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ON BERTRAND SUPERCURVES IN SUPER-EUCLIDEAN SPACE

HATICE TOZAK, CUMALI EKICI, CANSEL YORMAZ

ABSTRACT. Using Banach Grassmann algebra, given by Rogers, a new scalar
product, a new definition of the orthogonality and of Frenet frame associated to
supersmooth supercurve are introduced on the (m, n)-dimensional total super-
Euclidean space. It is well known that a characteristic property of Bertrand
curve is the existence of a linear relation between its curvature and torsion. In
this study, definition of Bertrand supercurve in B7**™ is given and also some
theorems for Bertrand supercurve in Bi+4 are obtained.

1. INTRODUCTION

In recent years, much conventional differential geometry has been extended to
include anticommuting variables; objects in this extended field of study are distin-
guishable by the prefix ”super” which derives from the same prefix in supersym-
metry, the fermi-base symmetry which is under such intense study by elementary
particle physicist. Historically, the consideration of supermanifolds has a dual ori-
gin. Due to the first origin the earliest work is that Berezin and Leites [6] and Kon-
stant [19] arose from the study of the mathematics of fermi field quantisation, their
approach was sheaf theoretic, extending the sheaf of C*° functions on a manifold,
rather than the manifold itself. Afterwards, a supermanifold was developed with a
lot of study such as [7], [20]. Secondly, a more geometric approach grew directly
from the physicists’ superspace [18] as a space with points labelled by even elements
(z#) and odd elements (§%) of a Grassmann algebra; a supermanifold is a topo-
logical space with local coordinates (x*,0%) of this nature [11], [23]. Alternatively,
the the best relationships between them have been made by Rogers [23], Bartocci
et al. [4] and Batchelor [5]. Then, (m,n)- dimensional total super-Euclidean space
B is studied by Rogers [23]. Using Banach Grassmann algebra By, a new su-
perscalar product, a new definition of the ortogonality and Frenet frame associated
to a supersmooth supercurve in general position are given by Cristea [I1]. Also,
Inoque and Maeda define super-Euclidean space with a different algebra, called a
Frechet-Grassmann algebra [17].
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French mathematician Saint-Venant proposed in 1845 [26] the question whether
upon the ruled surface generated by the principal normal of a curve in the three-
dimensional Euclidean space R? and a second curve can exist which has for this prin-
cipal normals of the given curve. The second question was answered by Bertrand
[8] in a paper in which he showed that a necessary and sufficient condition for the
existence of such a second curve is that a linear relationship with constant coef-
ficients shall exist between the curvature and torsion of the given original curve.
Since the publication of Bertrand’s paper, a pair of curves of this kind has been
called Conjugate Bertrand curves or, more commonly, Bertrand curves. Bertrand
curves have attracted many mathematicians since the beginning. Later, the rela-
tions between Frenet frames of Bertrand couple in the space R™ were given in [16].
Also, Bertrand couple is studied by many researchers in Euclidean 3-space R3 [10],
[12], [27], [28]. In [22], Pears extended the well-known properties of Bertrand curves
in Euclidean 3-space R? to the curves in the n-dimensional Euclidean space R",
n > 3. However, in the last case, he found that either ks or k3 must be zero; in
other words, Bertrand curves in R™ (n > 3) are degenerate, i.e. a Bertrand curve
in R™ must belong to a three-dimensional subspace R? C R". The same result has
been obtained recently in [I] and [2I]. As a natural consequence, some extensions
of that concept have been proposed [I6], [25], and more recently have been general-
ized in [9). Many authors have studied Bertrand curves in other ambient spaces: in
the three-dimensional Lorentz-Minkowski space R$ [2], [3], [14], in semi-Euclidean
spaces R [15], etc.

In this paper, we firstly define Bertrand supercurve, a one dimensional superman-
ifold, couples in definition of Bertrand supercurve on total super-Euclidean space
B}J'™™. Later, using the methods expressed in [I6] and Frenet frame we calculate
some theorems for Bertrand supercurve in Bi+4.

2. PRELIMINARY NOTES

In this section, we refer to a few basic definitions for the so-called geometric
theory of supernumbers, supermanifolds, total super-Euclidean space, supervector
space and operators, initialized by Dewitt, Rogers and Cristea. For further de-
velopments of the theory, which eliminated some drawbacks of research topic, the
reader may utilize [11], [13], [23], [24].

Definition 2.1. For each positive integer L, By will denote Grassmann algebra
over the real numbers with generators 1(F), %L), e B(LL) and relations

10aE = gL = g =19 L

K ' - (2.1)
BB = - gt i.j=12..L.
By, is a gradded algebra and can be written as
Br, = (BL)y® (BL), (2.2)

where @ be the direct sum and (Br), and (Br), be the even and odd part of By,
respectively [23].

