BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 11 Issue 4(2019), Pages 1-11.

THE GENERALIZED HANKEL-CLIFFORD TRANSFORMATION WITH COMPACT SUPPORT ON CERTAIN RANGE

V. R. LAKSHMI GORTY

ABSTRACT. The Paley-Wiener theorem for the generalized Hankel-Clifford transforms is obtained. The generalized Hankel-Clifford transforms of square integrable functions with compact supports, rapid decreasing functions, infinitely differentiable functions with compact supports, of analytic functions are studied. The range of the generalized Hankel-Clifford transform of compactly supported functions which are either square integrable (Paley-Wiener Theorem) or infinitely differentiable (Paley-Wiener-Schwartz Theorem) is characterized. Such developed transforms are supported by an application to Mathematical Physics at the end of the section of the study.

1. INTRODUCTION

The generalized Hankel-Clifford transformations defined by

$$f(x) = (h_{1,\alpha,\beta}g)(x) = x^{-(\alpha+\beta)} \int_{0}^{\infty} \mathcal{J}_{\alpha,\beta}(xy) g(y) dy, \qquad (1.1)$$

and

$$p(x) = (h_{2,\alpha,\beta}t)(x) = \int_{0}^{\infty} y^{-(\alpha+\beta)} \mathcal{J}_{\alpha,\beta}(xy) t(y) dy \qquad (1.2)$$

if the integral converges in some sense (absolutely, improper, or mean convergence). Here $\mathcal{J}_{\alpha,\beta}(z) = z^{(\alpha+\beta)/2} J_{\alpha-\beta}(2\sqrt{z})$, $J_{\alpha-\beta}(z)$ being the Bessel function of the first kind and order $(\alpha - \beta) \geq -1/2$ were extended by Malgonde [1] to certain generalized functions [6]. It is analogous from [5] and as represented in [2] that if $Re(\alpha - \beta) \geq -1/2$, then the generalized Hankel-Clifford transformations is an automorphism of $L_2(R_+)$ and the inverse generalized Hankel-Clifford transformations on $L_2(R_+)$ has the symmetric form

$$g(x) = (h_{1,\alpha,\beta}f)(x) = x^{-(\alpha+\beta)} \int_{0}^{\infty} \mathcal{J}_{\alpha,\beta}(xy) f(y) dy, \qquad (1.3)$$

²⁰¹⁰ Mathematics Subject Classification. 44A20; 46F12.

Key words and phrases. Generalized Hankel-Clifford transformation, operators, Hilbert spaces. ©2019 Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted October 25, 2018. Published November 6, 2019.

SVKM's NMIMS University for the support of this work.

Communicated by Daoud Bshouty.

$$t(x) = (h_{2,\alpha,\beta}p)(x) = \int_{0}^{\infty} y^{-(\alpha+\beta)} \mathcal{J}_{\alpha,\beta}(xy) p(y) dy.$$
(1.4)

Let us take note here of some properties of Bessel functions that we shall use quite a few times in this work (see [4]).

Definition 1.1. The behaviors of $J_{\alpha-\beta}$ near the origin and the infinity are from [8] as follows:

$$J_{\alpha-\beta}(2x^{1/2}) = O\left(x^{1/2}\right)^{\alpha-\beta}$$
(1.5)

as $x \to 0+$.

$$J_{\alpha-\beta}\left(2x^{1/2}\right) \approx (2\pi) x^{-1/4} \cos\left(2x^{1/2} - \frac{1}{2}(\alpha-\beta)\pi - \frac{1}{4}\pi\right) \sum_{m=0}^{\infty} \frac{(-1)^m (\alpha-\beta, 2m)}{(4x^{1/2})^{2m}} - \sin\left(2x^{1/2} - \frac{1}{4}(\alpha-\beta)\pi - \frac{1}{4}\pi\right) \sum_{m=0}^{\infty} \frac{(-1)^m (\alpha-\beta, 2m+1)}{(\alpha-\beta, 2m+1)}$$
(1.6)

$$-\sin\left(2x^{1/2} - \frac{1}{2}(\alpha - \beta)\pi - \frac{1}{4}\pi\right)\sum_{m=0}^{\infty}\frac{(-1)^m(\alpha - \beta, 2m+1)}{(4x^{1/2})^{2m+1}}$$
(1.)

as, $x \to \infty$ where $(\alpha - \beta, k)$ is understood as in [4].

