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MULTI-VALUED VARIATIONAL INCLUSION PROBLEM IN

HADAMARD MANIFOLDS

MOHAMMAD DILSHAD∗, MOHAMMAD AKRAM

Abstract. We consider a multi-valued variational inclusion problem in Hadamard
manifold and study the Korpelevich-type algorithm to estimate the approx-

imate solution of a multi-valued variational inclusion problem. We used the

properties of the multi-valued monotone vector field to prove that the sequence
generated by the proposed algorithm converges to the solution of multi-valued

variational inclusion problem. An example is also presented in support of our
problem. The results presented in this paper improve and generalize some

known results given in the literature.

1. Introduction

Variational inequalities in Euclidean spaces are very powerful tool for studying op-
timization problems, equilibrium problems, problems of finding zero of operators as
well as complementary problems and have been studied extensively, see for example
[1, 2, 3, 4, 5, 6, 7]. Modern interests are concentrated on extending some classical
and important results from linear spaces to nonlinear spaces [8, 9]. Therefore, the
span of idea and techniques of the theory of variational inequalities and related
topics from Euclidean spaces to Riemannian manifold are logical and fascinating.

Variational inequalities on Hadamard manifold were first introduced and stud-
ied in [10]: Find x ∈ D such that

〈F (x), exp−1
x y〉 ≥ 0, ∀ y ∈ D,

where D is nonempty closed, convex subset of Hadamard manifold M. F : D →
TM is vector field, that is F (x) ∈ TxM for each x ∈ D and exp−1 is the inverse of
exponential mapping. Li et al. [11] extend the variational inequality problem from
Hadamard manifold to Riemannian manifolds.

Fang et. al. [12] extend the work of Németh to study a multi-valued pseu-
domonotone variational inequality problem in Hadamard manifold: Find x ∈ D
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and u ∈ F (x) such that

〈u, exp−1
x y〉 ≥ 0, ∀ y ∈ D,

where F : D ⇒ TM is a multi-valued vector field, that is F (x) ⊆ TxM for each
x ∈ D. Later Jana and Nahak [13] also studied multi-valued variational inequality
problem in Hadamard manifold with similar assumption on F .

An natural generalization of variational inequalities are variational inclusions.
For a given multi-valued maximal monotone operator G : H ⇒ H, the variational
inclusion problem on Hilbert space H is to find x ∈ D such that

0 ∈ f(x) +G(x),

where f : H → H be any single-valued operator. Due to the fact that the zeros of
maximal monotone operator are the fixed point sets of resolvent operator, the resol-
vent associated to a multi-valued maximal monotone operator plays an important
role to find the zeros of monotone operators. Many authors have discussed how to
find the zeros of monotone operator, see for example [14, 15, 16, 17, 18, 19, 20].

Recently, many authors have extended the results related to the zero of mono-
tone operators from linear spaces to Riemannian manifold. Li. et al. [21] proved
the convergence of proximal point algorithm on Hadamard manifolds. The idea of
firmly nonexpansive and resolvent of multi-valued monotone vector field are intro-
duced in [22]. Furthermore, Tang and Huang [23] studied a variant of Korpelevich’s
method for pseudomonotone variational inequalities. Recently, Ansari et. al [24]
introduced Korpelevich’s method for variational inclusion problems on Hadamard
manifolds.

Motivated by the work of Fang, Tang and Ansari et al., our motive in this
work is to study the solution of following multi-valued variational inclusion problem
in Hadamard manifolds: Find x ∈ D such that u ∈ F (x) and

0 ∈ u+G(x), (1.1)

where F,G :M⇒M are two multi-valued monotone vector fields.

2. Preliminaries

Let M be a finite dimensional differentiable manifold. For a given x ∈ M, the
tangent space of M at x is denoted by TxM and the tangent bundle is denoted
by TM = ∪x∈MTxM, which is naturally a manifold. An inner product <x(., .) on
TxM is called the Riemannian metric on TxM. A tensor field <(., .) is said to be
Riemannian metric on M if for every x ∈ M, the tensor <x(., .) is a Riemannian
metric on TxM. The norm corresponding to the inner product on TxM is denoted
by ‖.‖x. A differentiable manifold M endowed with the Riemannian metric <(., .)
is called a Riemannian manifold. Given a piecewise smooth curve γ : [a, b] → M
joining x to y (i.e., γ(a) = x and γ(b) = y), we can define the length of γ by

L(γ) =
∫ b
a
‖γ′(t)‖dt. The Riemannian distance d(x, y), which included the original

topology onM, is the minimal length over the set of all such curves joining x to y.

