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THE GENERALIZED HANKEL-CLIFFORD TRANSFORMATION

WITH COMPACT SUPPORT ON CERTAIN RANGE

V. R. LAKSHMI GORTY

Abstract. The Paley-Wiener theorem for the generalized Hankel-Clifford

transforms is obtained. The generalized Hankel-Clifford transforms of square
integrable functions with compact supports, rapid decreasing functions, infin-

itely differentiable functions with compact supports, of analytic functions are
studied. The range of the generalized Hankel-Clifford transform of compactly

supported functions which are either square integrable (Paley-Wiener Theo-

rem) or infinitely differentiable (Paley-Wiener-Schwartz Theorem) is charac-
terized. Such developed transforms are supported by an application to Math-

ematical Physics at the end of the section of the study.

1. Introduction

The generalized Hankel-Clifford transformations defined by

f (x) = (h1,α,βg) (x) = x−(α+β)
∞∫
0

Jα,β (xy) g (y) dy, (1.1)

and

p (x) = (h2,α,βt) (x) =

∞∫
0

y−(α+β)Jα,β (xy) t (y) dy (1.2)

if the integral converges in some sense (absolutely, improper, or mean convergence).
Here Jα,β(z) = z(α+β)/2Jα−β (2

√
z) , Jα−β(z) being the Bessel function of the first

kind and order (α− β) ≥ −1/2 were extended by Malgonde [1] to certain gen-
eralized functions [6]. It is analogous from [5] and as represented in [2] that if
Re(α− β) ≥ −1/2, then the generalized Hankel-Clifford transformations is an au-
tomorphism of L2 (R+) and the inverse generalized Hankel-Clifford transformations
on L2 (R+) has the symmetric form

g (x) = (h1,α,βf) (x) = x−(α+β)
∞∫
0

Jα,β (xy) f (y) dy, (1.3)
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t (x) = (h2,α,βp) (x) =

∞∫
0

y−(α+β)Jα,β (xy) p (y) dy. (1.4)

Let us take note here of some properties of Bessel functions that we shall use quite
a few times in this work (see [4]).

Definition 1.1. The behaviors of Jα−β near the origin and the infinity are from
[8] as follows:

Jα−β(2x1/2) = O
(
x1/2

)α−β
(1.5)

as x→ 0+.

Jα−β

(
2x1/2

)
≈ (2π)x−1/4 cos

(
2x1/2 − 1

2
(α− β)π − 1

4
π

) ∞∑
m=0

(−1)
m

(α− β, 2m)(
4x1/2

)2m
− sin

(
2x1/2 − 1

2
(α− β)π − 1

4
π

) ∞∑
m=0

(−1)
m

(α− β, 2m+ 1)(
4x1/2

)2m+1 (1.6)

as, x→∞ where (α− β, k) is understood as in [4].

Definition 1.2. The main differentiation formulas for Jα−β in [1] are:

d

dx

[
x(α−β)/2Jα−β

(
2
√
x
)]

= x(α−β−1)/2Jα−β−1
(
2
√
x
)
. (1.7)

d

dx

[
x−(α−β)/2Jα−β

(
2
√
x
)]

= −x−(α−β+1)/2Jα−β+1

(
2
√
x
)
. (1.8)

xα+β+1 d

dx

[
x−(α−β)/2Jα−β

(
2
√
x
)]

= −xα+β+1/2Jα−β+1

(
2
√
x
)

(1.9)

for x, y > 0.

Definition 1.3. The generalized Kepinski type differential operator from [1] is
defined as

∆α,β = ∆α,β,x = x−αDxα−β+1Dxβ = xD2 + (α− β + 1)D + αβx−1 (1.10)

where α− β ≥ −1/2 and D = Dx = d
dx .