Definition 1.2. The main differentiation formulas for $J_{\alpha-\beta}$ in [1] are:

$$\frac{d}{dx} \left[x^{(\alpha-\beta)/2} J_{\alpha-\beta} \left(2\sqrt{x} \right) \right] = x^{(\alpha-\beta-1)/2} J_{\alpha-\beta-1} \left(2\sqrt{x} \right).$$
(1.7)

$$\frac{d}{dx}\left[x^{-(\alpha-\beta)/2}J_{\alpha-\beta}\left(2\sqrt{x}\right)\right] = -x^{-(\alpha-\beta+1)/2}J_{\alpha-\beta+1}\left(2\sqrt{x}\right).$$
(1.8)

$$x^{\alpha+\beta+1}\frac{d}{dx}\left[x^{-(\alpha-\beta)/2}J_{\alpha-\beta}\left(2\sqrt{x}\right)\right] = -x^{\alpha+\beta+1/2}J_{\alpha-\beta+1}\left(2\sqrt{x}\right)$$
(1.9)

for x, y > 0.

Definition 1.3. The generalized Kepinski type differential operator from [1] is defined as

$$\Delta_{\alpha,\beta} = \Delta_{\alpha,\beta,x} = x^{-\alpha} D x^{\alpha-\beta+1} D x^{\beta} = x D^2 + (\alpha-\beta+1)D + \alpha\beta x^{-1}$$
(1.10)

where $\alpha - \beta \ge -1/2$ and $D = D_x = \frac{d}{dx}$.

Property 1.1. By combining (1.7) and (1.8) and (1.10), it can be easily inferred

$$\Delta_{\alpha,\beta}\mathcal{J}_{\alpha,\beta}(x) = -\mathcal{J}_{\alpha,\beta}(x) \tag{1.11}$$

Property 1.2. The generalized Hankel-Clifford transforms can be extended to

$$f(x) = (h_{1,\alpha,\beta}g)(x) = x^{-(\alpha+\beta)} \int_{0}^{\infty} \mathcal{J}_{\alpha,\beta,m}(xy) g(y) dy, \qquad (1.12)$$

where $\mathcal{J}_{\alpha,\beta,m}(x) = x^{(\alpha+\beta)/2} J_{\alpha-\beta,m}(2\sqrt{x})$ and $J_{\alpha-\beta,m}(2\sqrt{x})$ being the truncated Bessel function of the first kind analogous to [2] and is represented as

$$J_{\alpha-\beta,m}\left(2\sqrt{x}\right) = J_{\alpha-\beta}\left(2\sqrt{x}\right) - \sum_{k=0}^{m-1} \frac{(-1)^k (\sqrt{x})^{(\alpha-\beta+2k)}}{\Gamma(\alpha-\beta+k+1)k!}$$

and the integral is taken in sense of L_2 .

The generalized Hankel-Clifford transforms and its inverse will have a bounded operator in $L_2(R_+)$ from [9] and has been extended from [2] as:

$$g(x) = x^{(-3\alpha+\beta-1)/2} \frac{d}{dx} x^{(3\alpha-\beta+1)/2} \int_{0}^{\infty} x^{(\alpha-\beta+1)} J_{\alpha-\beta+1,m+1} \left(2\sqrt{xy}\right) f(y) \, dy$$
(1.13)

for $x \in R_+$; $1/2 - m < \text{Re}(\alpha - \beta) < m + 1/2, m > 0.$

$$\mathcal{I}_{\alpha,\beta-1,m+1}(x) = x^{-1/2} J_{\alpha-\beta+1,m+1}(2\sqrt{x}).$$
 (1.14)

Property 1.3. Using the equivalent form of the [equation (7); 2], we get

$$\frac{d}{dx}\left[x^{(\alpha-\beta+1)}J_{\alpha-\beta+1,m+1}\left(2\sqrt{x}\right)\right] = x^{(\alpha-\beta)+1/2}J_{\alpha-\beta,m}\left(2\sqrt{x}\right),\qquad(1.15)$$

where $\text{Re}(\alpha - \beta) < m + 1/2, m > 0.$

Then symmetric to formula [(8); 2] can be extended to

$$g_{N}(x) = x^{(-3\alpha+\beta-1)/2} \frac{d}{dx} x^{(3\alpha-\beta+1)/2} \int_{1/N}^{N} x^{(\alpha-\beta+1)} J_{\alpha-\beta+1,m+1}(2\sqrt{xy}) f(y) dy$$
$$= x^{-(\alpha+\beta)} \int_{1/N}^{N} \mathcal{J}_{\alpha,\beta,m}(xy) g(y) dy$$
(1.16)

In this paper, the range of the generalized Hankel-Clifford transformations on some spaces of functions has been described. The range of the generalized Hankel-Clifford transforms of compactly supported functions which are either square integrable (Paley-Wiener Theorem) or infinitely differentiable (Paley-Wiener-Schwartz Theorem) is also characterized.

One of the main tools of our next two theorems is the Plancherel's theorem for the generalized Hankel-Clifford transformations as proved in [10] can be represented as

$$\|h_{1,\alpha,\beta}g\|_2 = \|g\|_2 \tag{1.17}$$

where $\|g\|_p = \|g\|_{L_p(R_+)}, 1 \le p < \infty$, that is valid only when $(\alpha - \beta) \ge -1/2$. For complex $(\alpha - \beta)$, the Plancherel's equation (1.16) is replaced by the inequalities

$$C^{-1} \|g\|_{2} \le \|h_{1,\alpha,\beta}g\|_{2} \le C \|g\|_{2}, (\alpha - \beta) \ge -1/2$$
(1.18)

where $C \in [1, \infty)$ is a constant independent of g.

