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SUMMATION FORMULA FOR GENERALIZED DISCRETE

q-HERMITE II POLYNOMIALS

SAMA ARJIKA

Abstract. In this paper, we provide a family of generalized discrete q-Hermite

II polynomials denoted by h̃n,α(x, y|q). An explicit relations connecting them

with the q-Laguerre and Stieltjes-Wigert polynomials are obtained. Summa-

tion formula is derived by using different analytical means on their generating
functions.

1. Introduction

In their paper, Àlvarez-Nodarse et al [2], have introduced a q-extension of the
discrete q-Hermite II polynomials as:

H(µ)
2n (x; q) : = (−1)n(q; q)n L

(µ−1/2)
n (x2; q)

(1.1)

H(µ)
2n+1(x; q) : = (−1)n(q; q)n xL

(µ+1/2)
n (x2; q)

where µ > −1/2, L
(α)
n (x; q) are the q-Laguerre polynomials given by

L(α)
n (x; q) : =

(qα+1; q)n
(q; q)n

1Φ1

(
q−n

qα+1

∣∣∣q;−qn+α+1x

)
(1.2)

=
1

(q; q)n
2Φ1

(
q−n,−x

0

∣∣∣q; qn+α+1x

)

with (a; q)0 = 1, (a; q)n =

n−1∏
k=0

(1− aqk), n = 1, 2, · · · , the q-shifted factorial, and

rΦs

(
q−n, a2, · · · , ar
b1, b2, · · · , bs

∣∣∣q;x) = (1.3)

∞∑
k=0

(q−n; q)k(a2; q)k · · · (ar; q)k
(b1; q)k(b2; q)k · · · (bs; q)k

xk

(q; q)k

[
(−1)kqk(k−1)/2
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the usual generalized basic or q-hypergeometric function of degree n in the variable
x (see Slater [10, Chap. 3], Srivastava and Karlsson [11, p.347, Eq. (272)] for

details). For µ = 0 in (1.1), the polynomials H(0)
n (x; q) correspond to the discrete

q-Hermite II polynomials [1, 8], i.e., H(0)
n (x; q2) = qn(n−1)h̃n(x; q). They show that

the polynomials H(µ)
n (x; q) satisfy the orthogonality relation∫ ∞

−∞
H(µ)
n (x; q)H(µ)

m (x; q)ω(x)dx = π q−n/2(q1/2; q1/2)n(q1/2; q)1/2 δnm (1.4)

on the whole real line R with respect to the positive weight function ω(x) =

1/(−x2; q)∞. A detailed discussion of the properties of the polynomials H(µ)
n (x; q)

can be found in [2].
Recently, Saley Jazmat et al [7], introduced a novel extension of discrete q-

Hermite II polynomials by using new q-operators. This extension is defined as:

h̃2n,α(x; q) = (−1)n q−n(2n−1)
(q; q)2n

(q2α+2; q2)n
L(α)
n

(
x2q−2α−1; q2

)
(1.5)

h̃2n+1,α(x; q) = (−1)n q−n(2n+1) (q; q)2n+1

(q2α+2; q2)n+1
xL(α+1)

n

(
x2q−2α−1; q2

)
.

For α = −1/2 in (1.5), the polynomials h̃n,− 1
2
(x; q) correspond to the discrete

q-Hermite II polynomials, i.e., h̃n,− 1
2
(x; q) = h̃n(x; q). The generalized discrete q-

Hermite II polynomials (1.5) satisfy the orthogonality relation∫ +∞

−∞
h̃n,α(x; q)h̃m,α(x; q)ωα(x; q)|x|2α+1dqx (1.6)

=
2q−n

2

(1− q)(−q,−q, q2; q2)∞
(−q−2α−1,−q2α+3, q2α+2; q2)∞

(q; q)2n
(q; q)n,α

δn,m

on the whole real line R with respect to the positive weight function ωα(x) =
1/(−q−2α−1 x2; q2)∞. A detailed discussion of the properties of the polynomials

h̃n,α(x; q) can be found in [7].
Srivastava and Jain [12, 6], investigated multilinear generating functions for q-

Hermite, q-Laguerre polynomials and other special functions. Relevant connections
of these multilinear generating functions with various known results for the classical
or q-Hermite polynomials are also indicated. They also proved many combinatorial
q-series identities by applying the theory of q-hypergeometric functions (see [6], for
more details).

