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AFFINE DIFFERENTIAL INVARIANTS OF A CURVE IN THE

PLANE

UĞUR GÖZÜTOK, YASEMIN SAĞIROĞLU

Abstract. This study focused on the concept of arc length and curvature, be-

ing affine differential invariants of a curve in the plane. The Lie transformation
groups theory implementing affine differential geometry was associated with

these concepts in order to obtain the invariants by means of group operators.

1. Introduction

Affine differential geometry assume a significant importance in the field of ge-
ometry. Affine differential geometry, as a branch developing out from the classical
differential geometry, was introduced in the early 1920’s and, most notably, W
. Blaschke is known as one of the primary contributors extending this field as a
separate branch of study following his seminal study [7] in 1923. This was to be
shortly followed by the important contributions of G. Fubini and E. Čech to the
newly advancing field [2]. In addition to these studies, Felix Klein’s Erlangen Pro-
gram further stirred the new research areas hinted at by affine differential geometry
through which Klein postulated a method for characterizing geometries based on
the group theory.

Research proposals focusing on affine differential geometry attracted a significant
amount of attention from numerous mathematicians since the beginning of the latter
half of the 20th century. P.A. Schirokow in 1962 and S. Buchin in 1983, for instance,
published two very influential papers [5, 6] in the field. Their seminal studies
established the curve theory within the affine group alongside with its subgroups.
Additionally, in 1994, K. Nomizu and T. Sasaki introduced affine immersions to
the growing field [3]. These advances were followed by the recent incorporation of
the equivalence of parametric curves by means of differential variants, with respect
to the 2012 study published by Y. Sağıroğlu [10].

In affine differential geometry, the bulk of the research focus is on the curves and
their invariants such as the curvature and the arc length. Obtaining invariants like
these can be done through numerous methods that were previously demonstrated
elsewhere [1, 4, 8, 9]. In [5], most notably, Schirokow demonstrates a method to
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calculate the curvature and the arc length of a planar curve with respect to the
geometry of affine group and all associated subgroups.

In this study, we would like to demonstrate the steps in obtaining the curvature
and the arc length of a curve in the plane through the geometry of affine group and
associated affine subgroups with the aid of operators postulated in the Lie method
for the solution of differential equations invariant under transformation groups, or
in other words, the Lie transformation groups theory.

2. On Lie Transformation Groups

In this section we would like to introduce some basic definitions and calculations
from [5] regarding Lie transformation groups.

To start with, in an n−dimensional space, we denote the coordinates of a point x
as x1, x2, ..., xn. In this space, the definition of a transformation which transforms
x to x′ is

x′i = ϕi(x1, x2, ..., xn; a1, a2, ..., ar), i = 1, 2, ..., n (2.1)

where the functions ϕi are analytic functions depending on xi and aα, α = 1, 2, ..., r.
The variables aα are called the parameters determining the transformation (2.1).
If there is no relationship between the parameters, that is,if the number of the
parameters cannot be decreased any further, then the parameters are called the
independent parameters or the principal parameters. Therefore, the set of images
described in (2.1) is defined as r−parameter family. If we denote the transformation
(2.1) with Ta, then the equation becomes

x′ = Tax. (2.2)

Definition 2.1. The r−parameter family of the transformations (2.2) is called
r−parameter Lie group, if the following requirements hold:

i. The product of any two transformations in the family belongs to family.
ii. For any transformation, there exists an inverse transformation within the

family.

In (2.1), if we replace the parameters aα with the product cαδt where cα are
arbitrary constants and δt is an infinitesimal multiplier, then we end up with a
transformation which transforms x to a point x′ in a neighbourhood of x. This
transformation is called an infinitesimal transformation of the group and is defined
by the as:

x′i = xi +

r∑
α=1

(
∂ϕi
∂aα

)
0

cαδt (2.3)

where
(
∂ϕi
∂aα

)
0

are obtained via substituting the parameters of the identity trans-

formation with the terms ∂ϕi
∂aα

. We also denote
(
∂ϕi
∂aα

)
0

with ξiα(x).