Definition 2.2. Let My, denote the set of finite sequences of positive integers
= (1, 2y ooy i) with 1 < pg < po < ... < pg < L [19]. My, includes the sequence
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with no elements, denoted ¢ . As it follows in [24] for each p in M,

(L)  _ pL) (L)
B“L = Pu1 -Ppuy (2.3)
ﬁé ) — 1)
and typical element b of By, may be expressed as
b= > vpP (2.4)
neEML
where the coefficients b* are real numbers. We consider the body map [12]
B (p) = b? (2.5)
is given by
€: B, > R. (26)

with the norm of By, is defined by

ol = > 1. (2.7)

HnEMp,

Definition 2.3. By, is Banach algebra, considering L also a positive integer, with
L> Ll, there is a natural projection

iy 1By — B (2.8)

which is the unique algebra homomorphism satisfying

iy 5§“>:5§L> i=1,2,..L

i (1067) =100,
By, naturally has a By module structure with
ab=ir ;(a)b a€ B, bebg (2.10)

4.

Definition 2.4. The (m,n)-dimensional total super-Euclidean space BJ*™" as the
space, which is the cartesian product of m + n copies of By, is defined by

B = (B, @ (B, (2.11)

A typical element of B**™ is written (a:l,ch, Lx™ 0t 6% 9”) or simply (x,0),
an element of (BZH'")O 1s called c-type or even element and is written in the form
(2 2, ™, 0,07, 0™) with 2t a2, 2'™ € (BL), . Also, 01,67, ..,
0’ € (Br),, an element of (B’L”Jr”) is called a-type or odd element is written in

the form

(m/ll’ m1/27 .“’x//m7 9//1’ 9//27 e el/n) ’wlth CC'/Il,x/IQ, .“7x/lm c (BL)l (212)

and 6"1,0",..,0"" € (BL),. An even element has the parity 0 and an odd ele-
ment has the parity 1 [13].

Definition 2.5. The body map ¢ is defined by [11]

el (BETM, > R

(x,,ﬁl) s g (x/,ﬂ/) _ (E(L)(:C/l),...é‘(l‘)(lflm))

(m;n)

1
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’ /
where (z',0') = (', 22, ..., 2™, 0,672, ...,0™) € (BZH'”)O and the body map &'

’(L) . (Bm+n) . Rn

(m,n)" 1
(2,0 s 8’((75’)”) (2",0") = (gl(L) (9//1)7 LD (0//71))
where x// 0// (:L'//l . m//m’ 9”1, 9//2’ s a/m) c (Bzz+n) L

Definition 2.6. Suppose that V. C B7**" is open and that U = EL) (V). Let

L >2n and L' = [LL] be the least integer not less than L. GH>®(V) denotes the
set of functions,

f :V — B
for which there ezists f,, € C* (U, Br:) such that

f(@,0) = > Zp 1(0ifm)(x)0"

HEMy,

B
that the map Zp+  : C* (U, Br/) — [EE;)O)(U)} " s defined by

[11' — '<621 a:'ﬁnf(5(L)(x1),...,E(L)(-Tm))) (2.13)

xs(@)it (@) i )

ZL’,L(f) (X) = Z

11=0...9,,n, =0

where (X) = (z',...,2™) and s(z') = z' — B (a")1 for i = 1,2,..m. Here
OH = Or1 . 0"k and 6¢ = 1F [24).

Definition 2.7. Suppose n = 2r and the supervectors

v = (a:l,xQ, L™ ot 62, ...,9") ,W = (yl,yQ7 Y™, 01,67, ...,G’f) (2.14)
are the elements of B]'"". Superscalar product is defined by
(w,w) = alyt + . F "y 00T 0T — 070 — L —0m0]  (2.15)
vw ckyk (gjlgf(jl) _ gf(h)gﬁ)
< >f Z jlzjl 1 1 (2.16)
=zlyl by 0T L 00" e — 076y
where f:{1,..,r} = {r+1,...,2r} is one-to-one function [11].

Definition 2.8. Supervector v € BZ”” is orthogonal to supervector

w € BPT™ if and only if eB) ((v,w)) = 0. The standart base vectors on (Bj*™™)
form as

0

Ei = ( 0,...,0) Ey=(0,1,...,0) ... Emn=(0,..1,..0)
Em+1:(0 ~1,0,...,0) vy Bppyr = (0,0,...,—1) (2.17)
Em+r+1:(0 0,1,0,...,0) vy Emyn=(0,...,0,1,0,...,0)

where the first m supervectors are even or c-type and the last n supervectors are
odd or a-type [11].

Definition 2.9. Let f be an element of GH*® (V). Then, fori=1,2,....m

sz %4 — BL
(37,9) = Gif(xae): Z ZL/,L(aifu)('r) s (2.18)

HEMnr
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is defined. Also, for j =1,2,...n

Gj+mfZV — By
(@,0) = Giemf(@,0)= X Zp (f)(x) 60479 x (- (2.19)

HEMr

is defined where |f, ()| is parity of f,.(x) and O*/7 = grr . oK« (—1)i_1 cif g =
for some i, 1 <i <k and 0"/7 =0, otherwise [24].

