}

= max {2, 1, 1, 2, 2

3
, 2} = 2.
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Thus

ϕ(d(x, y)) + α(x, y)F(D(y, Ty)) = ϕ(2) + F(1)

=
1

2
+ (ln(1) + 1)

=
1

2
+ (0 + 1)

=
1

2
+ 1 ≤ ln(2) + 2 = F(M(x, y)).

This implies that

ϕ(d(x, y)) + α(x, y)F(D(y, Ty)) ≤ F(M(x, y)). (3.26)

Hence T is Suzuki-Edelstein-Wardowski type α-proximal multivalued contraction.
Therefore all conditions of Theorem 3.3 hold. Hence T has a best proximity point.

Remark. If we remove the condition of continuity of T in Theorem 3.3 and replace
it with α∗-continuity of T , then we have following result:

Theorem 3.5. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A0 is non-empty and T : A→ K(B) be a multivalued mapping
satisfying the following assertions:

(i) T is Suzuki-Edelstein-Wardowski type α-proximal multivalued contraction;
(ii) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;
(iii) T is α-proximal admissible;
(iv) there exists x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = D(A,B) and α(x0, x1) ≥ 1;

Then the mapping T has a best proximity point.

Proof. Following the proof of Theorem 3.3, since T is α∗-continuous, we get that

Txn
H−→ Tx∗ as n→∞. On the other hand, since yn+1 ∈ Txn, we have

D(y∗, Tx∗) ≤ d(y∗, yn+1) +D(yn+1, Tx
∗) ≤ d(y∗, yn+1) +H(Txn, Tx

∗).

Letting n→∞, we obtain
D(y∗, Tx∗) ≤ 0

which leads to y∗ ∈ Tx∗. Furthermore, one has

D(A,B) ≤ D(x∗, Tx∗) ≤ d(x∗, y∗) = D(A,B)

D(A,B) ≤ D(x∗, Tx∗) ≤ D(A,B).

This implies
D(x∗, Tx∗) = D(A,B).

Therefore, x∗ is a best proximity point of T . This completes the proof. �

Remark. If we replace K(B) by CB(B) in Theorem 3.3, then we have the following
problem:

Does T has a proximity point?

We give answer to this question in following way:

Theorem 3.6. Let A and B be two nonempty closed subsets of a complete met-
ric space (X, d) such that A0 is non-empty and T : A → CB(B) be continuous
multivalued mapping satisfying the following assertions:
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(i) T is Suzuki-Edelstein-Wardoski type α-proximal contraction;
(ii) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P -property;

(iii) T is α-proximal admissible;
(iv) there exists x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, y1) = D(A,B) and α(x0, x1) ≥ 1;

(v) F(inf M) = inf F(M) for all M ⊂ (0,∞).

Then the mapping T has a best proximity point.

Proof. Following the proof of Theorem 3.3, there is a sequence xn ∈ A, since
Tx ∈ CB(B) for every x ∈ A and F ∈ F with F(inf M) = inf F(M) for all
M ⊂ (0,∞). Then there exist xn+1 ∈ A and by hypothesis α(xn, xn+1) ≥ 1.
Assume that xn+1 6∈ Txn+1. Since Txn+1 is closed, D(xn+1, Txn+1) > 0, we have

ϕ(d(xn, xn+1)) + α(xn, xn+1)F(D(xn+1, Txn+1)) ≤ F(M(xn, xn+1)) (3.27)

with

M(xn, xn+1) = max

{
d(xn, xn+1), D(xn, Txn), D(xn+1, Txn+1),

D(xn, Txn+1) +D(xn+1, Txn)

2

D(xn+1, Txn+1)[1 +D(xn, Txn)]

1 + d(xn, xn+1)
,
D(xn+1, Txn)[1 +D(xn, Txn+1)]

1 + d(xn, xn+1)

}
.

The rest of proof is similar to the proof of Theorem 3.3 by considering the Tx as
closed for all x ∈ A. �

If we take α(x, y) = 1 in Theorem 3.3 then we have following result.

Corollary 3.7. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A0 is non-empty and T : A → K(B) be continuous mul-
tivalued mapping and for all x ∈ A with D(x, Tx) > 0, there exist y ∈ A with
D(y, Ty) > 0 satisfying (H1), (H2) and

φ(D(x, Tx)) ≤ d(x, y) +D(A,B)⇒ ϕ(d(x, y)) + F(D(y, Ty)) ≤ F(M(x, y))

where M(x, y) is given in (1.4) with

(i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;
(ii) there exists x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, x0) = D(A,B).

Then the mapping T has a best proximity point.