2. RANGE OF THE GENERALIZED HANKEL-CLIFFORD TRANSFORMS OF RAPID DECREASING AND SQUARE INTEGRABLE FUNCTIONS

The range of the generalized Hankel-Clifford transforms of rapid decreasing and square integrable functions is described by the following:

Theorem 2.1. Let $y^m g(y) \in L_2(R_+)$ for all m = 0, 1, 2, 3.... A function f(x) be the generalized Hankel-Clifford transform $\hbar_{1,\alpha,\beta}$ of g(y) order $\operatorname{Re}(\alpha - \beta) \geq -1/2$ if and only if: i) f(x) is infinitely differentiable on R_+ . ii) $\Delta^m_{\alpha,\beta,x} f(x), m = 0, 1, 2, 3...,$ belong to $L_2(R_+)$; iii) $\Delta^m_{\alpha,\beta,x} f(x), m = 0, 1, 2, 3...,$ tends to 0 as x tends to 0 and to infinity; iv) $\Delta_{\alpha,\beta,x}^{m}f(x)$, m = 0, 1, 2, 3... tends to 0 as x tends to infinity and are bounded at 0.

Proof. Necessary:

i) Let $y^m g(y) \in L_2(R_+)$ for all m = 0, 1, 2, 3... then $y^m g(y) \in L_1(R_+)$ for all m = 0, 1, 2, 3....

Let f(x) be the generalized Hankel-Clifford transform $\hbar_{1,\alpha,\beta}$ of g(y). Indeed, it is easily verified that ([2, 4]).

$$\frac{\partial^m}{\partial y^m} \left(y^{-\alpha-\beta} (xy)^{(\alpha+\beta)/2} J_{\alpha-\beta} \left(2\sqrt{xy} \right) \right) = \sum_{j=0}^m a_j \left(\alpha \right) y^{-\left(\frac{\alpha+\beta+j}{2}\right)} y^{j-m} x^{\left(\frac{\alpha+\beta+j}{2}\right)} J_{\alpha-\beta-j} \left(2\sqrt{xy} \right)$$

$$(2.1)$$

where the $a_j(\alpha)$ are constants depending on α only. Considering

$$D^{k} \left[x^{-\alpha} (xy)^{\left(\frac{\alpha+\beta}{2}\right)+j/2} J_{\alpha-\beta-j} (2\sqrt{xy}) \right]$$

$$= y^{\alpha} D^{k} \left[(xy)^{-\left(\frac{\alpha-\beta}{2}\right)+j/2} J_{\alpha-\beta-j} (2\sqrt{xy}) \right]$$

$$= (-1)^{k} y^{(\alpha+\beta+k)/2} \left[x^{-(\alpha-\beta-j+k)/2} J_{\alpha-\beta-j+k} (2\sqrt{xy}) \right]$$

$$\left[(xy)^{-(\alpha-\beta-j+k)/2} J_{\alpha-\beta-j+k} (2\sqrt{xy}) \right]$$

$$\tilde{1} \frac{1}{2^{(\alpha-\beta-j+k)/2} \Gamma \left(\left(\frac{\alpha-\beta-j+k}{2}\right)+1 \right)}$$
as $x \to 0^{+}$

$$= O \left[(xy)^{-\left(\frac{\alpha-\beta-j+k}{2}\right)-1/4} e^{2\sqrt{x}} |\text{Im } \sqrt{y}| \right]$$

It follows that

$$\gamma_{m,k}^{a,\alpha}\left(y^{(-\alpha-\beta)/2}x^{(\alpha-\beta-j)/2}J_{\alpha-\beta-j}\left(2\sqrt{xy}\right)\right)<\infty.$$

as $x \to \infty$.

Therefore

$$\gamma_{m,k}^{a,\alpha} \left[\frac{\partial^m}{\partial y^m} \left\{ y^{(-\alpha-\beta)} (xy)^{(\alpha+\beta)/2} J_{\alpha-\beta} \left(2\sqrt{xy} \right) \right\} \right]$$

$$\leq \sum_{j=0}^m |a_j(\alpha)| \left| y \right|^{\frac{j}{2}-m} \gamma_{m,k}^{a,\alpha} \left(y^{(-\alpha-\beta)/2} x^{(\alpha-\beta-j)/2} J_{\alpha-\beta-j} \left(2\sqrt{xy} \right) \right) < \infty.$$

for a fixed $y \in \Omega$. ii) Since $x^{\left(\frac{\alpha+\beta}{2}\right)} J_{\alpha-\beta}(2\sqrt{x})$ is the solution of differential equation by Malgonde and Lakshmi Gorty in [8]

$$f''(x) + (1 - \alpha - \beta) x^{-1} f'(x) + (\alpha \beta x^{-2} + 1) f(x) = 0.$$
 (2.2)