Definition 2.10. Let BZH” be an (m,n)-dimensional total super-Euclidean space
for L>2n and V C B}J’l be an open set. Assume that

c:Vc Byt — BptT
is a function and for V0 € V. N (Br), and Vt € V N (Br),

CH0 - VN (BL)O — (BZL—HL)O

t = cpo(t) = (c(t,0)),
cop: VN(BL), — R™ (2.20)
t = cop(t) =l 0 coo(t)

are given where (c(t,0)), is the even part of the supervector c(t,0). The function
c is to be supercurve if and only if co.p |vnr is a curve. The function ¢ is called
supersmooth supercurve if and only if

¢t e GH®(V) i€ {1,2,..,m}

dtme GH®(V)  je{l,2,..,n} (2.21)
where
cd=xloc Vie{l,2,..,m}
dtm =0ioc Vi e {1,2,...,n} (2.22)
[24].

Definition 2.11. Let ¢ be a regular smooth curve in Euclidean 4-space E* defined
by
r:s€L—x(s)€ B*

where L denotes a subset of the set R of all real numbers, and s is the arc-length
parameter of c. The curve ¢ is called a special Frenet curve if there exist three
smooth functions ki, ka, ks on ¢ and smooth frame field {e1,eq,e3,e4} along the
curve c. The formulas of Frenet-Serret hold:

€ 0 kieo 0 0 el
€y _ 71€1 €9 0 kQ €3 0 €2
eé - 0 —]ﬂ263 0 k364 es (223)
621 0 0 —]{33 €4 €4

for s € L, where the prime (') denotes differentiation with respect to s. The frame
field {e1, ea,e3,e4} is of orthonormal positive orientation. The functions kiand ko
are of positive, and the function ks doesn’t vanish. Also, the functions ki, ko, k3
are called the first, the second, and the third curvature function of c, respectively.
The frame field {e1,ea,e3,e4} is called Frenet frame field on ¢ [16]. We refer this
notion to [2§].
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3. FRENET FRAME ASSOCIATED TO A SUPERSMOOTH SUPERCURVE IN GENERAL
POSITION

In this part, using definition of supersmooth supercurve and Frenet frame associ-
ated to a supersmooth supercurve in general position [I1], Frenet frame associated
to a supersmooth supercurve in general position of even and odd part of super-
Euclidean space B}**" is given.

Definition 3.1. Let (BZL‘HL)O be an even part of (m,n)-dimensional total super-
Euclidean space for L > 2n and V C Bz’l be an open set andc:V C Bi’l — BZ””
be supersmooth supercurve. The supercurve c is in general position if and only if
-1 -1
{Glc(t,e),...,Ggm Je(t,0), Goc(t, 0), G1Goc(t, 0), ..., G1" >G20(t,9)}
are linearly independent where G1c(t,0) is a supervector which is expressed by
(Glcl(t7 0),...,Gic™(t,0), Gi ™ (t,0), ..., Glcm+”(t79))

and same as Gac(t,0) is a supervector which is expressed by

(GQCl (t, 0), ceey chm(t, 9), G26m+1(t, 0)7 ceey GQCern(t, 0)) (31)
with
GV¢(t,0) = c(t,0), GVe(t,0) = Gre(t, 0), ..., GVe(t, 0) = Gy...Gic(t, 0)
s—times

where ¥(t,0) € V. By' [I].

Definition 3.2. Let (BZ””)O be an even part of (m,n)-dimensional total super-
FEuclidean space for L > 2n and V C Bi’l be an open set. Consider that

c:Vc Byt = (BP),
is a supersmooth supercurve. By a Frenet frame associated to a supersmooth su-
percurve ¢ we shall mean a system of m + n supervector fields {e1, ..., emin} along
to the supersmooth supercurve c for ¥(t,0) € V C Bi’l, we have the following
properties:

<€k(t,9),€h(t,9)> = 5kh Vk,h S {1,2, ,m}

i3 (t0) emis(t0)) = =35

Em+j (ta 0)7 em+3(t7 0)> = 5]3
mtji (£,0), emjo (t,0)) =0
i, (1), €0s5,(1,0) ) =0

<€i(t7 9)7 €m+j (t’ 9)> =0
where

O~ L

/\

Vi e{1,2,..,r},
je{r+1,r+2,..,2r=n}
Vie{1,2,...r—1},

3]6 {i—!— 1,T+2,...},2T:n} (3.2)
Yi1,J2 € {1,2,...,7}

Vi jo €{r+1,r+2,..,2r =n}
Vie{1,2,..,m},Vje{L,2,..,n}

Sp (Glc(t,e), ...,Gg’%(t,e)) = Sp(er(t,), e (t,0))  Vke{1,2,...m—1},

and

(3.3)

Sp (ch(t, 8), G1Gac(t,8), ..., GY ™V Gae(t, e)) — Sp (em+1(t, 0), ey (b, 9))

(3.4)

Vie {1,2,...,m} and Vj € {1,2,...,n} [11].
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Theorem 3.3. Let (BZ”")O be an even part of (m,n)-dimensional total super-
Euclidean space B’L”+" for L>2n and V C Bz’l be an open set and

c:VcBpt— (B,

be a supersmooth supercurve in general position which is satisfied following relation:
Forv(t,0) e V C Bi’l,

e ({Gre(t,0), GA") Gac(t, 0) >) >0

e ({Giret,0), G(’"“l Gac( t,9)>> >0 Vo€ {1,2,er — 1}

e ({Gae(t, 6), GV Gaclt, 0) >) =0 Vie{1,2,...n—1}
Vi, je{1,2,...,r—1}
J#E 5< g
Then there exists a unique Frenet frame {e1, ..., €min} associated to the supercurve
¢ and forV(t,0) € V C Bi’l