Property 1.1. By combining (1.7) and (1.8) and (1.10), it can be easily inferred

∆α,βJα,β(x) = −Jα,β(x) (1.11)

Property 1.2. The generalized Hankel-Clifford transforms can be extended to

f (x) = (h1,α,βg) (x) = x−(α+β)
∞∫
0

Jα,β,m (xy) g (y) dy, (1.12)

where Jα,β,m (x) = x(α+β)/2Jα−β,m (2
√
x) and Jα−β,m (2

√
x) being the truncated

Bessel function of the first kind analogous to [2] and is represented as

Jα−β,m
(
2
√
x
)

= Jα−β
(
2
√
x
)
−
m−1∑
k=0

(−1)k(
√
x)(α−β+2k)

Γ(α− β + k + 1)k!
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and the integral is taken in sense of L2.
The generalized Hankel-Clifford transforms and its inverse will have a bounded op-
erator in L2 (R+) from [9] and has been extended from [2] as:

g (x) = x(−3α+β−1)/2
d

dx
x(3α−β+1)/2

∞∫
0

x(α−β+1)Jα−β+1,m+1 (2
√
xy) f (y) dy

(1.13)
for x ∈ R+; 1/2 −m < Re (α− β) < m+ 1/2, m > 0.

Jα,β−1,m+1 (x) = x−1/2Jα−β+1,m+1

(
2
√
x
)
. (1.14)

Property 1.3. Using the equivalent form of the [equation (7); 2], we get

d

dx

[
x(α−β+1)Jα−β+1,m+1

(
2
√
x
)]

= x(α−β)+1/2Jα−β,m
(
2
√
x
)
, (1.15)

where Re (α− β) < m+ 1/2,m > 0.
Then symmetric to formula [(8); 2] can be extended to

gN (x) = x(−3α+β−1)/2
d

dx
x(3α−β+1)/2

N∫
1/N

x(α−β+1)Jα−β+1,m+1 (2
√
xy) f (y) dy

= x−(α+β)
N∫

1/N

Jα,β,m (xy) g (y) dy (1.16)

In this paper, the range of the generalized Hankel-Clifford transformations on some
spaces of functions has been described. The range of the generalized Hankel-Clifford
transforms of compactly supported functions which are either square integrable
(Paley-Wiener Theorem) or infinitely differentiable (Paley-Wiener-Schwartz Theo-
rem) is also characterized.
One of the main tools of our next two theorems is the Plancherel’s theorem for the
generalized Hankel-Clifford transformations as proved in [10] can be represented as

‖h1,α,βg‖2 = ‖g‖2 (1.17)

where ‖g‖p = ‖g‖Lp(R+), 1 ≤ p <∞ , that is valid only when (α− β) ≥ −1/2.

For complex (α−β), the Plancherel’s equation (1.16) is replaced by the inequalities

C−1‖g‖2 ≤ ‖h1,α,βg‖2 ≤ C‖g‖2, (α− β) ≥ −1/2 (1.18)

where C ∈ [1,∞) is a constant independent of g.

2. Range of the generalized Hankel-Clifford transforms of rapid
decreasing and square integrable functions

The range of the generalized Hankel-Clifford transforms of rapid decreasing and
square integrable functions is described by the following:

Theorem 2.1. Let ymg (y) ∈ L2 (R+) for all m = 0, 1, 2, 3... .
A function f (x) be the generalized Hankel-Clifford transform ~1,α,β of g (y)order
Re (α− β) ≥ −1/2 if and only if:
i) f (x) is infinitely differentiable on R+.
ii) ∆m

α,β,xf (x) , m = 0, 1, 2, 3..., belong to L2 (R+);

iii) ∆m
α,β,xf (x) , m = 0, 1, 2, 3..., tends to 0 as x tends to 0 and to infinity;



4 V. R. LAKSHMI GORTY

iv) ∆m
α,β,xf (x) , m = 0, 1, 2, 3... tends to 0 as x tends to infinity and are bounded

at 0.

Proof. Necessary:
i) Let ymg (y) ∈ L2 (R+) for all m = 0, 1, 2, 3... then ymg (y) ∈ L1 (R+) for all

m = 0, 1, 2, 3....
Let f (x) be the generalized Hankel-Clifford transform ~1,α,β of g (y). Indeed, it is
easily verified that ([2, 4]).