4

Therefore

$$\Delta^{m}_{\alpha,\beta,x}\left\{x^{-\alpha-\beta}\mathcal{J}_{\alpha,\beta}(xy)\right\} = (-y)^{m}\left\{x^{-\alpha-\beta}\mathcal{J}_{\alpha,\beta}(xy)\right\}.$$
(2.3)

Consequently

$$\Delta_{\alpha,\beta,x}^{m}\left\{x^{-\alpha-\beta}\mathcal{J}_{\alpha,\beta}(xy)\right\} = (-1)^{m} \int_{0}^{\infty} x^{-\alpha-\beta}\mathcal{J}_{\alpha,\beta}(xy) y^{m}g(y) \, dy, \qquad (2.4)$$

with $(\alpha - \beta) > -1/2$. Plancherel's inequality gives $y^m g(y) \in L_2(R_+)$, and $\Delta^m_{\alpha,\beta,x} \left\{ x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}(xy) \right\}, \ (\alpha - \beta) \ge -1/2, \ m = 0, 1, 2, 3, ... \in L_2(R_+).$

iii) For the kernel $x^{-\alpha-\beta}J_{\alpha,\beta}(xy)$ has asymptotes $x^{(\alpha-\beta+1)/2}$ as x tends to 0, is uniformly bounded on $(0,\infty)$ if $(\alpha-\beta) \ge -1/2$ and $y^m g(y) \in L_1(0,\infty)$, then applying dominated convergence theorem,

$$\lim_{x \to \infty} \left[\Delta^m_{\alpha,\beta,x} \left\{ f\left(x\right) \right\} \right] = (-1)^m \int_0^\infty x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}\left(xy\right) y^m g\left(y\right) dy = 0.$$
(2.5)

 $(\alpha - \beta) \ge -1/2.$

For every $\varepsilon>0$ one can choose large enough so that

$$\left|\int_{N}^{\infty} x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}\left(xy\right) y^{m} g\left(y\right) dy\right| < \varepsilon.$$
(2.6)

uniformly with respect to $x \in R_+$.

By applying the generalized Riemann-Lebesgue theorem,

$$\lim_{x \to \infty} \int_{0}^{N} x^{-\alpha - \beta} \mathcal{J}_{\alpha,\beta}(xy) y^{m} g(y) dy = 0, \qquad (2.7)$$

 $0 < N < \infty, (\alpha - \beta) \ge -1/2.$

Because ε can be taken arbitrarily small,

$$\lim_{x \to \infty} \int_{0}^{\infty} x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}(xy) y^{m} g(y) dy = 0, \qquad (2.8)$$

 $0 \le N \le \infty, (\alpha - \beta) \ge -1/2.$ Hence

$$\lim_{x \to \infty} \left[\Delta^m_{\alpha,\beta,x} \left\{ f(x) \right\} \right] = 0, \ m = 0, 1, 2, ..., \ (\alpha - \beta) \ge -1/2.$$
(2.9)

iv) Using (1.6), we get

$$(-1)^m \frac{d}{dx} \left[\Delta^m_{\alpha,\beta,x} f\left(x\right) \right] = \int_0^\infty x^{(\alpha-\beta-1)/2} J_{\alpha-\beta-1} \left(2\sqrt{x}\right) y^m g\left(y\right) dy.$$
(2.10)

From (2.5) and (2.8) of (iii), we can state that the right hand side of (2.10) tends to zero as x tends to infinity. Since $x^{(\alpha-\beta-1)/2}J_{\alpha-\beta-1}$ is uniformly bounded on R_+ , therefore the right hand side of (2.10) is also uniformly bounded. Sufficiency:

If f(x) satisfies the conditions i) to iv) of the theorem 2.1.

5

Then $\Delta_{\alpha,\beta,x}^{m}f(x)$, m = 0, 1, 2, 3..., belong to $L_{2}(R_{+})$. Let $g_m(y)$ be its generalized Hankel-Clifford transform:

$$g_m(y) = \int_0^\infty x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}(xy) \,\Delta^m_{\alpha,\beta,x} f(x) \,dx; \ m = 0, 1, 2, 3, \dots$$
(2.11)

 $(\alpha - \beta) \ge -1/2.$ Since

$$g_{m}^{N}(y) = \int_{1/N}^{N} x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}(xy) \,\Delta_{\alpha,\beta,x}^{m} f(x) \,dx; \ m = 0, 1, 2, 3, \dots$$
(2.12)