Definition 2.2. The operators of which associated coefficients are obtained by in-
finitesimal transformation of the group are called the infinitesimal operators of the
group and are expressed as:

Xα = ξsα(x)
∂

∂xs
, 1 ≤ α ≤ r. (2.4)
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By incorporating linear combinations of the infinitesimal operators, we can rewrite
the infinitesimal transformation (2.3) as

x′i = xi + (cαXαxi)δt. (2.5)

Proposition 2.3. Any r−parameter Lie group has r infinitesimal operators.

Example 2.4. Consider the equi affine group in the plane. Transformations of the
equi affine group are as follows:

x1 = a1x+ b1y + c1,
y1 = a2x+ b2y + c2,

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ = 1.

Since the determinant equals to 1, one of the parameters can be eliminated. Hence,
the equi affine group is a 5−parameter Lie group. The 5 infinitesimal operators of
this group are as follows:

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂x
, X4 = x

∂

∂y
, X5 = x

∂

∂x
− y ∂

∂y
.

Now, consider an arbitrary r−parameter Lie group in the plane:

x1 = f1(x, y; a1, ..., ar),

y1 = f2(x, y; a1, ..., ar).
(2.6)

In this group, assume that the curve y = y(x) has continuous derivatives up to

the order (r − 1). If we take the terms x1, y1, y
′
1, ..., y

(r−2)
1 as transformed points,

then we end up having the following equation system:

x1 = f1(x, y; a1, ..., ar),

y1 = f2(x, y; a1, ..., ar),

y′1 = f3(x, y, y′; a1, ..., ar),

...

y
(r−2)
1 = fr(x, y, y

′, ..., y(r−2); a1, ..., ar).

(2.7)

The equation system (2.7) is called generalized group equations of the group.

The n−tuple that consists of the terms x1, y1, y
′
1, ..., y

(r−2)
1 is called the element of

order (r − 2) and is denoted by e. Since the functions in the equation (2.6) are
analytic functions, we obtain:

a1 = a1(e, e1), ..., ar = ar(e, e1). (2.8)

By differentiating the coordinates, through, we also derive:

dx1 =
∂f1

∂x
dx+

∂f1

∂y
dy,

dy1 =
∂f2

∂x
dx+

∂f2

∂y
dy.

Incorporating equations (2.8) within the above equation system, we get:

dx1 = β1(e, e1)dx+ β2(e, e1)dy,

dy1 = γ1(e, e1)dx+ γ2(e, e1)dy.
(2.9)
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Fixing the terms dx1, dy1, e1, does not alter the equation (2.9). If we use the
equations β1(e, e1) = λ1(e), β2(e, e1) = λ2(e), γ1(e, e1) = µ1(e), γ2(e, e1) = µ2(e),
then we derive the following differential forms:

ω1 = λ1(e)dx+ λ2(e)dy,

ω2 = µ1(e)dx+ µ2(e)dy.

Furthermore, since dy = y′dx, we also derive the following equations:

ω1 = [λ1(e) + λ2(e)y′]dx = λ(e)dx,

ω2 = [µ1(e) + µ2(e)y′]dx = µ(e)dx.

Quotient of the coefficients in the above equations is an invariant of the group that
depends on only e. By means of this invariants, an invariant form ω = ω(e)dx can
be defined.

Definition 2.5. The invariant form mentioned above is called the arc element of a
curve in the geometry of r−parameter Lie group and is expressed as ds = w(e)dx.

Now let us consider the differential of the term y
(r−2)
1 in the generalized group

equations (2.7):

dy
(r−2)
1 =

∂fr
∂x

dx+
∂fr
∂y

dy +
∂fr
∂y′

dy′ + ...+
∂fr

∂y(r−2)
dy(r−2).