Let ∆ be the Levi-Civita connection associated with Riemannian manifold
M. Let γ be a smooth curve onM. A vector field X is said to be parallel along γ
if ∆γ′X = 0. If γ

′
is parallel along γ, i.e., ∆γ′γ

′
= 0, then γ

′
is said to be geodesic
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and in this case ‖γ′‖ is a constant. When ‖γ′‖ = 1, γ is said to be normalized. A
geodesic joining x and y in M is said to be minimal geodesic if its length equal to
d(x, y).

A Riemannian manifold is complete if for any x ∈M, all geodesic emanating
from x are defined for all t ∈ (−∞,∞). By the Hopf-Rinow Theorem [25], we
know that if M is complete, then any pair of point in M can be joined by a
minimal geodesic. Furthermore, (M, d) is a complete metric space, and hence,
every bounded closed subset is compact.

Assuming M is complete, the exponential mapping expx : TxM → M at x
is defined by expx(v) = γv(1, x) for each v ∈ TxM, where γ(.) = γv(., x) is the

geodesic starting at x with velocity v (i.e.γ(0) = 0 and γ
′
(0) = v). It is known that

expx(tv) = γv(t, x) for each real number t.

The parallel transport on the tangent bundle TM along with γ with respect
to ∆, is denoted by Pγ,.,. and is defined as

Pγ,γ(a),γ(b)(v) = V (γ(b)), ∀ a, b ∈ R and Tγ(a)M,

where V is a unique vector field satisfying ∆γ′ (t)V = 0 for all t and V (γ(a)) = v.

Then for any a, b ∈ R,Pγ,γ(a),γ(b) is an isometry from Tγ(a)M to Tγ(b)M. When γ
is a minimal geodesic joining x to y, we write Py,x instead of Pγ,y,x.

A complete simply connected Riemannian manifold of non-positive sectional
curvature is called a Hadamard manifold. Throughout the remainder of the paper,
we will assume that M is a finite dimensional Hadamard manifold with constant
curvature.

Proposition 2.1. ([25]) Let M be a Hadamard manifold and x ∈ M. Then
expx : TxM → M is a diffeomorphism and for any two points x and y ∈ M,
there exists a unique normalized geodesic joining x to y, which is in fact a minimal
geodesic.

If M be a finite dimensional manifold with dimension n, then above proposi-
tion shows thatM is diffeomorphism to the Euclidean space Rn. Thus we see that
M has the same topology and differential structure as Rn. Moreover, Hadamard
manifold and Euclidean space have some similar geometrical properties. We de-
scribe some of them in the following results.

Recall that a geodesic triangle ∆(x1, x2, x3) of Riemannian manifold is a set
consisting of three points x1, x2 and x3 and the three minimal geodesic γi joining
xi to xi+1, where i = 1, 2, 3 mod (3).

Proposition 2.2. (Comparison Theorem for Triangle) ([25]) Let ∆(x1, x2, x3) be a
geodesic triangle. Denote, for each i = 1, 2, 3 mod (3), by γi : [0, li]→M geodesic

joining xi to xi+1 and set li = L(γi), α1 = ∠(γ
′

i(0),−γ′i−1(li−1)). Then

l2i + l2i+1 − 2lili+1 cosαi+1 ≤ l2i−1.

In terms of distance and exponential mapping, above inequality can be rewritten as

d2(xi, xi+1) + d2(xi+1, xi+2)− 2〈exp−1
xi+1

xi, exp−1
xi+1

xi+2〉 ≤ d2(xi−1, xi), (2.1)
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since

〈exp−1
xi+1

xi, exp−1
xi+1

xi+2〉 = d(xi, xi+1)d(xi+1, xi+2) cosαi+1.

A subset D ⊂ M is said to be convex if for any two points x, y ∈ D, the
geodesic joining x and y is contained in D, that is, if γ : [a, b] →M is a geodesic
such that x = γ(a) and y = γ(b), then γ(1 − t)a + tb ∈ D for all t ∈ [0, 1]. From
now on, D ⊂M will denote a nonempty, closed and convex subset of a Riemannian
manifold. The projection of v onto D is defined by

PD(v) = {u ∈ D : d(v, u) ≤ d(v, w), ∀ w ∈ D}, ∀ v ∈M. (2.2)

Lemma 2.3. ([21]) Let x0 ∈M and {xn} ⊂ M with xn → x0. Then the following
assertion holds:

(i) For any y ∈M, we have

exp−1
xn
y → exp−1

x0
y and exp−1

y xn → exp−1
y x0

(ii) If vn ∈ Txn
M and vn → v0, then v0 ∈ Tx0

M.
(iii) Given un, vn ∈ TxnM and u0, v0 ∈ Tx0M, if un → u0 and vn → v0, then

〈un, vn〉 → 〈u0, v0〉.
(iv) For any u ∈ Tx0

M, the function F :M→ TM defined by F (x) = Px,x0
u

for each x ∈M is continuous on M.