∂m

∂ym

(
y−α−β(xy)

(α+β)/2
Jα−β (2

√
xy)
)

=

m∑
j=0

aj (α) y−(α+β+j
2 )yj−mx(α+β+j

2 )Jα−β−j (2
√
xy)

(2.1)
where the aj (α) are constants depending on α only.
Considering

Dk
[
x−α(xy)(

α+β
2 )+j/2Jα−β−j (2

√
xy)
]

= yαDk
[
(xy)

−(α−β
2 )+j/2Jα−β−j (2

√
xy)
]

= (−1)
k
y(α+β+k)/2

[
x−(α−β−j+k)/2Jα−β−j+k (2

√
xy)
]

[
(xy)

−(α−β−j+k)/2
Jα−β−j+k (2

√
xy)
]

˜
1

2(α−β−j+k)/2Γ
((

α−β−j+k
2

)
+ 1
)

as x→ 0+

= O
[
(xy)

−(α−β−j+k
2 )−1/4e2

√
x|Im √y|

]
as x→∞.

It follows that

γa,αm,k

(
y(−α−β)/2x(α−β−j)/2Jα−β−j (2

√
xy)
)
<∞.

Therefore

γa,αm,k

[
∂m

∂ym

{
y(−α−β)(xy)

(α+β)/2
Jα−β (2

√
xy)
}]

≤
m∑
j=0

|aj (α)| |y|
j
2−m γa,αm,k

(
y(−α−β)/2x(α−β−j)/2Jα−β−j (2

√
xy)
)
<∞.

for a fixed y ∈ Ω.

ii) Since x
(α+β

2 )
Jα−β (2

√
x) is the solution of differential equation by Malgonde

and Lakshmi Gorty in [8]

f ′′ (x) + (1− α− β)x−1f ′ (x) +
(
αβx−2 + 1

)
f (x) = 0. (2.2)
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Therefore

∆m
α,β,x

{
x−α−βJα,β(xy)

}
= (−y)

m {
x−α−βJα,β (xy)

}
. (2.3)

Consequently

∆m
α,β,x

{
x−α−βJα,β(xy)

}
= (−1)

m

∞∫
0

x−α−βJα,β (xy) ymg (y) dy, (2.4)

with (α− β) > −1/2. Plancherel’s inequality gives ymg (y) ∈ L2 (R+), and
∆m
α,β,x

{
x−α−βJα,β (xy)

}
, (α− β) ≥ −1/2, m = 0, 1, 2, 3, ... ∈ L2 (R+) .

iii) For the kernel x−α−βJα,β (xy) has asymptotes x(α−β+1)/2 as x tends to 0, is
uniformly bounded on (0,∞) if (α− β) ≥ −1/2 and ymg (y) ∈ L1 (0,∞),
then applying dominated convergence theorem,

lim
x→∞

[
∆m
α,β,x {f (x)}

]
= (−1)

m

∞∫
0

x−α−βJα,β (xy) ymg (y) dy = 0. (2.5)

(α− β) ≥ −1/2.
For every ε > 0 one can choose large enough so that∣∣∣∣∣∣

∞∫
N

x−α−βJα,β (xy) ymg (y) dy

∣∣∣∣∣∣ < ε. (2.6)

uniformly with respect to x ∈ R+.
By applying the generalized Riemann-Lebesgue theorem,

lim
x→∞

N∫
0

x−α−βJα,β (xy) ymg (y) dy = 0, (2.7)

0 < N <∞, (α− β) ≥ −1/2.
Because ε can be taken arbitrarily small,

lim
x→∞

∞∫
0

x−α−βJα,β (xy) ymg (y) dy = 0, (2.8)

0 ≤ N ≤ ∞, (α− β) ≥ −1/2.
Hence

lim
x→∞

[
∆m
α,β,x {f (x)}

]
= 0, m = 0, 1, 2, ..., (α− β) ≥ −1/2. (2.9)

iv) Using (1.6), we get

(−1)
m d

dx

[
∆m
α,β,xf (x)

]
=

∞∫
0

x(α−β−1)/2Jα−β−1
(
2
√
x
)
ymg (y) dy. (2.10)

From (2.5) and (2.8) of (iii), we can state that the right hand side of (2.10) tends to
zero as x tends to infinity. Since x(α−β−1)/2Jα−β−1 is uniformly bounded on R+,
therefore the right hand side of (2.10) is also uniformly bounded.
Sufficiency:
If f (x) satisfies the conditions i) to iv) of the theorem 2.1.
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Then ∆m
α,β,xf (x) , m = 0, 1, 2, 3..., belong to L2 (R+).