If we take α(x, y) = 1 in Theorem 3.6 then we have following result:

Corollary 3.8. Let A and B be two nonempty closed subsets of a complete metric
space (X, d) such that A0 is non-empty and T : A → K(B) be continuous mul-
tivalued mapping and for all x ∈ A with D(x, Tx) > 0, there exist y ∈ A with
D(y, Ty) > 0 satisfying (H1), (H2) and

φ((D(x, Tx))−D(A,B) ≤ d(x, y)⇒ ϕ(d(x, y)) + F(D(y, Ty)) ≤ F(M(x, y))

where M(x, y) is given in (1.4) with

(i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;
(ii) there exists x0, x1 ∈ A0 and y1 ∈ Tx0 such that

d(x1, x0) = D(A,B);
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(iii) F(inf M) = inf F(M) for all M ⊂ (0,∞).

Then the mapping T has a best proximity point.

4. Best Proximity Point Results in Partially Ordered Metric Spaces

Let (X, d,�) be a partially ordered metric space and T : X → CB(X) be a
multivalued mapping. For A,B ∈ CB(X), A � B implies that a � b for all a ∈ A
and b ∈ B.

Definition 4.1. [25] Let A and B be tow non empty subsets of a partially ordered
metric space (X, d,�). A mapping T : A→ B is said to be proximal nondreasing if

x1 � x2
d(u1, y1) = D(A,B)
d(u2, y2) = D(A,B)

 implies u1 � u2

where x0, x1, u1, u2 ∈ A and y1 ∈ Tx0, y2 ∈ Tx1.

In this section, we derive some new results in partially ordered metric spaces
from our main results.

Definition 4.2. Suppose A and B are two non-empty subsets of a partially ordered
metric space (X, d,�). A multivalued mapping T : A→ C(B) is said to be Suzuki-
Edelstein-Wardowski type α-proximal contraction if for all x, y ∈ A with x � y
there exist functions α : A × A → [0,∞), φ ∈ Φ along with conditions (H1), (H2)
and (H′3).

Theorem 4.3. Let A and B be two nonempty closed subsets of a complete par-
tially ordered metric space (X, d,�) such that A0 is non-empty, T : A→ K(B) be
continuous multivalued mapping and for all x ∈ A with D(x, Tx) > 0, there exist
y ∈ A with D(y, Ty) > 0 and x � y satisfying (H1), (H2) and

φ((D(x, Tx))−D(A,B) ≤ d(x, y)

implies
ϕ(d(x, y)) + F(D(y, Ty)) ≤ F(M(x, y))

where M(x, y) is same as in (1.4), with T satisfying the following assertions:

(i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;
(ii) T is proximal nondecreasing;
(iii) there exist x0, x1 ∈ A and y1 ∈ A such that d(x1, y1) = D(A,B), and

x0 � x1.

Then the mapping T has a best proximity point.

Proof. Consider a function α : A×A→ [0,∞) such that

α(x, y) =

{
1, if x � y
0, otherwise.

(4.1)

Now we show that T is α-proximal admissible. By hypothesis (iii), there exist
x0, x1 ∈ A and y1 ∈ A such that

d(x1, y1) = D(A,B) and x0 � x1. (4.2)

Since x0 � x1, we obtain α(x0, x1) ≥ 1. Also by hypothesis (i), we have Tx1 ⊂ B0

and so there exist x2 ∈ A0 such that

d(x2, y2) = D(A,B). (4.3)
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From (4.2) and (4.3), we have

x0 � x1
d(x1, y1) = D(A,B)
d(x2, y2) = D(A,B)

 ,

since T is proximal decreasing, we get x1 � x2. Thus α(x1, x2) ≥ 1. Hence T is
α-proximal admissible. Finally, suppose that

φ((D(x, Tx))− α(x, y)D(A,B) ≤ α(x, y)d(x, y).

For all x, y ∈ A, x � y, we have α(x, y) ≥ 1 and hence we have

ϕ(d(x, y)) + α(x, y)F(D(y, Ty)) ≤ F(M(x, y)).

That is T is Suzuki-Edelstein-Wardowski α-proximal contraction. Thus all the
conditions of Theorem 3.3 holds and T has a best proximity point. �

Corollary 4.4. Let A and B be two nonempty closed subsets of a complete par-
tially ordered metric space (X, d,�) such that A0 is non-empty, T : A→ K(B) be
continuous multivalued mapping and for all x ∈ A with D(x, Tx) > 0, there exist
y ∈ A with D(y, Ty) > 0 and x � y satisfying (H1), (H2) and

φ((D(x, Tx))−D(A,B) ≤ d(x, y)

implies
ϕ(d(x, y)) + F(D(y, Ty)) ≤ F(d(x, y))

where M(x, y) is same as in (1.4), with T satisfying the following assertions:

(i) Tx ⊆ B0 for each x ∈ A0 and (A,B) satisfies the weak P-property;
(ii) T is proximal nondecreasing;
(iii) there exist x0, x1 ∈ A and y1 ∈ A such that d(x1, y1) = D(A,B), and

x0 � x1.

Then the mapping T has a best proximity point.

Proof. If we take M(x, y) = d(x, y) in Theorem 4.3, then we get the proof. �
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