(3.5)

g<L>(<GJ'G c(t,0), GV Gyelt, 0) >

Glek(t,(‘)) = Z akh(t,e)eh(tﬁ) Vk € {1,2, ,m}
= (3.6)
G1€m+j(t,9) = lzl A+ m+l(t7 9)6m+l(t,0) Vj e {1, 2, ,?’L}
where
akp(t,0) + ank(t,0) =0 Vk,h € {1,2,....,m}
akh(t,ﬂ) =0 h>k, Vk,h € {1,2,...,777,}
Am+j;  m+ja (ta 0) + AmA4r+js  m+r+ji (tv 0): 0 thj? € {17 23 ) T}
AmA4r+ji m+jz (tv 0) — Am+js  mA4r+i (t7 9): 0 le»jQ € {17 2. T}
a; m+j(t,9) =0 Vi € {1,2, ,m}
Am+5 i(t,&) =0 JjE {1,2,...,’[7,}
Amtj m+i(t,0) =0 l#j5+1
(3.7)
and
Am+j1  m+ja2 (tv 0) = <Glem+j1 (tv 9)7 Em+r+ja (ta 0)> vjlan € {17 27 ) 7"}
Am+j1  m+r+jsz (tv 9) = - <Glem+j1 (t79)7 €m-+js (t70)> vjlan € {17 2, "'vT}
Am4r4ji m+js (tv 9) = <G1€m+r+j1 (t’ 9), Em+r+ja (t’ 9)) Vij1,J2 € {17 2, T}
Am4r+ji mtrtjz (tv 9) == <Glem+7"+j1 (t’ 0)5 Cm+jo (t’ 9)> V1.2 € {17 2., T}
akh(t, 0) = <G1€k(t, 9), eh(t, 9)> Vk,h € {1, 2, .t m}
ak m+j(t70) = <G16k(t’ 0)7em+j(t79)> [Vk € {1a27"'7m}a
mj k(t,0) = (Grem4;(t,0),ex(t,0)) Vie{l,2,..,n}]
(3.8)

are obtained [11].

Definition 3.4. Let (B’L”Jr”)1 be an odd part of (m,n)-dimensional total super-
Fuclidean space for L > 2n and V C Bi’l be an open set and

c:VcBp' = (B,

be supersmooth supercurve. The supercurve c is in general position if and only if

{Gzc(t, 0), G1Gac(t,0), ..., G\ "V Gae(t, 0), Gic(t, 0), ..., G Vet 9)}
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are linearly independent where G1c(t,0) is a supervector which is expressed by
(Glcl (t, 0), ceey Glcm(t, 9), G10m+1(t, 9), veey G16m+n(t, 9))
and same as Gac(t,0) is a supervector which is expressed by
(GgCl (t, 9), ceey chm (f, 9)7 G20m+1(t, 9), ceey chm+n(t7 9))

with

GO¢(t,0) = c(t,0), GVe(t, 0) = Gre(t,0), ..., G\Ve(t, 0) = Gy...G1c(t, ).

s—times

where for ¥(t,0) € V. B}

Definition 3.5. Let (BZH'")l be an odd part of (m,n)-dimensional total super-
FEuclidean space for L > 2n and V C Bi’l be an open set. Consider

c:VcBpt— (B,
supersmooth supercurve. By a Frenet frame associated to a supersmooth supercurve
c:V C Bi’l — (BZ””)l we shall mean a system of m + n supervector fields
{€1, s Emin} along to the supersmooth supercurve c¢ such that for ¥(t,0) € V. C

B}J’l we have the following properties:

(ex(t,0), en(t, 0)) = Vi b€ (1,2, .1}
<67“+J1 (t 0) Ertjs (t79)> Vi1, J2 € {1’2a "'7T}

(€)1 (t,0), €44, (t,0)) = 1112 Vi1, j2 € {1,2,...,1}

<6T+J1 (t 9) €j2 (t 9)> = ]1]2 thjg € {1a2’ "'77'} (39)
<em+J1 (t 9) C€m+jz (tv )> J1J2 thjz € {1727 7n}

<e]1 (t 0) em+]2( 9)) = 0 [le € {1,2,...,7‘},

<€7+J1 (t,0), Em+jz (t.0)) = Vj2 € {1,2,...,n}]

where
Sp (ch(t,ﬁ),Gngc(t,H), ...,ng*)GQC(t,a)) = Sp(ei(t,0), ... e;(t,0))  (3.10)
Vie{1,2,...,m},Vj€{1,2,...,n} and
Sp <Glc(t, 0),... G§k>c(t,e)) = Sp(emi1(t,0), ... emsn(t,0)) (3.11)
Vke{1,2,..,m—1}.