Motivated by Saley Jazmat’s [7] and Srivastava et al [12, 6] works, our interest
in this paper is to introduce new family of “generalized discrete q-Hermite II poly-
nomials (in short gdq-H2P) h̃n,α(x, y|q)” which is an extension of the generalized

discrete q-Hermite II polynomials h̃n,α(x; q) and investigate summation formulae.
The paper is organized as follows. In Section 2, we recall notations to be used in

the sequel. In Section 3, we define a gdq-H2P h̃n,α(x, y|q) and investigate several
properties. In Section 4, we derive summation and inversion formulae for gdq-H2P
h̃n,α(x, y|q). In Section 5, concluding remarks are given.
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2. Notations and Preliminaries

For the convenience of the reader, we provide in this section a summary of the
mathematical notations and definitions used in this paper. We refer to the general
references [4, 8] and [7] for the definitions and notations. Throughout this paper,
we assume that 0 < q < 1, α > −1.

For a complex number a, the q-shifted factorials are defined by:

(a; q)0 = 1; (a; q)n =

n−1∏
k=0

(1− aqk), n = 1, 2, · · · ; (a; q)∞ =

∞∏
k=0

(1− aqk) (2.1)

and the q-number is defined by:

[n]q =
1− qn

1− q
, n!q :=

n∏
k=1

[k]q, 0!q := 1, n ∈ N. (2.2)

Let x and y be two real or complex numbers, the Hahn [5] q-addition ⊕q of x and
y is given by:(

x⊕q y
)n

: = (x+ y)(x+ qy) . . . (x+ qn−1y)

= (q; q)n

n∑
k=0

q(
k
2 )xn−kyk

(q; q)k(q; q)n−k
, n ≥ 1,

(
x⊕q y

)0
:= 1, (2.3)

while the q-subtraction 	q is given by(
x	q y

)n
:=
(
x⊕q (−y)

)n
. (2.4)

The generalized q-shifted factorials [7] are defined by the recursion relations

[n+ 1]q,α! = [n+ 1 + θn(2α+ 1)]q [n]q,α! (2.5)

and

(q; q)n+1,α = (1− q)[n+ 1 + θn(2α+ 1)]q(q; q)n,α, (2.6)

where

θn =

{
1 if n even
0 if n odd.

(2.7)

Remark that, for α = −1/2, we have

(q; q)n,−1/2 = (q; q)n, [n]q,−1/2! = (1− q)n(q; q)n. (2.8)

We denote

(q; q)2n,α = (q2; q2)n(q2α+2; q2)n, (2.9)

and

(q; q)2n+1,α = (q2; q2)n(q2α+2; q2)n+1. (2.10)

The two Euler’s q-analogues of the exponential functions are given by [4]

Eq(x) =

∞∑
k=0

q(
k
2 ) xk

(q; q)k
= (−x; q)∞ (2.11)

and

eq(x) =

∞∑
k=0

xk

(q; q)k
=

1

(x; q)∞
, |x| < 1. (2.12)
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For m ≥ 1 and by means of the generalized q-shifted factorials, we define two
generalized q-exponential functions as follows

Ẽqm,α(x) :=

∞∑
k=0

qmk(k−1)/2 xk

(qm; qm)k,α
, (2.13)

and

ẽqm,α(x) :=

∞∑
k=0

xk

(qm; qm)k,α
, |x| < 1. (2.14)

Remark that, for m = 1 and α = − 1
2 , we have:

Ẽq,α(x) = Eq(x), ẽq,α(x) = eq(x). (2.15)

For m = 2, the following elementary result is useful in the sequel to establish the
summation formulae for gdq-H2P:

ẽq2,− 1
2
(x)Ẽq2,− 1

2
(y) = ẽq2,− 1

2
(x⊕q2 y), (2.16)

ẽq,− 1
2
(x)Ẽq2,− 1

2
(−y) = ẽq(x	q,q2 y), ẽq2,− 1

2
(x)Ẽq2,− 1

2
(−x) = 1, (2.17)

where

(a	q,q2 b)n := n!q

n∑
k=0

(−1)kqk(k−1)

(n− k)!q k!q2
an−kbk, (a	q,q2 b)0 := 1. (2.18)

3. Generalized discrete q-Hermite II polynomials

In this section, we introduce a sequence of gdq-H2P {h̃n,α(x, y|q)}∞n=0. Several
properties related to these polynomials are derived.

Definition 3.1. For x, y ∈ R, the gdq-H2P {h̃n,α(x, y|q)}∞n=0 are defined by:

h̃n,α(x, y|q) := (q; q)n

bn/2 c∑
k=0

(−1)kq−2nk+k(2k+1) xn−2k yk

(q; q)n−2k,α (q2; q2)k
(3.1)

and

h̃n,α(x, 0|q) :=
(q; q)n

(q; q)n,α
xn. (3.2)

Remark that,

(1) for y = 1, we get

h̃n,α(x, 1|q) = h̃n,α(x; q) (3.3)

where h̃n,α(x; q) is the generalized discrete q-Hermite II polynomial [7];
(2) for α = −1/2 and y = 1, we have

h̃n,−1/2(x, 1|q) = h̃n(x; q). (3.4)

where h̃n(x; q) is the discrete q-Hermite II polynomial [1, 8].
(3) Indeed since

lim
q→1

(qa; q)n
(1− q)n

= (a)n (3.5)

one readily verifies that

lim
q→1

h̃n,− 1
2
(
√

1− q2x, 1|q)
(1− q2)n/2

=
h
α+ 1

2
n (x)

2n
(3.6)
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where h
α+ 1

2
n (x) is the Rosenblums generalized Hermite polynomial [9].

Lemma 3.2. The following recursion relation for gdq-H2P {h̃n,α(x, y|q)}∞n=0 holds
true.

1− qn+1+θn(2α+1)

1− qn+1
h̃n+1,α(x, y|q) (3.7)

= xh̃n,α(x, y|q)− y q−2n+1(1− qn)h̃n−1,α(x, y|q).

Proof. To prove the assertion (3.7), we consider separately even and odd cases of
the expression

xh̃n,α(x, y|q)− y q−2n+1(1− qn)h̃n−1,α(x, y|q). (3.8)

For n even, we have:

xh̃2n,α(x, y|q) =
(q; q)2n

(q; q)2n,α
x2n+1 + (q; q)2n

n∑
k=1

(−1)kq−2nk+k(2k+1)x2n−2k+1 yk

(q; q)2n−2k,α (q2; q2)k
.

The right-hand side of the last relation can be written as

(q; q)2n
(q; q)2n,α

x2n+1 + (q; q)2n (3.9)

×
n∑
k=1

(−1)kq−2k(2n+1)+k(2k+1)x2n+1−2k yk

(q; q)2n+1−2k,α (q2; q2)k

[
q2k(1− q2n+2+2α−2k)

]
.