Lemma 2.4. [17] Let M be a Riemannian manifold with constant curvature. For
given x ∈M and u ∈ TxM, the set

Lx,u = {y ∈M : R(exp−1
x y, u) ≤ 0},

is convex.

Proposition 2.5. ([26]) If x ∈M and PD is singleton, then

<
(

exp−1
PD(x)x, exp−1

PD(x)y

)
≤ 0, ∀ y ∈M.

Lemma 2.6. ([23]) Let D be nonempty closed convex subset of M. Then

d2(PD(x), x∗) ≤ d2(x, x∗)− d2(x, PD(x)), ∀ x ∈M, x∗ ∈ D.

The set of all single-valued vector fields onM is denoted by Ω(M). We denote
the set of all multi-valued vector fields onM by χ(M). Let G ∈M, then G⇒ TM
such that G(x) ⊆ Tx(M) for all x ∈ D(G), where D(G) is the domain of G defined
as D(G) = {x ∈M : G(x) 6= φ}.

Definition 2.7. A vector field F ∈ Ω(M) is said to be

(i) monotone if for all x, y ∈M,

<
(
F (x), exp−1

x y
)
≤ <

(
F (y),−exp−1

y x
)
;

(ii) pseudomonotone if for all x, y ∈M,

<
(
F (x), exp−1

x y
)
≥ 0⇒ <

(
F (y), exp−1

y x
)
≤ 0;

Definition 2.8. A vector field G ∈ χ(M) is said to be

(i) monotone if for all x, y ∈ D(M),

<
(
u, exp−1

x y
)
≤ <

(
v,−exp−1

y x
)
, ∀ u ∈ G(x), v ∈ G(y);
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(ii) pseudomonotone if for all x, y ∈ D(M) and ∀ u ∈ G(x) and ∀ v ∈ G(y)

<
(
u, exp−1

x y
)
≥ 0⇒ <

(
v, exp−1

y x
)
≤ 0;

(iii) maximal monotone if it is a monotone and for all x ∈M and all u ∈ TxM,
the condition

<
(
u, exp−1

x y
)
≤ <

(
v,−exp−1

y x
)
, ∀ y ∈ D(G), v ∈ G(y),

implies that u ∈ G(x).

Definition 2.9. ([21]) Given λ > 0 and G ∈ χ(M), the resolvent of G of order λ
is a multi-valued mapping JGλ :M→D(M) defined by

JGλ (x) = {z ∈M : x ∈ expzλG(z)}, ∀ x ∈M.

Definition 2.10. ([11]) Let F ∈ χ(M), then F is said to be

(i) lower semicontinuous at x0 if given any sequence {xk} ⊆ D(F ) converging
to x and y ∈ F (x), there exists a sequence {yk} ⊆ TM satisfying {yk} ∈
F (xk) that converges to y.

(ii) upper Kuratowski semicontinuous at x0 if given any sequence {xk} ⊆ D(F )
and {uk} ⊆ TM with each {uk} ∈ F (xk), the relation limk→∞ xk = x0 and
limk→∞ uk = u0 imply that u0 ∈ F (x0).

(iii) lower semicontinuous ( upper Kuratowski semicontinuous ) on D if it is
lower semicontinuous ( upper Kuratowski semicontinuous ) at each point
x ∈ D(F ).

Theorem 2.11. ([21]) Let λ > 0 and G ∈ χ(M). The the following assertion
holds:

(i) The vector field G is monotone if and only if JGλ is single-valued and firmly
nonexpansive.

(ii) If D(G) = M, the vector field G is maximal if and only if JGλ is single-
valued and firmly nonexpansive and domain D(JGλ ) =M.

Németh [10] present the following version of Brouwer’s fixed point theorem in
the setting of Hadamard manifolds.

Lemma 2.12. If D be a compact subset of M, then every continuous function
f : D → D has a fixed point.

Definition 2.13. ([27]) Let X be a complete matric space and D ⊂ X be a
nonempty set. A sequence {xn} ⊂ X is called Fejér convergent to D if for all
y ∈ D

d(xn+1, y) ≤ d(xn, y) ∀ n ∈ N.

Lemma 2.14. ([27]) Let X be a complete matric space. If and {xn} ⊂ X is a
Fejér convergent to a nonempty set D ⊂ X, then {xn} is bounded. Moreover, if a
cluster point x of {xn} belong to D, then {xn} converges to x.

3. Main Results

We denote the solution set of problem (1.1) by S = {x ∈ M : u ∈ F (x) and 0 ∈
u+G(x)}.
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Lemma 3.1. If G ∈ χ(M) is a monotone vector field on D and F is any vector
filed on D, then for any x ∈M

d2

(
x, JGλ (expx(−λux))

)
≤ −λ<

(
ux + vx, exp−1

x

[
JGλ (expx(−λux))

])
, (3.1)

where ux ∈ F (x) and vx ∈ G(x).