Theorem 3.6. Let (BZH'”)l
Euclidean space BZH" for L>2n and V C Bi’l be an open set and

c:Vc Byt — (B

be an odd part of (m,n)-dimensional total super-

1

be a supersmooth supercurve in general position which satisfies following relations:
For¥(t,§) e V C B}'",

L (<G2c(t,9),G§’“>G2c(t,9)>) >0
(G Gac(t,0), G Gaelt,0)))> 0 Wi, o€ {1,207 = 1}
L (<G20(t,9),ng)GQC(t,e)» -0 Vie (1,2, .n—1}

1L Jr (r+71) _ Vj/7 je{]-v?v"'vr - ]-}
(<G1 Gac(t, 9), G ch(t,0)>)f0 i

~_—

(3.12)
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Then there exists a unique Frenet frame {e1, ..., eman} associated to the supercurve
c and for¥(t,0) € V C By

Giex(t,0) = Z akh(t,e)eh(t,e) Vk € {1,2, ,m}
m =t (3.13)
Glem-‘rj (ta 0) = Z Am+j m+l(t7 0)6m+l(ta 0) Vj € {17 2., TL}

=1
are obtained where
ajy g, (t79) + Ar+jy r+j; (t79) =0 le,jge {1, 2, ...,’I“}
Ar4j1  jo (t, 9) — Qr4j, gy (t, 9) =0 Vj.l,j.ge {1, 2, .., ’I"}
A5y r4js (t, (9) — Qjy  r4jy (t, 9) =0 vjl,]QE {1, 2, ...,’I“}
Ajy . m+js (t, 9) = Qj,, m+js (t, 9): 0 lee {1, 2, ey m} s nge {1, 2, . n}

akn(t,0) =0 h#k+1, Vk,he{1,2,....,n}
(3.14)
and
515y (t,@) = <G1€j1 (t,@),erﬂz (t,9)> le,jg S {1,2, ...,’I“}
aj, T+j2(t70) = - <G16j1 (t’9)7€j2(t’9)> vjlva € {1’27 ""T}
Ar+j, jz(t’e) = <G1€T+j1 (t70)7er+j2(t70)> Vj17j2 € {1a2a ...,T’}

Ar+j1  r+j2 (tv 0) - <G1€T+j1 (ta 9)7 €ja (tv 0)> vjlaj? € {]-a 23 ) 7‘} (315)
Am+j1  m+js (tv 9) = <G16m+j1 (t7 9)7 Em+jo (tv 0)> vjlv J2 € {17 2. n}

Aj; m+ja (t’ 9) = <Gl€j1 (tv 9)7 Cm+jz (t> 0)> [le € {17 2,0 m} ’

Am+j1 jZ(t,H) = <G1€m+j(t,9),€k(t,9)> ng S {1,2,...,m}].

4. ON BERTRAND SUPERCURVES IN SUPER-EUCLIDEAN SPACE

In this section, we introduce Bertrand supercurve couple and give some theorems
in super-Euclidean space.

Let My, My C B7**" be two supersmooth supercurves given by (V, ¢) and (V, ¢*),
respectively. For (t,60) € V, ¢* is called Bertrand of the supercurve ¢ or (My, Ms) is
called Bertrand supercurve couple, if principal normals of body parts at the point

c(t,0) and c*(t,0) are linearly dependent where V' C B(Ll’l) is an open subset.

Theorem 4.1. Let (My, Ms) be Bertrand supercurve couple which are given by
coordinate neighbourhoods (V,c¢) and (V, c*) in (BZ””)O, respectively. The distance
between the points c(t,0) € My and c*(t,0) € My is given by

d(c(t,0),c*(t,0)) =b

where b is a superconstant.

Proof. If (M1, Ms) is Bertrand supercurve couple, we have

c*(t,0) = c(t,0) + A(t, 0)es(t,0) (4.1)
where A(t,0) is supervariable. Differentiating both sides of the expression (4.1)
with respect to t:

dt*
dt

Gie(t,0) = = Gic(t,0) +G1A(t,0)ea(t, 0) + (—1)HAED A1 0)G1eq(t,0). (4.2)
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From the equation (3.6, we get

dt*
Gie'(t,0)—- = Gic(t,0) + G1A(t, O)ea(t,0) + (=)IHHAEDT AL, 0)ags(t, 0)es(t, )

(4.3)

where t and t* are arc—parameters of M; and M5, respectively.

Thus we have
eT (ta 9)% = (1 + ( )‘tHA (t,6) ‘ (t 0)a21(t7 0))61(ta 0) + GlA(t7 e)eZ(tv 9)
A(t 9)@23(t G)eg(t, )

(4.4)

Multiplying the the equation (4.4) with es(¢,6) by superscalar product, we have

<€>{ (ta 0)» 62(75, 0)> % = (1 + (_1)|tHA(t’9)‘A(tv 0)a21(t7 8)) <61(t7 0)) 62(t, 0)>
+G1A(t, 0) <€2(t7 6‘), €2 (t7 9)>
+<—1)|t‘|A(t’a)|A(t7 9)&23<t, 9) <63(t, 9), eg(t, 9)> .
(4.5)
From the definition of Bertrand supercurve couple (%) (% (t,0), ex(t,0)) = 0. Thus
we obtain

(4.6)

and

e (a1 (t,0)) s
1) HIAGO (2
L) 1AC.0)]
p)lellAo
)\t||A(t0 <

+(-
+(=
+(=
+(= t,0)) s (
G1el™) (A(t,0)) (s (ea(t,0
G

\
le
s
\ ) s

), ea(t, 0))) (4.7)