In the same way,

− y q−4n+1 (1− q2n) h̃2n−1,α(x, y|q) = −y q−4n+1 (q; q)2n

×
n−1∑
k=0

(−1)kq−2k(2n+1)+k(2k+1)x2n+1−2(k+1) yk

(q; q)2n+1−2(k+1),α (q2; q2)k
. (3.10)

Change k to k − 1 in (3.10), one obtains

(q; q)2n

n∑
k=1

(−1)kq−2k(2n+1)+k(2k+1)x2n+1−2k yk

(q; q)2n+1−2k,α (q2; q2)k
(1− q2k). (3.11)

Then combining (3.9) and (3.11), we have

xh̃2n,α(x, y|q)− y q−4n+1 (1− q2n) h̃2n−1,α(x, y|q) = (3.12)

(q; q)2n
(q; q)2n,α

x2n+1 + (q; q)2n

n∑
k=1

(−1)kq−2k(2n+1)+k(2k+1)x2n+1−2k yk

(q; q)2n+1−2k,α (q2; q2)k

×
[
q2k(1− q2n+2+2α−2k) + (1− q2k)

]
.

After simplification, it is equal to

(q; q)2n
(q; q)2n,α

x2n+1+

(1− q2n+2+2α)(q; q)2n

n∑
k=1

(−1)kq−2k(2n+1)+k(2k+1)x2n+1−2k yk

(q; q)2n+1−2k,α (q2; q2)k
.

The last expression can be written as

1− q2n+2+2α

1− q2n+1
h̃2n+1,α(x, y|q). (3.13)
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Summarizing the above calculations in (3.12)-(3.13), we get the assertion (3.7) for
n even. In the odd case, the proof follows the same steps as the even case. �

Theorem 3.3. We have:

lim
α→+∞

h̃2n,α(x, y|q) = q−n(2n−1)(q; q)2n (−y)n Sn
(
x2y−1q−1; q2

)
(3.14)

and

lim
α→+∞

h̃2n+1,α(x, y|q) = q−n(2n+1)(q; q)2n+1 x (−y)n Sn
(
x2y−1q−1; q2

)
(3.15)

where Sn(x; q) are the Stieltjes-Wigert polynomials [8].

In order to prove Theorem 3.3, we need the following Lemma.

Lemma 3.4. For α > −1, the sequence of gdq-H2P {h̃n,α(x, y|q)}∞n=0 can be writ-

ten in terms of q-Laguerre polynomials L
(α)
n (x; q) as

h̃2n,α(x, y|q) = q−n(2n−1)
(q; q)2n

(q2α+2; q2)n
(−y)n L(α)

n

(
x2y−1q−2α−1; q2

)
(3.16)

and

h̃2n+1,α(x, y|q) = q−n(2n+1) (q; q)2n+1

(q2α+2; q2)n+1
x (−y)n L(α+1)

n

(
x2y−1q−2α−1; q2

)
.

(3.17)

In order to prove Lemma 3.4, we need the following Proposition.

Proposition 3.5. For α > −1, the sequence of gdq-H2P {h̃n,α(x, y|q)}∞n=0 can be
written in terms of basic hypergeometric functions as

h̃n,α(x, y|q) =
(q; q)n

(q; q)n,α
xn 2Φ1

(
q−n, q−n−2α

0

∣∣∣ q2; −y q
2α+3

x2

)
. (3.18)

Proof. In fact, for n even, and by using

(q; q)2n−2k,α = (q2; q2)n−k(q2α+2; q2)n−k, (3.19)

the gdq-H2P h̃n,α(x, y|q) defined in (3.1) can be rewritten as

h̃2n,α(x, y|q) = (q; q)2n

n∑
k=0

(−1)kq−4nk+k(2k+1)x2n−2k yk

(q2; q2)n−k(q2α+2; q2)n−k (q2; q2)k
. (3.20)

From the formula [8, p.9, Eq. (0.2.12)]

(a; q)n−k =
(a; q)n

(a−1q1−n; q)k

(
− q
a

)k
q(

k
2 )−nk, (3.21)

we have for a = q2 and q2α+2,

h̃2n,α(x, y|q) =
(q; q)2n x

2n

(q; q)2n,α

n∑
k=0

(−1)kq−4nk+k(2k+1)(q−2n, q−2n−2α; q2)k

(q2; q2)kq4(
k
2 )−4nk−2αk

( y
x2

)k
.