 $(\alpha - \beta) \ge -1/2.$ Here $g_m^N(y) \to g_m(y)$ in L_2 norm as $N \to \infty$. Integrating (2.12) by parts twice,

$$g_{m}^{N}(y) = x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}(xy) \frac{d}{dx} \Delta_{\alpha,\beta,x}^{m-1} f(x)|_{1/N}^{N} - \frac{\partial}{\partial x} \left\{ x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}(xy) \right\} \Delta_{\alpha,\beta,x}^{m-1} f(x)|_{1/N}^{N} + \int_{1/N}^{N} \Delta_{\alpha,\beta,x} \left\{ x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta}(xy) \right\} \Delta_{\alpha,\beta,x}^{m-1} f(x) dx.$$
(2.13)

 $g_{m}^{N}\left(y\right)$

$$= N^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta} \left(Ny \right) \frac{d}{dx} \Delta_{\alpha,\beta,x}^{m-1} f\left(N \right) - N^{-\alpha-\beta-1} \mathcal{J}_{\alpha,\beta} \left(N^{-1}y \right) \frac{d}{dx} \Delta_{\alpha,\beta,x}^{m-1} f\left(N^{-1} \right) + \left(\alpha + \beta \right) N^{-\alpha-\beta-1} \left\{ N^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta} \left(Ny \right) \right\} \Delta_{\alpha,\beta,x}^{m-1} f\left(N \right) - N^{-\alpha-\beta} N^{-\alpha-\beta-1} \left\{ \mathcal{J}_{\alpha,\beta-1} \left(Ny \right) \right\} \Delta_{\alpha,\beta,x}^{m-1} f\left(N \right) - \left(\alpha + \beta \right) N^{-\alpha-\beta-2} \left\{ N^{-\alpha-\beta-1} \mathcal{J}_{\alpha,\beta} \left(N^{-1}y \right) \right\} \Delta_{\alpha,\beta,x}^{m-1} f\left(N^{-1} \right) + N^{-\alpha-\beta-1} N^{-\alpha-\beta-2} \left\{ \mathcal{J}_{\alpha,\beta-1} \left(N^{-1}y \right) \right\} \Delta_{\alpha,\beta,x}^{m-1} f\left(N^{-1} \right) + \int_{1/N}^{N} \Delta_{\alpha,\beta,x} \left\{ x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta} \left(xy \right) \right\} \Delta_{\alpha,\beta,x}^{m-1} f\left(x \right) dx.$$
(2.14)

The following can be concluded:

a) $x^{-\alpha-\beta}\mathcal{J}_{\alpha,\beta}(xy)$ is uniformly bounded and $\frac{d}{dx}\Delta_{\alpha,\beta,x}^{m-1}f(N) \to 0$ as $N \to \infty$. b) $\frac{d}{dx}\Delta_{\alpha,\beta,x}^{m-1}f(N^{-1})$ is bounded, whereas $N^{-\alpha-\beta-1}\mathcal{J}_{\alpha,\beta}(N^{-1}y)$ has an order $O\left(N^{(-\alpha-\beta-1)/2}\right)$ is ∞ . c) $(\alpha + \beta) N^{-\alpha - \beta - 1} \{ N^{-\alpha - \beta} \mathcal{J}_{\alpha,\beta} (Ny) \}$ and $\Delta_{\alpha,\beta,x}^{m-1} f(N)$ is of O(1). d) $N^{-\alpha - \beta} N^{-\alpha - \beta - 1} \{ \mathcal{J}_{\alpha,\beta - 1} (Ny) \}$ and $\Delta_{\alpha,\beta,x}^{m-1} f(N)$ is of O(1), tends to zero as $N \to \infty$. e) $(\alpha + \beta) N^{-\alpha - \beta - 2} \left\{ N^{-\alpha - \beta - 1} \mathcal{J}_{\alpha, \beta} \left(N^{-1} y \right) \right\}$ and $\Delta_{\alpha, \beta, x}^{m-1} f \left(N^{-1} \right)$ is of O(1), tends b) $(\alpha + \beta) N = (1 - \beta) \Delta_{\alpha,\beta} (1 - \beta) f$ and $\underline{\Delta}_{\alpha,\beta,x} f (1 - \beta) \delta O(\theta(1))$, to zero as $N \to \infty$. f) $\int_{1/N} \Delta_{\alpha,\beta,x} \{x^{-\alpha-\beta} \mathcal{J}_{\alpha,\beta} (xy)\} \Delta_{\alpha,\beta,x}^{m-1} f(x) dx$ converges to $(-y) g_{m-1}(y)$ as $N \to \infty$.

 $\mathbf{6}$

Hence $g_m(y) = (-y) g_{m-1}(y)$, therefore $g_m(y) = (-y)^m g_0(y)$, $m = 0, 1, 2, \dots$. But f is the generalized Hankel-Clifford transforms of g. Thus f(x) is the generalized Hankel-Clifford transforms of the function $g(y) = g_0(y)$ such that $y^m g(y) \in L_2(R_+)$, $n = 0, 1, 2, \dots$ and theorem 2.1 is thus proved.