(A(t,0)) (s (e2(t,0), ea(t
[£11A(8.0) (L

)
A0 (L
)
)

- =

_|_
+
+(=
_|_
(=D)AL (A2, )

(= 1)HIAwS)] (A(t,@))S(azs(tag)) (es(t,

where b is a superconstant. From the definition of the distance on total super-
Euclidean space, we can easily find

d(c(t,0),c*(t,0)) = b (4.8)

where b is the superconstant. ([l

s
1
-1
-1
1

Theorem 4.2. Let (My, Ms) be Bertrand supercurve couple which are given by
coordinate neighbourhoods (V,¢) and (V,c*) in (BJ™™),, respectively. The distance
between the points c(t,0) € My and c*(t,0) € My is given by

d(c(t,0),c*(t,0)) = b

where b is a superconstant.

Proof. If (M7, Ms) is Bertrand supercurve couple, we have

*(t,0) = c(t, 0) + A(t, 0)es(t, 0) (4.9)
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where A(t,0) is supervariable. Differentiating both sides of the expression (|4.9)
with respect to t:

d *
GLe*(t,0)—- = Ghe(t, 0)+G1 A(t, 0)es(t, 0)+(—1)HAED At 0)G1es(t,0). (4.10)
From the equation (3.13), we get
dt*
GLe*(t,0) - = Ghe(t, 0) + GrA(t, O)es (£, 0) + (—1)INAEDTA (2, 0)agr (t, 0)er(t, 0)
(4.11)
where t and t* are arc-parameters of M; and Ms, respectively.
Thus, we have
et(t,0) %L = (1+ (=1)IIACDI A, 0)ags(t,0))er(t, 0) (4.12)

+GlA(t, f)es (t7 9) + A(t, 9)(167(t, 9)67(t7 9)
Multiplying the the equation (4.12)) with eg(t,0) by superscalar product, we get

(e3(t.0),e(t,0)) G = (14 (=1)MACDIA®R, B)ags (1, 6))
{es(t,0),e6(t,0)) + G1A(t,0) (es(t,0),e6(t,0)) (4.13)
+(71)‘t”A(t’e)‘A(ta 0)a67(t7 0) <67(t’ 0)3 66( 0)>

From the definition of Bertrand supercurve couple &) (e%(t, ), es(t, 0)) = 0. Thus
we obtain

(4.14)

and

=& /(L) (a65(t 0
+(—1)HlA@O) (L
+(=1)HIAEO /(L
+(-

% es(t,0))
(
1)HIA®O g (
(
)

—
N
(=2}
ot
» o~
~
<>
~—
~—
»
—~
9]
ot
—~
~
>
~—

(=)Ao g
+G1e'F) (A(t, 0

+G18( (t,0))(
D)IEIA®0)] 7

iy it
)M\Atfmg(L
-1) s (

)
e(t,0))) (4.15)

1)lellA6)
+( 1)ll1A(6 5 {er(t,0), e, 0))

where b is a superconstant. From the definition of the distance on total super-
Euclidean space, we can easily find

d(c(t,0),c*(t,0)) = b (4.16)

where b is the superconstant. (I

—_~ o~ o~ o~

Theorem 4.3. Let My, Ms be supersmooth supercurves which are given by coordi-
nate neighbourhoods (V, ¢) and (V,c*) in (BZH'”)O, respectively. Then, My, Ms are
Bertrand supercurves if and only if

M) (agy (t,0)) + pe™® (ags(t,0)) =1

where X, u are superconstants and as1(t,0), ass(t,0) are supercurvatures in M.
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Proof. It (M7, M) is Bertrand supercurve couple from Theorem 4.1, we have

ei(t.0) % = (1 — (=D)AL (4 5(A(2,6))))az (1, 6))er(t, )
+(— 1) HI+s(AEON (b 4 5(A(t,0))))azs(t, 0)es(t, )
where s(A(t,0)) is a odd part of supervariable A(¢,6) and b is a superconstant.
Differentiating both sides of the expression (4.17)) with respect to ¢ and from the
equation ({3.6]), an equation
afa(t,0)e3(t.0) G = GrAi(t,0)es(t, 0) + G1Ba(t, 0)es(t,0)
+[(=1)IHIAL O g5 (£, ) (4.18)
—(=D)IHNIBLEDIB (¢, 0)ags(t, 0)]ea(t, 0)
is obtained that A;(t,0) = (1 — (—1)HIb+sAGDI (b 4 s(A(t,0)))as (t,6)) and
Bi(t,0) = (—1)IteFs(A@N (h 4 s(A(t,0)))ass(t,0). Since (M, My) is Bertrand
supercurve couple, we have
ej(t,0) = A1(t,0)eq1(t,0) + By(t,0)es(t, 0) (4.19)

where Ay(¢,0) and Bi(t,0) are supervariables. Let us differentiate the equation
(4.19) with respect to ¢ and use the equation (3.5
aia(t,0)es(t,0) % = GiAL(t,0)e1(t,0) + Gi Bi(t,0)es(t, 0)
—‘r[( )‘tHAl(t 0)|A1(t,9)&12( 9) (420)
— (<) B OB (1, O)azs(t, )]es (. )

is found. Since {ea(t,0),e5(t,0)} is a linearly dependent set and using the equation