After simplification, the last equation reads

h̃2n,α(x, y|q) =
(q; q)2n

(q; q)2n,α
x2n

n∑
k=0

(q−2n, q−2n−2α; q2)k
(q2; q2)k

(
−y q

2α+3

x2

)k
. (3.22)

In the odd case, the proof follows the same steps as the even case. �

Now, we are in position to prove Lemma 3.3.
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Proof. (of Lemma 3.3) For n even, the relation (3.18) becomes:

h̃2n,α(x, y|q) =
(q; q)2n

(q; q)2n,α
x2n 2Φ1

(
q−2n, q−2n−2α

0

∣∣∣ q2; −y q
2α+3

x2

)
. (3.23)

By taking a−1 = q−2α−2 and z = −q2n+1 x2y−1 and the formula [8, p.17, Eq.
(0.6.17)]

2Φ1

(
q−n, a−1q1−n

0

∣∣∣ q; aqn+1

z

)
= (a; q)n(qz−1)n1Φ1

(
q−n

a

∣∣∣ q; z) (3.24)

we have

2Φ1

(
q−2n, q−2n−2α

0

∣∣∣ q2; −y q
2α+3

x2

)
= (3.25)

(q2α+2; q2)n

(
− y

x2

)n
q−2n

2+n
1Φ1

(
q−2n

q2+2α

∣∣∣ q2; −q
2n+1 x2

y

)
.

By using (1.2), the relation (3.25) can be written as

q−2n
2+n (q2; q2)n

(
− y

x2

)n
L(α)
n

(
x2y−1q−2α−1; q2

)
. (3.26)

The assertion (3.16) of Lemma 3.3 follows by summarizing the above calculations
in (3.23)-(3.26).
In the odd case, the proof follows the same steps as the even case. �

Proof. (of Theorem 3.4) By taking the limit α → +∞ in the assertions (3.16)
and (3.17) of Lemma 3.3, respectively, we get the assertions (3.14) and (3.15) of
Theorem 3.4. �

4. Connection formulae for the generalized discrete q-Hermite II
polynomials {h̃n,α(x, y|q)}∞n=0

We begin this section with the following theorem:

Theorem 4.1. The sequence of gdq-H2P {h̃n,α(x, y|q)}∞n=0, which is defined by the
relation (3.1), satisfies the connection formula

h̃n,α(x, ω|q) = (q; q)n

bn/2 c∑
k=0

q−2nk+k(2k+1) (−ω ⊕q2 y)k

(q2; q2)k (q; q)n−2k
h̃n−2k,α(x, y|q). (4.1)

To prove Theorem 4.1, we need the following Lemma.

Lemma 4.2. The following generating function for gdq-H2P {h̃n,α(x, y|q)}∞n=0

holds true.

ẽq2,− 1
2
(−yt2)Ẽq,α(xt) =

∞∑
n=0

q(
n
2 ) tn

(q; q)n
h̃n,α(x, y|q), |yt| < 1. (4.2)

Proof. Let us consider the function

fq(t;x, y) :=

∞∑
n=0

q(
n
2 ) tn

(q; q)n
h̃n,α(x, y|q). (4.3)

By replacing in (4.3) gdq-H2P h̃n,α(x, y|q) by its explicit expression (3.1) we obtain

fq(t;x, y) =

∞∑
n=0

tn

bn/2 c∑
k=0

(−1)kq(
n
2 )−2nk+k(2k+1)xn−2k yk

(q; q)n−2k,α (q2; q2)k

 . (4.4)
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The right-hand side of (4.4) also reads

∞∑
n=0

bn/2c∑
k=0

(−1)kq(
n−2k

2 )(yt2)k(xt)n−2k

(q; q)n−2k,α (q2; q2)k
. (4.5)

Next, changing n− 2k by r, r = 0, 1, · · · , the last relation becomes

∞∑
n=0

(
−yt2

)n
(q2; q2)n

∞∑
r=0

q(
r
2) (xt)

r

(q; q)r,α
. (4.6)

Hence,

fq(t;x, y) = ẽq2,− 1
2
(−yt2)Ẽq,α(xt). (4.7)

�

Now, we are in position to prove Theorem 4.1.