If we incorporate equation (2.8) in the above equation, we get:

dy
(r−2)
1 = α1(e, e1)dx+ α2(e, e1)dy + ...+ αr(e, e1)dy(r−2).

Additionally, if we adjust e1, we derive the following differential form:

α1(e)dx+ α2(e)dy + ...+ αr(e)dy
(r−2).

Moreover, since dy = y′dx, dy′ = y′′dx, ..., dy(r−2) = y(r−1)dx, we obtain the fol-
lowing invariant form:

[α1(e) + α2(e)y′ + ...+ αr(e)y
(r−1)]dx.

The above invariant form can be written shortly as:

[α̃(e) + β̃(e)y(r−1)]dx.

Definition 2.6. The differential form obtained by dividing the above mentioned
invariant form by the arc element is called the curvature of a curve in the geometry
of r−parameter Lie group and is denoted by k = α(e) + β(e)y(r−1).

Example 2.7. Consider the equi-centro affine group in the plane. Transformations
of equi-centro affine group are as follows:

x1 = a1x+ b1y,
y1 = a2x+ b2y,

∣∣∣∣a1 b1
a2 b2

∣∣∣∣ = 1.

Equi-centro affine group is a 3−parameter Lie group. Let us take a curve that
has continuous derivatives up to the order 2. In this case, the generalized group
equations are obtained as follows:

x1 = a1x+ b1y

y1 = a2x+ b2y

y′1 =
a2 + b2y

′

a1 + b1y′
.
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Following the elementary calculations, we yield the formula for equi-centro affine
arc length of a curve in the form

ds = (xy′ − y)dx.

Now, we need to focus on the differential of y′1. We have

dy′1 =
y′′

xy′ − y
dx,

and dividing this invariant form by the arc element (xy′ − y)dx, we obtain equi-
centro affine curvature of a curve as follows:

k =
y′′

(xy′ − y)3
.

3. Group Operators Method for Curvature and Arc Length

We know that the r infinitesimal operators of an r−parameter Lie group in the
plane are as follows:

Xρ = ξρ
∂

∂x
+ ηρ

∂

∂y
, ρ = 1, 2, ..., r. (3.1)

Definition 3.1. Generalized form of order (r − 1) of an infinitesimal operator is
defined by

X(r−1)
ρ = ξρ

∂

∂x
+ ηρ

∂

∂y
+ η′ρ

∂

∂y′
+ ...+ η(r−1)

ρ

∂

∂y(r−1)
(3.2)

where

η′ρ =
dηρ
dx
− y′ dξρ

dx
,

η′′ρ =
dη′ρ
dx
− y′′ dξρ

dx
,

...

η(r−1)
ρ =

dη
(r−2)
ρ

dx
− y(r−1) dξρ

dx
.

We know from Definition (2.6) that the curvature of a curve in the geometry of
an r−parameter Lie group assumes the form k = α + βy(r−1). The image of this
equation under the infinitesimal transformation is expressed as

δk

δt
=
δα

δt
+
δβ

δt
y(r−1) + βη(r−1)

ρ = 0 (3.3)

where η
(r−1)
ρ =

dη
(r−2)
ρ

dx
− y(r−1) dξρ

dx
. After η

(r−1)
ρ is calculated, we simplify the

equation into

η(r−1)
ρ = γρy

(r−1) + δρ.

Placing this equation within the equation (3.3), we get

δα

δt
+ βδρ + y(r−1)(

δβ

δt
+ βγρ) = 0.
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Above equation gives us the following equation system:

δβ

δt
+ βγρ =0

δα

δt
+ βδρ =0.