3. GENERALIZED HANKEL-CLIFFORD TRANSFORM OF INFINITELY DIFFERENTIABLE FUNCTIONS WITH COMPACT SUPPORTS

Theorem 3.1. (Paley-Wiener theorem for the generalized Hankel-Clifford transforms of square integrable functions with compact supports) A function f is the generalized Hankel-Clifford transforms of a square integrable function g with compact support on $[0, \infty)$ if and only if f satisfies conditions i)-iv) of Theorem 2.1 and

$$\lim_{n \to \infty} \left\| \Delta^m_{\alpha,\beta,x} f(x) \right\|_2^{1/2m} = \sigma_g < \infty, \tag{3.1}$$

where $\sigma_g = \sup \{y : y \in supp \ g\}$ and the support of a function is the smallest closed set, outside it the function vanishes almost everywhere.

Proof. Necessary: Let f(x) be the generalized Hankel-Clifford transforms of $g(y) \in L_2(R_+)$ and assuming $\sigma_g > 0$ and $\sigma_g < \infty$:

$$f(x) = x^{-(\alpha+\beta)} \int_{0}^{\sigma_{g}} \mathcal{J}_{\alpha,\beta}(xy) g(y) dy$$
(3.2)

 $y^m g(y) \in L_2(R_+)$, $\forall m = 0, 1, 2, ..., f$ satisfies conditions i)-iv) of theorem 2.1. Invoking the right side of the inequality (1.17) in (3.2), we get:

$$\left\|\Delta_{\alpha,\beta,x}^{m}f(x)\right\|_{2}^{2} \leq C \int_{0}^{\sigma_{g}} y^{2m} |g(y)|^{2} dy \leq C \int_{0}^{\sigma_{g}} \sigma_{g}^{2m} |g(y)|^{2} dy.$$
(3.3)

Hence

$$\overline{\lim_{m \to \infty}} \left\| \Delta^m_{\alpha,\beta,x} f(x) \right\|_2^{1/2m} \le \overline{\lim_{m \to \infty}} C^{1/2m} \sigma_g \left\{ \int_0^{\sigma_g} \left| g(y) \right|^2 dy \right\}^{1/2m} = \sigma_g.$$
(3.4)

Since σ_g is the least upper bound of the support of g, for every ε , $0 < \varepsilon < \sigma_g$, gives $\int_{\sigma_g - \varepsilon}^{\sigma_g} |g(y)|^2 dy > 0$.

Consequently left side of the inequality in (1.17), gives

$$\lim_{m \to \infty} \left\| \Delta_{\alpha,\beta,x}^m f(x) \right\|_2^{1/2m} \ge \lim_{m \to \infty} C^{-1/2m} \left(\sigma_g - \varepsilon \right) \left\{ \int_{\sigma_g - \varepsilon}^{\sigma_g} \left| g(y) \right|^2 dy \right\}^{1/2m} = \sigma_g - \varepsilon.$$
(3.5)

Sufficient:

Suppose now that f satisfies the conditions i)-iv) of theorem 2.1, and the limit in (3.1) exists and equals $\sigma < \infty$.

Using theorem 2.1, f is the generalized Hankel-Clifford transforms of a function g such that $y^m g(y) \in L_2(R_+)$, $\forall m = 0, 1, 2, ...$ It is to be proved that $\sigma < \infty$ and

 $\sigma = \sigma_g$. From theorem 2.1 it is observed that (2.4) is valid. Therefore, applying the inequalities (1.17) it is obtained as:

$$C^{-1} \|y^m g(y)\|_2 \le \left\|\Delta^m_{\alpha,\beta,x} f(x)\right\|_2 \le C \|y^m g(y)\|_2.$$
(3.6)

Hence

$$\lim_{m \to \infty} C^{-1} \|y^m g(y)\|_2 \le \lim_{m \to \infty} \left\|\Delta^m_{\alpha,\beta,x} f(x)\right\|_2 \le \lim_{m \to \infty} C \|y^m g(y)\|_2 \le \lim_{m \to \infty} C \|\sigma^m g(y)\|_2$$
(3.7)

Consequently

$$\lim_{m \to \infty} \|y^m g(y)\|_2^{1/2m} = \sigma.$$
(3.8)

Suppose that $\sigma_g > \sigma$. Then there exists a positive ε such that

$$\int_{\sigma_g+\varepsilon}^{\infty} |g(y)|^2 dy > 0.$$
(3.9)

Then

$$\sigma = \lim_{m \to \infty} \|y^m g(y)\|_2^{1/2m} \ge \lim_{m \to \infty} \left\{ \int_{\sigma+\varepsilon}^{\infty} y^{2m} |g(y)|^2 dy \right\}^{1/2m}$$
$$\ge \lim_{m \to \infty} (\sigma+\varepsilon) \left\{ \int_{\sigma+\varepsilon}^{\infty} |g(y)|^2 dy \right\}^{1/2m} = \sigma+\varepsilon.$$
(3.10)

which is impossible. Hence $\sigma_g \leq \sigma$ and g has a compact support.