Let gm (y) be its generalized Hankel-Clifford transform:

gm (y) =

∞∫
0

x−α−βJα,β (xy) ∆m
α,β,xf (x) dx; m = 0, 1, 2, 3, ... (2.11)

(α− β) ≥ −1/2.
Since

gNm (y) =

N∫
1/N

x−α−βJα,β (xy) ∆m
α,β,x f (x) dx; m = 0, 1, 2, 3, ... (2.12)

(α− β) ≥ −1/2.
Here gNm (y)→ gm (y) in L2 norm as N →∞.

Integrating (2.12) by parts twice,

gNm (y) = x−α−βJα,β (xy)
d

dx
∆m−1
α,β,x f (x)|N1/N

− ∂

∂x

{
x−α−βJα,β (xy)

}
∆m−1
α,β,x f (x)|N1/N

+

N∫
1/N

∆α,β,x

{
x−α−βJα,β (xy)

}
∆m−1
α,β,x f (x) dx. (2.13)

gNm (y)

= N−α−βJα,β (Ny)
d

dx
∆m−1
α,β,x f (N)−N−α−β−1Jα,β

(
N−1y

) d

dx
∆m−1
α,β,x f

(
N−1

)
+ (α+ β)N−α−β−1

{
N−α−βJα,β (Ny)

}
∆m−1
α,β,x f (N)

−N−α−βN−α−β−1 {Jα,β−1 (Ny)}∆m−1
α,β,x f (N)

− (α+ β)N−α−β−2
{
N−α−β−1Jα,β

(
N−1y

)}
∆m−1
α,β,x f

(
N−1

)
+N−α−β−1N−α−β−2

{
Jα,β−1

(
N−1y

)}
∆m−1
α,β,x f

(
N−1

)
+

N∫
1/N

∆α,β,x

{
x−α−βJα,β (xy)

}
∆m−1
α,β,x f (x) dx. (2.14)

The following can be concluded:
a) x−α−βJα,β (xy) is uniformly bounded and d

dx ∆m−1
α,β,x f (N)→ 0 as N →∞.

b) d
dx ∆m−1

α,β,x f
(
N−1

)
is bounded, whereas N−α−β−1Jα,β

(
N−1y

)
has an order

O
(
N (−α−β−1)/2) is ∞.

c) (α+ β)N−α−β−1
{
N−α−βJα,β (Ny)

}
and ∆m−1

α,β,x f (N) is of O (1) .

d) N−α−βN−α−β−1 {Jα,β−1 (Ny)} and ∆m−1
α,β,x f (N) is of O (1), tends to zero as

N →∞.
e) (α+ β)N−α−β−2

{
N−α−β−1Jα,β

(
N−1y

)}
and ∆m−1

α,β,x f
(
N−1

)
is ofO (1), tends

to zero as N →∞.

f)
N∫

1/N

∆α,β,x

{
x−α−βJα,β (xy)

}
∆m−1
α,β,x f (x) dx converges to (−y) gm−1 (y) as

N →∞.
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Hence gm (y) = (−y) gm−1 (y) , therefore gm (y) = (−y)
m
g0 (y) , m = 0, 1, 2, .....

But f is the generalized Hankel-Clifford transforms of g. Thus f (x)is the general-
ized Hankel-Clifford transforms of the function g (y) = g0 (y) such that ymg (y) ∈
L2 (R+) , n = 0, 1, 2, ... and theorem 2.1 is thus proved.

3. Generalized Hankel-Clifford transform of infinitely
differentiable functions with compact supports

Theorem 3.1. (Paley-Wiener theorem for the generalized Hankel-Clifford trans-
forms of square integrable functions with compact supports) A function f is the
generalized Hankel-Clifford transforms of a square integrable function g with com-
pact support on [0,∞) if and only if f satisfies conditions i)-iv) of Theorem 2.1
and

lim
n→∞

∥∥∆m
α,β,x f (x)

∥∥1/2m
2

= σg <∞, (3.1)

where σg = sup {y : y ∈ supp g} and the support of a function is the smallest closed
set, outside it the function vanishes almost everywhere.