(3.4)

We begin with the first equation of the system (3.4):

δβ

δt
+βγρ =

δlnβ

δt
+γρ =

∂lnβ

∂x
ξρ+

∂lnβ

∂y
ηρ+

∂lnβ

∂y′
η′ρ+ ...+

∂lnβ

∂y(r−2)
η(r−2)
ρ +γρ = 0

where ρ = 1, 2, ..., r. Also, since

∂lnβ

∂x
dx+

∂lnβ

∂y
dy +

∂lnβ

∂y′
dy′ + ...+

∂lnβ

∂y(r−2)
dy(r−2) − dlnβ = 0,

we have r + 1 equations. Depending on the consistency of this equation system,
the following equation also holds:∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 η1 η′1 . . . η
(r−2)
1 γ1

ξ2 η2 η′2 . . . η
(r−2)
2 γ2

...
...

...
. . .

...
...

ξr ηr η′r . . . η
(r−2)
r γr

dx dy dy′ . . . dy(r−2) −dlnβ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

By using elementary determinant properties, we derive from the above equation:

dlnβ =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 η1 η′1 . . . η
(r−2)
1 γ1

ξ2 η2 η′2 . . . η
(r−2)
2 γ2

...
...

...
. . .

...
...

ξr ηr η′r . . . η
(r−2)
r γr

dx dy dy′ . . . dy(r−2) 0

∣∣∣∣∣∣∣∣∣∣∣∣
(3.5)

where

∆ =

∣∣∣∣∣∣∣∣∣∣
ξ1 η1 η′1 . . . η

(r−2)
1

ξ2 η2 η′2 . . . η
(r−2)
2

...
...

...
. . .

...

ξr ηr η′r . . . η
(r−2)
r

∣∣∣∣∣∣∣∣∣∣
. (3.6)

Similarly, for the second equation of the system (3.4), we have:

dα =
β

∆

∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 η1 η′1 . . . η
(r−2)
1 δ1

ξ2 η2 η′2 . . . η
(r−2)
2 δ2

...
...

...
. . .

...
...

ξr ηr η′r . . . η
(r−2)
r δr

dx dy dy′ . . . dy(r−2) 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.7)

Finally, from the equations (3.5) and (3.7), we can obtain the curvature formula
of a curve in the geometry of an r−parameter Lie group via group operators.

Now we focus on the arc length formula. For this, first of all, we know from
Definition (2.5) that the arc length formula of a curve in the geometry of an
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r−parameter Lie group has the form:

s =

∫
ϕ(x, y, y′, ..., y(r−2))dx.

By using the equations δx = ξαδt and δy = ηαδt, and if keeping in mind the image
of the above equation under the infinitesimal transformation, we obtain for the
right-hand side

s+

∫
(
δϕ

δt
+ ϕ

dξα
dx

)dxδt.

Since the arc length is a group invariant,
δϕ

δt
+ ϕ

dξα
dx

= 0. Hence, we get

δϕ

δt
+ ϕ

dξα
dx

=
δϕ

δt
+
dξα
dx

=
∂lnϕ

∂x
ξα +

∂lnϕ

∂y
ηα +

∂lnϕ

∂y′
η′α

+...+
∂lnϕ

∂y(r−2)
η(r−2)
α +

dξα
dx

= 0.

Following this step, consider

∂lnϕ

∂x
dx+

∂lnϕ

∂y
dy +

∂lnϕ

∂y′
dy′ + ...+

∂lnϕ

∂y(r−2)
dy(r−2) − dlnϕ = 0.

Moreover, consistency of these r + 1 equations necessitates that the following de-
terminant equation should also hold:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 η1 η′1 . . . η
(r−2)
1

dξ1
dx

ξ2 η2 η′2 . . . η
(r−2)
2

dξ2
dx

...
...

...
. . .

...
...

ξr ηr η′r . . . η
(r−2)
r

dξr
dx

dx dy dy′ . . . dy(r−2) −dlnϕ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

By using the determinant expansion, then, we derive the following equation that
lets us obtain ϕ:

dlnϕ =
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 η1 η′1 . . . η
(r−2)
1

dξ1
dx

ξ2 η2 η′2 . . . η
(r−2)
2

dξ2
dx

...
...

...
. . .

...
...