Proof. (of Theorem 4.1) Replacing t by u ⊕q t in (4.2), we find the following gen-
erating function

Ẽq,α

[
(u⊕q t)x

]
ẽq2,− 1

2

[
− y(u⊕q t)2

]
=

∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, y|q) (4.8)

which by using (2.17), becomes

Ẽq,α

[
(u⊕q t)x

]
= Ẽq2,− 1

2

[
y(u⊕q t)2

] ∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, y|q). (4.9)

Replacing y by ω and (4.9), respectively, in (4.8), we get

∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, ω|q) = (4.10)

= ẽq2,− 1
2

[
− ω(u⊕q t)2

]
Ẽq2,− 1

2

[
y(u⊕q t)2

] ∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, y|q).

By using (2.17), the last relation reads

∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, ω|q) (4.11)

= ẽq2,− 1
2

[
(−ω ⊕q2 y)(u⊕q t)2

] ∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, y|q).

According to (2.12), the right-hand side of (4.11) can be written as

∞∑
r=0

(−ω ⊕q2 y)r(u⊕q t)2r

(q2; q2)r

∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, y|q). (4.12)

Let us substitute n+ 2r = k =⇒ r ≤ b k/2 c in (4.12), then we have:

∞∑
n=0

bn/2 c∑
k=0

(q(
n−2k

2 )(−ω ⊕q2 y)k

(q2; q2)k (q; q)n−2k
h̃n−2k,α(x, y|q)

 (u⊕q t)n. (4.13)
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Next, replacing (4.13) in (4.11), we obtain

∞∑
n=0

q(
n
2 )(u⊕q t)n

(q; q)n
h̃n,α(x, ω|q) = (4.14)

∞∑
n=0

bn/2 c∑
k=0

(q(
n−2k

2 )(−ω ⊕q2 y)k

(q2; q2)k (q; q)n−2k
h̃n−2k,α(x, y|q)

 (u⊕q t)n.

Finally, on equating the coefficients of like powers of (u⊕q t)n/(q; q)n in (4.14), we
get the desired identity. �

We have the following special cases of Theorem 4.1 of particular interest.

Corollary 4.3. Letting:

(i) y = 0 in the assertion (4.1) of Theorem 4.1, we get the definition of gdq-
H2P (3.1), i.e.,

h̃n,α(x, ω|q) = (q; q)n

bn/2 c∑
k=0

(−1)kq−2nk+k(2k+1) xn−2k ωk

(q2; q2)k (q; q)n−2k,α
; (4.15)

(ii) ω = 0 in the assertion (4.1) of Theorem 4.1, and using (3.2), we get the
inversion formula for gdq-H2P

xn = (q; q)n,α

bn/2 c∑
k=0

q−2nk+3k2 yk

(q2; q2)k (q; q)n−2k
h̃n−2k,α(x, y|q). (4.16)

iii) For y = 1, the summation formulae (4.1) can be expressed in terms of gen-

eralized discrete q-Hermite II polynomials h̃n,α(x; q). Also, the summation
formulae (4.1) can be written in terms of discrete q-Hermite II polynomials

h̃n(x; q) by choosing y = 1 and α = −1/2.

5. Concluding remarks

In the previous sections, we have introduced gdq-H2P h̃n,α(x, y|q) and derived
several properties. Also, we have derived implicit summation formula for gdq-H2P
h̃n,α(x, y|q) by using different analytical means on their generating function. This
process can be extended to summation formulae for more generalized forms of q-
Hermite polynomials. This study is still in progress.