Proof. Necessary: Let f (x) be the generalized Hankel-Clifford transforms of
g (y) ∈ L2 (R+) and assuming σg > 0 and σg <∞:

f (x) = x−(α+β)

σg∫
0

Jα,β (xy) g (y) dy (3.2)

ymg (y) ∈ L2 (R+) , ∀m = 0, 1, 2, ..., f satisfies conditions i)-iv) of theorem 2.1.
Invoking the right side of the inequality (1.17) in (3.2), we get:

∥∥∆m
α,β,x f (x)

∥∥2
2
≤ C

σg∫
0

y2m|g (y)|2dy ≤ C

σg∫
0

σ2m
g |g (y)|2dy. (3.3)

Hence

lim
m→∞

∥∥∆m
α,β,x f (x)

∥∥1/2m
2

≤ lim
m→∞

C1/2mσg


σg∫
0

|g (y)|2dy


1/2m

= σg. (3.4)

Since σg is the least upper bound of the support of g, for every ε, 0 < ε < σg,

gives
σg∫

σg−ε
|g (y)|2dy > 0.

Consequently left side of the inequality in (1.17), gives

lim
m→∞

∥∥∆m
α,β,x f (x)

∥∥1/2m
2

≥ lim
m→∞

C−1/2m (σg − ε)


σg∫

σg−ε

|g (y)|2dy


1/2m

= σg − ε.

(3.5)
Sufficient:
Suppose now that f satisfies the conditions i)-iv) of theorem 2.1, and the limit in
(3.1) exists and equals σ <∞.
Using theorem 2.1, f is the generalized Hankel-Clifford transforms of a function g
such that ymg (y) ∈ L2 (R+) , ∀m = 0, 1, 2, .... It is to be proved that σ < ∞ and
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σ = σg. From theorem 2.1 it is observed that (2.4) is valid. Therefore, applying
the inequalities (1.17) it is obtained as:

C−1‖ymg (y)‖2 ≤
∥∥∆m

α,β,x f (x)
∥∥
2
≤ C‖ymg (y)‖2. (3.6)

Hence

lim
m→∞

C−1‖ymg (y)‖2 ≤ lim
m→∞

∥∥∆m
α,β,x f (x)

∥∥
2
≤ lim
m→∞

C‖ymg (y)‖2 ≤ lim
m→∞

C‖σmg (y)‖2.
(3.7)

Consequently

lim
m→∞

‖ymg (y)‖1/2m2 = σ. (3.8)

Suppose that σg > σ. Then there exists a positive ε such that

∞∫
σg+ε

|g (y)|2dy > 0. (3.9)

Then

σ = lim
m→∞

‖ymg (y)‖1/2m2 ≥ lim
m→∞


∞∫

σ+ε

y2m|g (y)|2dy


1/2m

≥ lim
m→∞

(σ + ε)


∞∫

σ+ε

|g (y)|2dy


1/2m

= σ + ε. (3.10)

which is impossible. Hence σg ≤ σ and g has a compact support.

Suppose that σg < σ . Then there exists a positive ε such that
σ−ε∫
0

|g (y)|2dy > 0.

Thus

σ = lim
m→∞

‖ymg (y)‖1/2m2 ≤ lim
m→∞


σ−ε∫
0

y2m|g (y)|2dy


1/2m

≤ lim
m→∞

(σ − ε)


σ−ε∫
0

|g (y)|2dy


1/2m

= σ − ε. (3.11)

which is impossible. Hence σg ≥ σ and thus σ = σg. Thus the theorem is proved.

4. generalized Erdelyi-Kober fractional integral operator

Let the generalized Erdelyi-Kober fractional integral operator as defined by [7]

h (x) = (Kα,βg1) (x) =
2(α+β)/2

Γ
(
α−β+1

2

) ∞∫
x

(
y2 − x2

)(α+β−1
2 )

y g1 (y) dy; (4.1)

where Re (α− β) > 0;x ∈ R.
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Theorem 4.1. (Paley-Wiener-Schwartz theorem for generalized Hankel-Clifford
transform of infinitely differentiable functions with compact supports) A function
f ∈ h1,α,β is the generalized Hankel-Clifford transform for (α− β) ≥ −1/2 of a
function g ∈ h1,α,β with compact support if and only if

lim
m→∞

∥∥∥∥ dmdxmxαf (x)