ξr ηr η′r . . . η
(r−2)
r

dξr
dx

dx dy dy′ . . . dy(r−2) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.8)

where ∆ is identical to the term expressed in the equation (3.6).
Finally, we now can calculate ϕ with the arc length formula given for a curve in

the geometry of an r−parameter Lie group.

4. Application to Affine Group and It’s Subgroups

4.1. ”k” and ”ds” in the Geometry of Equi-Centro Affine Group. Equi-
centro affine group in the plane is determined by the following transformations:

x1 = ax+ by,
y1 = cx+ dy,

∣∣∣∣a b
c d

∣∣∣∣ = 1.
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This stands for a 3−parameter Lie group. Therefore, the associated 3 infinitesimal
operators are

y
∂

∂x
, x

∂

∂y
, x

∂

∂x
− y ∂

∂y
.

Taking any operator in the form Xρ = ξρ
∂

∂x
+ ηρ

∂

∂y
, we obtain the coefficients ξρ

and ηρ:

ξ1 = y, η1 = 0

ξ2 = 0, η2 = x

ξ3 = x, η3 = −y,

Additionally, the generalized form of the second order is expressed as

X ′′ρ = ξρ
∂

∂x
+ ηρ

∂

∂y
+ η′ρ

∂

∂y′
+ η′′ρ

∂

∂y′′

The coefficients of the generalized operator are also derived from the formulas in
(3.1):

η′1 = −y′2 η′′1 = −3y′y′′

η′2 = 1 η′′2 = 0

η′3 = −2y′ η′′3 = −3y′′.

Therefore, from equation (3.6) we obtain:

∆ =

∣∣∣∣∣∣
y 0 −y′2
0 x 1
x −y −2y′

∣∣∣∣∣∣ = (xy′ − y)2

and relying on equation (3.8) we get:

dlnϕ =
1

(xy′ − y)2

∣∣∣∣∣∣∣∣
y 0 −y′2 y′

0 x 1 0
x −y −2y′ 1
dx dy dy′ 0

∣∣∣∣∣∣∣∣ = dln(xy′ − y)

hence ϕ = xy′ − y. The equation that we obtained gives us the arc length formula
of a curve in the geometry of equi-centro affine group:

ds = (xy′ − y)dx. (4.1)

Let σ represent the position vector of a point on the curve,where for any pa-

rameter t, the derivative of s with respect to t would be
ds

dt
= ṡ. Taking this into

account for parametric curves, equation (4.1) can be expressed as

ṡ = (σσ̇). (4.2)

Here, (σσ̇) denotes the determinant of the position vectors σ and σ̇.
Now we move on to the curvature formula. The first step is to calculate the

coefficients of η′′ρ = γρy
′′+δρ, to be followed by the equations (3.5) and (3.7). Since
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η′′1 = −3y′y′′, η′′2 = 0, η′′3 = −3y′′, we get the coefficients γρ and δρ as follows:

γ1 = −3y′, δ1 = 0

γ2 = 0, δ2 = 0

γ3 = −3, δ3 = 0.

From (3.5),

dlnβ =
1

(xy′ − y)2

∣∣∣∣∣∣∣∣
y 0 −y′2 −3y′

0 x 1 0
x −y −2y′ −3
dx dy dy′ 0

∣∣∣∣∣∣∣∣ = dln

(
1

(xy′ − y)3

)

following which we get β =
1

(xy′ − y)3
.

From (3.7),

dα =
1

(xy′ − y)5

∣∣∣∣∣∣∣∣
y 0 −y′2 0
0 x 1 0
x −y −2y′ 0
dx dy dy′ 0

∣∣∣∣∣∣∣∣
where we have α = 0. Finally, we yield the curvature formula for a curve in the
geometry of equi-centro afiine group as

k =
y′′

(xy′ − y)3
. (4.3)

Let σ represent the position vector of a point on the curve. For any parameter
t, equation (4.3) can be expressed as

k =
(σ̇σ̈)

(σσ̇)3
. (4.4)

4.2. ”k” and ”ds” in the Geometry of Centro Affine Group. Centro affine
group in the plane is determined by the following transformations:

x1 = ax+ by,
y1 = cx+ dy,

∣∣∣∣a b
c d

∣∣∣∣ 6= 0.