[EI8), we get

(4.17)

D) (G1A1(t,0)) = 0 and V) (G By (t,0)) = 0. (4.21)
Then, using (%) (A;(t,6)) =superconstant and (X) (B (t,#)) =superconstant
ALt 0)
4.22
<Bl<t 9>> ‘ (422

is written where a is a superconstant. From the equation (4.18]) and ( -,
Bi(t,0) = (~1)AGHI (b4 S(A(tﬁ)))azl(tﬁ)Bl(t,9)
+(=1)HIAEOI A, (2,0) (b + s(A(t, 0)))azs(t, 0).

If we divide the equation (4.23)) with B;(¢,0) and seperate into the even and odd
parts, then we get

(—DHIAEOT = (b + 5(A(t,0))) [ (azi(t,6)) + s (a2 (1,6))]
+ [0 (548) +s (R 0 +sawe)) (429
[e®) (azs(t, 0)) + s (agg(t 9))] .
From even and odd parts of the equation (4 , we get
AeD) (az (t,0)) + M5<L> (a2s(t,0)) =1 (4.25)

(4.23)

and
0= b- S(agl( 9 +8( (t 9)[ (L) (agl(t 9))—|—s(a21(t 9))]
+€(L ( :0;)1) 5&23t9
(21893 b+ {5 (ans(t,0)) +s (azs(1,0))}

+5(A(t, 0){s (a3 (t,0)) +=) (a23(t,0)) }].

(4.26)
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d

Theorem 4.4. Let My, Ms be supersmooth supercurves which are given by coordi-
nate neighbourhoods (V,c) and (V,c*) in (By**"),, respectively. Then (M, My) is
Bertrand supercurve couple if and only if

)‘8(L) (a65(ta 9)) + :uE(L) (a67(t7 0)) =1

where X, u are superconstants and ags(t,0), agr(t,0) are supercurvatures in M.

1’

Proof. If (M7, Ms) is Bertrand supercurve couple from Theorem 4.2, we have

e3(t,0) % = (1= (=[NP (b 4 5(A(t, 6))))acs(t,0))es (¢, 6)
H(=1) IO (b 1 5(A(t,0))))agr (. 0)er(t, 0)
where s(A(t, 0)) is a odd part of supervariable A(¢, 8) and where b is a superconstant.
Differentiating both sides of the expression (4.27) with respect to ¢ and from the
equation (3.13)), an equation
agr(t,0)ed(t,0) 4 = G1A;(t,0)es(t,0) + G1Bi(t,0)es(t, 0)
+[(=1) A @O g 6 (2, ) (4.28)
—(—l)ltHBl(t’g)‘Bl (t, 9)0,67(t, 9)]66(t, (9)
is obtained that A;(t,0) = (1 — (—1)HIb+s(AGDI (b 4 s(A(t,0)))ags(t,0)) and
Bi(t,0) = (=1)ItIb+s(AGON (h 1 5(A(t,0)))agr(t,6). Since (My, Ms) is Bertrand
supercurve couple, we have
6; (t, 9) =A (t, (9)65 (t, 9) + B, (t, 9)67(t, 9) (429)
where A;(t,0) and B (t,0) are supervariables. Differentiating the equation (4.29)
with respect to ¢ and using the equation (3.9) gives
ags(t,0)es(t,0) 4 = G1AL(t,0)es(t,0) + GLBy(t,0)er(t,0)
+ [As(t, 0)ase(t, 0) — Ba(t, 0)agr(t, 0)] ez (t,6).
From the equation (4.28) and {eg(t,0), ef(¢,0)} is a linearly dependent set, we get

(4.27)

(4.30)

') (GLAL(t,0)) = 0 and &'V (G1 B, (t,0)) = 0. (4.31)
Then, using ') (A;(t,0)) =superconstant and &'(%) (B (t,0)) =superconstant
Aq(t,0)
UCON IS 4.39
“(Sies) = 2

is written where a is a supernumber. From the equation (4.28) and (4.29)), we have

Bi(t,0) = (=D)!MAGO (b 4 5(A(t,6))))ags(t, ) Bi(t, 0)
+(=DIHAEDI A (2,0) (b + s(A(t,0))))aer (t,0).
If we divide the equation (4.33]) with Bj(t,6) and seperate into the even and odd
parts, then we get

(—D)IHAGDT = (b 4 s(A(t

(4.33)

85/@) (acs(t,0)) + s (ags(t,0))]
Aq(t,0)
+ s (Bl(t,e))} (434)
(€D (agr(t,0)) + 5 (aer(t,0))] -
From even and odd parts of the equation (4.34)), we get
A (ags (t,0)) + =P (agr(1,0)) = 1 (4.35)



ON BERTRAND SUPERCURVES IN SUPER-EUCLIDEAN SPACE 27

and
0= b-s(ass(t,0)) +s(A(t 0)["E) (ags(t, 6)) +s (ags(t, 0))
+e'®) (548 ) b s (agr(1,9))
5 (B0 [b- {8 (g (t,0)) +5 (aor (1, 60))}
+s(A(t, 0){s (aer(t,0)) +&" ) (aer(t, 0))}].