Suppose that $\sigma_g < \sigma$. Then there exists a positive ε such that $\int_0^{\sigma-\varepsilon} |g(y)|^2 dy > 0$. Thus

$$\sigma = \lim_{m \to \infty} \|y^m g(y)\|_2^{1/2m} \le \lim_{m \to \infty} \left\{ \int_0^{\sigma - \varepsilon} y^{2m} |g(y)|^2 dy \right\}^{1/2m}$$
$$\le \lim_{m \to \infty} (\sigma - \varepsilon) \left\{ \int_0^{\sigma - \varepsilon} |g(y)|^2 dy \right\}^{1/2m} = \sigma - \varepsilon.$$
(3.11)

which is impossible. Hence $\sigma_g \ge \sigma$ and thus $\sigma = \sigma_g$. Thus the theorem is proved.

4. GENERALIZED ERDELYI-KOBER FRACTIONAL INTEGRAL OPERATOR

Let the generalized Erdelyi-Kober fractional integral operator as defined by [7]

$$h(x) = (K_{\alpha,\beta}g_1)(x) = \frac{2^{(\alpha+\beta)/2}}{\Gamma\left(\frac{\alpha-\beta+1}{2}\right)} \int_x^\infty (y^2 - x^2)^{\left(\frac{\alpha+\beta-1}{2}\right)} y \, g_1(y) \, dy; \tag{4.1}$$

where $\operatorname{Re}(\alpha - \beta) > 0; x \in R$.

Theorem 4.1. (Paley-Wiener-Schwartz theorem for generalized Hankel-Clifford transform of infinitely differentiable functions with compact supports) A function $f \in h_{1,\alpha,\beta}$ is the generalized Hankel-Clifford transform for $(\alpha - \beta) \ge -1/2$ of a function $g \in h_{1,\alpha,\beta}$ with compact support if and only if

$$\lim_{m \to \infty} \left\| \frac{d^m}{dx^m} x^{\alpha} f(x) \right\|_p^{1/m} = \sigma_g, 1 \le p \le \infty.$$
(4.2)

Proof. The integral representation of generalized Hankel-Clifford function $J_{\alpha,\beta}(xy)$ analogously can be written as [3],

$$J_{\alpha,\beta}\left(x\right) = \frac{2^{(1+\alpha+\beta)/2}x^{-(\alpha+\beta)/2}y^{(\alpha+\beta)/2}}{\sqrt{\pi}\Gamma\left(\frac{\alpha-\beta+1}{2}\right)} \int_{0}^{1} \left(1-t^{2}\right)^{\left(\frac{\alpha+\beta-1}{2}\right)}\cos\left(2t\sqrt{x}\right)dt, \quad (4.3)$$

 $\operatorname{Re}(\alpha - \beta) \geq -1/2$. Substituting x by xy^2 and t by t/y, it gives

$$J_{\alpha,\beta}\left(xy\right) = \frac{2^{(1+\alpha+\beta)/2}x^{-(\alpha+\beta)/2}y^{3(\alpha+\beta)/2}}{\sqrt{\pi}\Gamma\left(\frac{\alpha-\beta+1}{2}\right)} \int_{0}^{y} \left(y^2 - t^2\right)^{\left(\frac{\alpha+\beta-1}{2}\right)}y^{-(\alpha+\beta-1)}\cos\left(2t\sqrt{x}\right) \, dt.$$

$$(4.4)$$

The generalized Hankel-Clifford transform can be rewritten as

$$f(x) = \frac{2^{(1+\alpha+\beta)/2} x^{-(\alpha+\beta)/2} y^{3(\alpha+\beta)/2}}{\sqrt{\pi} \Gamma\left(\frac{\alpha-\beta+1}{2}\right)} \int_{0}^{\infty} y^{-(\alpha+\beta-1)} g(y) \int_{0}^{y} \left(y^{2} - t^{2}\right)^{\left(\frac{\alpha+\beta-1}{2}\right)} \cos\left(2t\sqrt{x}\right) \, dt dy.$$
(4.5)