This group is a 4−parameter Lie group. Therefore its 4 infinitesimal operators are
as follows:

x
∂

∂x
, y

∂

∂x
, x

∂

∂y
, y

∂

∂y
.

The coefficients of the infinitesimal operators are as follows:

ξ1 = x, η1 = 0

ξ2 = y, η2 = 0

ξ3 = 0, η3 = x

ξ4 = 0, η4 = y.
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Following this step, the coefficients of the generalized operator are derived as

η′1 = −y′ η′′1 = −2y′′ η′′′1 = −3y′′′

η′2 = −y′2 η′′2 = −3y′y′′ η′′′2 = −3y′′
2 − 4y′y′′′

η′3 = 1 η′′3 = 0 η′′′3 = 0

η′4 = y′ η′′4 = y′′ η′′′4 = y′′′.

Therefore,

∆ =

∣∣∣∣∣∣∣∣
x 0 −y′ −2y′′

y 0 −y′2 −3y′y′′

0 x 1 0
0 y y′ y′′

∣∣∣∣∣∣∣∣ = −2y′′(xy′ − y)2.

At this point, the arc length formula is obtained:

dlnϕ =
1

−2y′′(xy′ − y)2

∣∣∣∣∣∣∣∣∣∣
x 0 −y′ −2y′′ 1

y 0 −y′2 −3y′y′′ −4y′

0 x 1 0 0
0 y y′ y′′ 0
dx dy dy′ dy′′ 0

∣∣∣∣∣∣∣∣∣∣
= dln

(
y′′

xy′ − y

) 1
2

.

Following that, the arc length formula for a curve in the geometry of centro affine
group can also be expressed as

ds =
y′′

1
2

(xy′ − y)
1
2

dx. (4.5)

Let σ represent the position vector of a point on the curve. For any parameter
t, equation (4.5) can be expressed as

ṡ =
(σ̇σ̈)

1
2

(σσ̇)
1
2

. (4.6)

For the curvature formula, the coefficients α and β are as follows:

dlnβ =
1

−2y′′(xy′ − y)2

∣∣∣∣∣∣∣∣∣∣
x 0 −y′ −2y′′ −3

y 0 −y′2 −3y′y′′ −4y′

0 x 1 0 0
0 y y′ y′′ 1
dx dy dy′ dy′′ 0

∣∣∣∣∣∣∣∣∣∣
= dln

(
(xy′ − y)

1
2

2y′′
3
2

)

where

β =
1

2

(xy′ − y)
1
2

2y′′
3
2

.

dα =
α

∆

∣∣∣∣∣∣∣∣∣∣
x 0 −y′ −2y′′ 0

y 0 −y′2 −3y′y′′ −3y′′
2

0 x 1 0 0
0 y y′ y′′ 0
dx dy dy′ dy′′ 0

∣∣∣∣∣∣∣∣∣∣
= d

(
−3xy′′

1
2

2(xy′ − y)
1
2

)

and, therefore,

α = −3

2

−3xy′′
1
2

(xy′ − y)
1
2

.
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Drawing on equations hitherto, we express the curvature formula of a curve in the
geometry of centro affine group as

k =
1

2

(xy′ − y)
1
2

2y′′
3
2

y′′′ − 3

2

−3xy′′
1
2

(xy′ − y)
1
2

. (4.7)

By parametrizing of the equation (4.7) with t, we yield the curvature formula

k =
1

2

(σσ̇)
1
2

(σ̇σ̈)
3
2

[
(σ̇ ˙̈σ)− 3

(σ̇σ̈)(σσ̈)

(σσ̇)

]
. (4.8)

4.3. ”k” and ”ds” in the Geometry of Equi Affine Group. Equi affine group
in the plane is determined by the following transformations:

x1 = ax+ by + e,
y1 = cx+ dy + f ,

∣∣∣∣a b
c d

∣∣∣∣ = 1.