(4.36)

]

Example Let B} "2 be a (2, 2) dimensional total super-Euclidean space, V ¢ B}

be an open subset,

c: Vet - B
(t,0) oot 0) = (12 +2,08%,60 +28' — 3,6t2)

be a supercurve. Supercurve c(t,6) is supersmooth because the functions
Mt 0) =12 +2, A(t,0) =06%, 3(t,0) =0 +28" — 3, c*(t,0) =0t>  (4.38)
are supersmooth. If we compute Gic(t, 0), Goc(t,0) and G1Gac(t, 0), then we have

(4.37)

Gic(t,0) = (2t,0,28',20-t) (4.39)
G2C(t70) = (Oaﬂzalatz)
GlGQC(t, 0) = (0, 0, O, Qt)
Because of satisfying the equation (3.5)), we get
(1) ((Gyc(t, 0), G1Gac(t, 0))) =2t>0
e ((Gac(t, 0), Gac(t, 0))) =0

) ((G1Gac(t, 0), G1Gac(t,0))) =0
e1(t,0), es(t,0) and e4(t, d) are obtained by
ea(t0)= (1,028 (207" .0)
es(t,0) = (0,82-(2)"",(2t)"" ,2—1t) (4.40)
eq(t,0) = (0,0,0,2t).
Computing Gic(t, 0), Goc(t,0) and G1Gac(t, 6), the supervectors
{G1c(t,0),Gac(t,0), G1Gac(t,0)}
are linearly independent and then, system of the supervectors
{e1(t,0),ea(t,0),e3(t,0),eq(t,0)}

is Frenet frame of supercurve c. Let the matrix M(¢,0) be

1 0 0 —28 (2t)""
M@t0)=1|0 g2 27 —(@n! (4.41)
0 0 2t 0

and ex(t, ) :(—262ﬂ1 (2t)"", —1,0, —ﬂQ) is computed. a12(t,8) and ass(t,d),
aia(t,0) = %2 (4.42)

and
az3(t,0) = —t~* (4.43)
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are obtained. Finally, the matrix

0 BLE2t=2 0 0
—BLp32t2 0 0 0
A= 0 0 P (4.44)
0 0 0 —t1

can be obtained.
Example Let Bi” be a (2, 2) dimensional total super-Euclidean space, V C Bz’l
be an open subset and

¢:veBy - By

. t 4.45
(t,0) +— c*(t,0) = (t*+1,08% — 52ﬂ1,251t+9 3,0t% — ﬁ) (4.45)
be a supercurve. c¢*(t,6) supercurve is supersmooth because the functions
cl(t,0) =241, 2(t,0) =08% — (828) ¢

c3(t,0) =28%+0-3,  (t,0) =042 — (1) ¢
are supersmooth. We compute G1c*(¢,0), Gac*(t,0) and G1G2c*(t,0) as
Gie'(t,0) = (2t (826Y) 28" 200 — (81) )

Gaoc*(t,0) = (0,8%,1,¢%)
GlGQC*(t, 9) = (0, 0, O7 Qt) .

Because of satisfying the equation (3.5)),

e (<G26*(t79>7G1G20 ( ,9))) =2t>0
e®) ((Gac*(t,0), Gac™ (¢, 0))) =0
) ((G1Gac*(t,0),G1Gac*(t,0))) =

ex(t,0), e5(t,0) and e} (¢,0) are obtained as

eit.0)= (L—(826) 7 2 28t en o — (8) T ey )
es(t.0)= (0,87 (20" 20" 27 1)
es(t,0) = (0,0,0,2t).

Computing G1c*(t,0), Gac*(t,0) and G1Gac*(t,0), the supervectors
{G1c*(t,0), Gac* (t,0), G1Gac* (¢, 0)} are linearly independent and then system of
the supervectors {ej (¢, 0) e5(t,0),e5(t,0),e5(t,0)} is Frenet frame of supercurve c.
Let the matrix M(t,0) b

—1

1 — (820 2™t o () et —26t 27!
M(t,0)=1 o B2 (2t)~" 9-1¢ —(2t)! (4.46)
0 0 2t 0

and e}(t,0) :(f ((5251)71 + 26251) (2t)"", 1,0, 7B2> is computed. a¥,(t,0)
and a3st,0),
2 (ﬁQﬁl)Q

12(t,0) = B

(4.47)

and
ajs(t,0) = —t71 (4.48)
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are obtained. Finally, the matrix

2 (826Y)° -1
0 T 0 0
. 201
A=| 1 22 2(§1tﬂ2 ) 0 0 0 (4.49)
0 0 10
0 0 0 -t

can be obtained. Finally, since ™) {ea(t,0),e3(t,0)} is linearly dependent and
g(L) <€>|1( (tv 9), €2 (t7 0)> =0,

we can say that (c(t,0),c*(t,0)) is Bertrand supercurve couple. The distance of
Bertrand supercurve couple, as in equation (4.23)),

d(e(t,0),c*(t,0)) =1 (4.50)
is easily found.
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