If $y^{-(\alpha+\beta)/2}g(y) \in L_1(R_+)$, then the repeated integral (4.5) converges absolutely. Therefore, Fubini-Tonelli theorem [5] is applied to interchange the order of integration in (4.5);

$$f\left(x\right) = \frac{2^{(1+\alpha+\beta)/2}x^{-(\alpha+\beta)/2}y^{(\alpha+\beta)/2}}{\sqrt{\pi}\Gamma\left(\frac{\alpha-\beta+1}{2}\right)} \int_{0}^{\infty} \cos\left(2t\sqrt{x}\right)dt \int_{t}^{\infty} \left(y^{2}-t^{2}\right)^{\left(\frac{\alpha+\beta-1}{2}\right)} y g\left(y\right)dy.$$

$$(4.6)$$

Considering $f_1(x) = x^{(\alpha+\beta)/2} f(x)$ and $g_1(y) = y^{-(\alpha+\beta)/2} g(y)$,

$$f_1(x) = \frac{2^{(1+\alpha+\beta)/2}}{\sqrt{\pi}\Gamma\left(\frac{\alpha-\beta+1}{2}\right)} \int_0^\infty \cos\left(2t\sqrt{x}\right) dt \int_t^\infty \left(y^2 - t^2\right)^{\left(\frac{\alpha+\beta-1}{2}\right)} y \, g_1(y) \, dy.$$
(4.7)

Therefore $f_1(x)$ can be viewed as composition of the Fourier cosine transform

$$f_1(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \cos\left(2t\sqrt{x}\right) h(t) dt, \ 0 \le x < \infty, \tag{4.8}$$

where

$$h(t) = \frac{2^{(\alpha+\beta)/2}}{\Gamma\left(\frac{\alpha-\beta+1}{2}\right)} \int_{t}^{\infty} \left(y^2 - t^2\right)^{\left(\frac{\alpha+\beta-1}{2}\right)} y g_1(y) \, dy. \tag{4.9}$$

and the generalized Erdelyi-Kober fractional integral operator (4.1) $K^{(\alpha-\beta+1)/2}$ of order $(\alpha-\beta+1)/2$ multiplied by a constant.

It is from the definition that $\hat{f} \in S(R)$ is the Fourier transform of an infinitely differentiable function f on R with compact support if and only if

$$\sigma_{|f|} = \lim_{m \to \infty} \left\| \frac{d^m}{dx^m} \hat{f}(x) \right\|_{L_p(R)}^{1/m}, 1 \le p < \infty,$$

$$(4.10)$$

where $\sigma_{|f|} = \sup \{ |y| : y \in \text{supp } f \}.$

Restricting the Fourier transform only on even functions it is observed that a function $\hat{f} \in S_e(R)$ is the Fourier cosine transform (4.8) of a function $h \in S_e$ with compact support if and only if

$$\sigma_h = \lim_{m \to \infty} \left\| \frac{d^m}{dx^m} f_1(x) \right\|_p^{1/m}.$$
(4.11)

On the other hand, the Erdelyi-Kober fractional integral operator $K^{(\alpha-\beta+1)/2}$ is a bijection in the space of infinitely differentiable functions on $\overline{R_+}$ with compact supports and $\sigma_h = \sigma_{g_1}$. From $g_1(y) = y^{-(\alpha+\beta)/2}g(y)$ it is obtained that $\sigma_g = \sigma_{g_1}$, theorem 4.1 follows now from formula (4.7).

5. Conclusion

- 1. The Paley-Wiener theorem for the generalized Hankel-Clifford is obtained.
- 2. The generalized Hankel-Clifford of square integrable functions with compact supports, rapid decreasing functions, infinitely differentiable functions with compact supports, of analytic functions are studied.
- 3. The range of the generalized Hankel-Clifford transform of compactly supported functions which are either square integrable or infinitely differentiable is characterized.
- 4. The study leads to application in Mathematical Physics.

Acknowledgement

Author is very much thankful to the referees for their valuable comments and suggestions to improve the paper.

References

- S. P. Malgonde, Generalized Hankel-Clifford transformation of certain spaces of distributions, Rev. Acad. Canaria Cienc. XII (1-2), (2000), 51–73.
- [2] V. U. Kim Tuan, On the range of the Hankel and extended Hankel transforms, Journal of Mathematical Analysis and Applications, 209 (2), (1997), 460–478.
- [3] I. N. Sneddon, The use of integral transforms, Tata McGraw-Hill, New Delhi, 1979.
- [4] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, London, 1958.
- [5] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publishing Company, New York, 1986.
- [6] A. H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968.
- [7] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Switzerland, Australia, Belgium, France, Germany, Great Britain, 1993.
- [8] S. P. Malgonde and V. R. Lakshmi Gorty, A Parseval equation and the distributional finite generalized Hankel-Clifford transformation, August (2010), ICM 2010, Hyderabad India.
- [9] P. Heywood and P. G. Rooney, On the inversion of the extended Hankel transformation, J. Math. Anal. Appl. 160 (1), (1991), 284–302.

[10] S. P. Malgonde and V. R. Lakshmi Gorty, Two complex variants of generalized Hankel-Clifford transformation, The Journal of the Indian Academy of Mathematics, 34 (2), (2012), 599–614.

SVKM'S NMIMS UNIVERSITY, MPSTME VILE PARLE (W), MUMBAI-400056, INDIA. DEPARTMENT OF MATHEMATICS, MUMBAI, INDIA *E-mail address:* vr.lakshmigorty@nmims.edu