This group is a 5−parameter Lie group. Therefore, its 5 infinitesimal operators are:

∂

∂x
,

∂

∂y
, y

∂

∂x
, x

∂

∂y
, x

∂

∂x
− y ∂

∂y
.

The coefficients of the infinitesimal operators are as follows:

ξ1 = 1, η1 = 0,

ξ2 = 0, η2 = 1,

ξ3 = y, η3 = 0,

ξ4 = 0, η4 = x,

ξ5 = x, η5 = −y.
Following this, we derive the coefficients of the generalized operator:

η′1 = 0, η′′1 = 0, η′′′1 = 0, η
(4)
1 = 0,

η′2 = 0, η′′2 = 0, η′′′2 = 0, η
(4)
2 = 0,

η′3 = −y′2, η′′3 = −3y′y′′, η′′′3 = −3y′′
2 − 4y′y′′′, η

(4)
3 = −10y′′y′′′ − 5y′y(4)

η′4 = 1, η′′4 = 0, η′′′4 = 0, η
(4)
4 = 0,

η′5 = −2y′, η′′5 = −3y′′, η′′′5 = −4y′′′, η
(4)
5 = −5y(4).

By using above terms, we obtain the arc length formula of a curve in the geometry
of equi affine group as

ds = y′′
1
3 dx. (4.9)

Following parametrization, we rewrite the formula as

ṡ = (σ̇σ̈)
1
3 . (4.10)

Similarly, we obtain the curvature formula of a curve in the geometry of equi affine
group:

k =
1

3

y(4)

y′′
5
3

− 5

9

y′′′
2

y′′
8
3

. (4.11)

After the parametrization, we rewrite the formula:

k =
3(σ̇σ̈)(σ̇ ¨̈σ) + 12(σ̇σ̈)(σ̈ ˙̈σ)− 5(σ̇ ˙̈σ)2

9(σ̇σ̈)
8
3

. (4.12)
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4.4. ”k” and ”ds” in the Geometry of Affine Group. Affine group in the
plane is determined by the following transformations:

x1 = ax+ by + e,
y1 = cx+ dy + f ,

∣∣∣∣a b
c d

∣∣∣∣ 6= 0

This group is a 6−parameter Lie group. Therefore, its 6 infinitesimal operators are:

∂

∂x
,

∂

∂y
, y

∂

∂x
, x

∂

∂y
, x

∂

∂x
, y

∂

∂y
.

We obtain the affine arc length formula of a curve in the plane by means of these
operators:

ds =

(
3y′′y(4) − 5y′′′

2

3y′′2

) 1
2

dx. (4.13)

Commencing on to the parametrization step, we rewrite the formula as

ṡ =

(
3(σ̇σ̈)(σ̇ ¨̈σ) + 12(σ̇σ̈)(σ̈ ˙̈σ)− 5(σ̇ ˙̈σ)2

3(σ̇σ̈)2

) 1
2

. (4.14)

Similarly, we express the affine curvature formula of a curve in the plane as

k = − 3

2ζ
1
2

(
ln

ζ

y′′
3
2

)′
(4.15)

where ζ =
y(4)

y′′
− 5y′′′

2

3y′′2
. Following parametrization we rewrite the formula as

k = − 3

2Λ
1
2

d

dt

(
ln

Λ

(σ̇σ̈)
3
2

)
, Λ

1
2 = ṡ. (4.16)
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Department of Mathematics, Karadeniz Technical University, 61080 Trabzon, TURKEY

E-mail address: ugurgozutok@ktu.edu.tr



AFFINE DIFFERENTIAL INVARIANTS 57

Yasemin Sağıroğlu
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