We note that the generating function of even and odd gdq-H2P h̃n,α(x, y|q) are
given by

∞∑
n=0

(−t2)nqn(2n−1)

(q; q)2n
h̃2n,α(x, y|q) =

qα(α+
1
2 )(q2; q2)∞

(q2α+2; q2)∞

x−αJ
(2)
α (2xq−α−

1
2 ; q2)

(y t2; q2)∞

and
∞∑
n=0

(−1)nqn(2n+1) t2n+1

(q; q)2n+1
h2n+1,α(x, y|q) =

qα(α+1)(q2; q2)∞
(q2α+2; q2)∞

x−αJ
(2)
α (2xq−α; q2)

(y t2; q2)∞

where J
(2)
ν (z; q) is the q-analogue of the Bessel function [8].

Indeed, it is well known that from (4.2), the generating function of gdq-H2P
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h̃n,α(x, y|q) is given by

Ẽq,α(xt)ẽq2,− 1
2
(−yt2) =

∞∑
n=0

qn(n−1)/2tn

(q; q)n
h̃n,α(x, y|q) (5.1)

which on separating the power in the right-hand side into their even and odd terms
by using the elementary identity

∞∑
n=0

f(n) =

∞∑
n=0

f(2n) +

∞∑
n=0

f(2n+ 1) (5.2)

becomes

Ẽq,α(xt)ẽq2,− 1
2
(−yt2) = (5.3)

∞∑
n=0

qn(2n−1) t2n

(q; q)2n
h̃2n,α(x, y|q) +

∞∑
n=0

qn(2n+1) t2n+1

(q; q)2n+1
h̃2n+1,α(x, y|q).

Now replacing t by i t in (5.3) and equating the real and imaginary parts of the resul-
tant equation, we get the generating function of even and odd gdq-H2P hn,α(x, y|q)
as

∞∑
n=0

(−1)nqn(2n−1) t2n

(q; q)2n
h̃2n,α(x, y|q) = Cosq,α(xt)ẽq2,− 1

2
(yt2) (5.4)

and
∞∑
n=0

(−1)nqn(2n+1) t2n+1

(q; q)2n+1
h̃2n+1,α(x, y|q) = Sinq,α(xt)ẽq2,− 1

2
(yt2) (5.5)

where the generalized q-Cosine and q-Sine are defined as:

Cosq,α(x) : =

∞∑
k=0

(−1)nqn(2n−1) x2n

(q; q)2n,α
, (5.6)

Sinq,α(x) : =

∞∑
k=0

(−1)nqn(2n+1) x2n+1

(q; q)2n+1,α
. (5.7)

By using (2.9) and (2.10), respectively, the relations (5.6) and (5.7) can be expressed
in terms of basic hypergeometric functions as

Cosq,α(x) = 0Φ1

(
−

q2α+2

∣∣∣ q2; −qx2
)

(5.8)

Sinq,α(x) =
x

1− q2α+2 0Φ1

(
−

q2α+4

∣∣∣ q2; −q2x2
)
. (5.9)

The q-analogue of the Bessel function is defined [8, p.20, Eq.(0.7.14)] by

J (2)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

(z
2

)ν
0Φ1

(
−
qν+1

∣∣∣ q; −qν+1z2

4

)
(5.10)

from which the generating functions of (5.8) and (5.9) follow.
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[5] W. Hahn, Beiträge zur Theorie der Heineschen Reihen, Math. Nachr. 2, (1949) 340-379.

[6] V. K. Jain and H. M. Srivastava, Some families of multilinear q-generating functions and

combinatorial q-series identities, J. Math. Anal. Appl. 192 (1995) 413-438.
[7] M. Jazmati, K. Mezlini and N. Bettaibi, Generalized q-Hermite Polynomials and the q-Dunkl

Heat Equation, Bull. Math. Anal. Appl. 6 (4) (2014) 16-43.

[8] R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials
and its q-analogue, Delft Report 98-17, The Netherlands (1998).

[9] M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus In:

Operator theory: Advances and Applications, vol. 73, Basel: Birkhäuser Verlag (1994) 369-
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