∥∥∥∥1/m
p

= σg, 1 ≤ p ≤ ∞. (4.2)

Proof. The integral representation of generalized Hankel-Clifford function Jα,β (xy)
analogously can be written as [3],

Jα,β (x) =
2(1+α+β)/2x−(α+β)/2y(α+β)/2

√
πΓ
(
α−β+1

2

) 1∫
0

(
1− t2

)(α+β−1
2 )

cos
(
2t
√
x
)
dt, (4.3)

Re (α− β) ≥ −1/2. Substituting x by xy2 and t by t/y, it gives

Jα,β (xy) =
2(1+α+β)/2x−(α+β)/2y3(α+β)/2

√
πΓ
(
α−β+1

2

) y∫
0

(
y2 − t2

)(α+β−1
2 )

y−(α+β−1) cos
(
2t
√
x
)
dt.

(4.4)
The generalized Hankel-Clifford transform can be rewritten as

f (x) =
2(1+α+β)/2x−(α+β)/2y3(α+β)/2

√
πΓ
(
α−β+1

2

) ∞∫
0

y−(α+β−1)g (y)

y∫
0

(
y2 − t2

)(α+β−1
2 )

cos
(
2t
√
x
)
dtdy.

(4.5)
If y−(α+β)/2g (y) ∈ L1 (R+) , then the repeated integral (4.5) converges abso-

lutely. Therefore, Fubini-Tonelli theorem [5 ] is applied to interchange the order of
integration in (4.5);

f (x) =
2(1+α+β)/2x−(α+β)/2y(α+β)/2

√
πΓ
(
α−β+1

2

) ∞∫
0

cos
(
2t
√
x
)
dt

∞∫
t

(
y2 − t2

)(α+β−1
2 )

y g (y) dy.

(4.6)
Considering f1 (x) = x(α+β)/2f (x) and g1 (y) = y−(α+β)/2g (y) ,

f1 (x) =
2(1+α+β)/2

√
πΓ
(
α−β+1

2

) ∞∫
0

cos
(
2t
√
x
)
dt

∞∫
t

(
y2 − t2

)(α+β−1
2 )

y g1 (y) dy. (4.7)

Therefore f1 (x) can be viewed as composition of the Fourier cosine transform

f1 (x) =

√
2

π

∞∫
0

cos
(
2t
√
x
)
h (t) dt, 0 ≤ x <∞, (4.8)

where

h (t) =
2(α+β)/2

Γ
(
α−β+1

2

) ∞∫
t

(
y2 − t2

)(α+β−1
2 )

y g1 (y) dy. (4.9)

and the generalized Erdelyi-Kober fractional integral operator (4.1) K(α−β+1)/2 of
order (α− β + 1) /2 multiplied by a constant.
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It is from the definition that f̂ ∈ S (R) is the Fourier transform of an infinitely
differentiable function f on R with compact support if and only if

σ|f | = lim
m→∞

∥∥∥∥ dmdxm f̂ (x)

∥∥∥∥1/m
Lp(R)

, 1 ≤ p <∞, (4.10)

where σ|f | = sup {|y| : y ∈ supp f}.
Restricting the Fourier transform only on even functions it is observed that a func-

tion f̂ ∈ Se (R) is the Fourier cosine transform (4.8) of a function h ∈ Se with
compact support if and only if

σh = lim
m→∞

∥∥∥∥ dmdxm f1 (x)

∥∥∥∥1/m
p

. (4.11)

On the other hand, the Erdelyi-Kober fractional integral operator K(α−β+1)/2is
a bijection in the space of infinitely differentiable functions on R+ with compact
supports and σh = σg1 . From g1 (y) = y−(α+β)/2g (y)it is obtained that σg = σg1 ,
theorem 4.1 follows now from formula (4.7).

5. Conclusion

1. The Paley-Wiener theorem for the generalized Hankel-Clifford is obtained.
2. The generalized Hankel-Clifford of square integrable functions with com-

pact supports, rapid decreasing functions, infinitely differentiable functions
with compact supports, of analytic functions are studied.

3. The range of the generalized Hankel-Clifford transform of compactly sup-
ported functions which are either square integrable or infinitely differen-
tiable is characterized.

4. The study leads to application in Mathematical Physics.
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