Proof. Let x ∈M and ux ∈ F (x). Consider the geodesic triangle 4(x, y, z), where
z = expx(−λux) and y = JGλ (z). From inequality (1.2), we have

d2(x, y) + d2(z, y)− 2<
(
exp−1

y x, exp−1
y z
)
≤ d2(x, z), (3.2)

and

d2(x, y) + d2(x, z)− 2<
(
exp−1

x z, exp−1
x y

)
≤ d2(z, y). (3.3)

Since y = JGλ (z), this implies that 1
λexp−1

y z ∈ G(y). By monotonicity of G, for all
vx ∈ G(x), we have

<
(

1

λ
exp−1

y z, exp−1
y x

)
≤ <

(
vx,−exp−1

x y

)
. (3.4)

Combining (3.2) and (3.3), we have

d2(x, y) ≤ −λ<
(
ux, exp−1

x y

)
+ <

(
exp−1

y z, exp−1
y x

)
. (3.5)

From (3.4) and (3.5), we have

d2(x, y) ≤ −λ<
(
ux, exp−1

x y

)
+ λ<

(
vx,−exp−1

x y

)
, (3.6)

that is

d2

(
x, JGλ (expx(−λux))

)
≤ −λ<

(
ux + vx, exp−1

x y

)
. (3.7)

This completes the proof. �

Following proposition can be seen as an extended version of Proposition 2.6
of [13] and Proposition 2.4 of [12].

Proposition 3.2. Let G ∈ χ(M) such that G is monotone and x ∈ D and u ∈ F (x).
The following statement are equivalent:

(i) x is a solution of problem (1.1).
(ii) x = JGλ (expx(−λu)), for all λ > 0.

(iii) rλ(x, u) = 0, where rλ(x, u) is defined by

rλ(x, u) = exp−1
x

[
JGλ (expx(−λu))

]
.

Proof. (i)⇔ (ii)

x = JGλ (expx(−λu))

⇔ expx(−λu) ∈ expx(λG(x))

⇔ −λu ∈ λG(x)

⇔ 0 ∈ u+G(x)

⇔ x is a solution of problem (1)

(ii)⇔ (iii) It follows directly by the definition of exponential mapping. �
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Proposition 3.3. Let D be a nonempty bounded closed and convex subset of
Hadamard manifold M with constant curvature. If F ∈ χ(M) such that F (x)
compact and convex for each x ∈ M. G ∈ χ(M) is a maximal monotone vector
field on D, then problem (1.1) has a solution.

Proof. K is compact convex subset of Hadamard manifold by Hopf-Rinow Theorem
on M and F (x) is compact convex valued for each x ∈ K. Since G is maximal
monotone, hence JGλ is single valued. Since JGλ (−λ(·)) is continuous with com-
pact domain. Therefore by Lemma 2.4, JGλ (−λ(·)) has a fixed point. In view of
Proposition 3.2, the proof is complete. �

Now, we describe Korpelevich-type algorithm to compute the approximate
solution of multi-valued variational inclusion problem (1.1).

Algorithm 3.4. Let D be a nonempty bounded, closed and convex subset of Hadamard
Manifold M, F ∈ χ(M) be a monotone vector field and G ∈ χ(M) be a maximal
monotone vector field on D.
Step 0. Choose any λ > 0, ζ > 1, t ∈ (0, 1) and initial point x0 ∈ D
Set k=0
Step 1. Compute rλ(xk, u). If rλ(xk, u) = 0 for some u ∈ F (xk) then stop.
Otherwise take arbitrary uk ∈ F (xk), compute

γk(t) = expxk
t exp−1

xk

[
JGλ (expxk

(−λuk))

]
(3.8)

and

yk = γk(µk)

where

µk = ζ−j(k)

with

j(k) = min

{
j ∈ N+ : <

(
uγk(ζ−j) + vγk(ζ−j), γ

′

k(ζ−j)

)
≤ − 1

λ
d2

(
xk, J

G
λ (expxk

(−λuk))

)}
(3.9)

where uγk(ζ−j) ∈ F (γk(ζ−j)) and vγk(ζ−j) ∈ G(γk(ζ−j)). Let uyk ∈ F (yk) and
vyk ∈ G(yk). Compute

Qk =
⋂

uyk
∈F (yk),vyk∈G(yk)

{
x ∈M : <

(
uyk + vyk , exp−1

yk
x
)
≤ 0

}
, (3.10)

define

xk+1 = PQk
xk. (3.11)

Update k=k+1 and return to Step 1.

From now on, we adopt the following assumptions:

(C1) F is upper Kuratowski semicontinuous and lower semicontinuous vector
filed such that F (x) is compact valued for all x ∈ D.

(C2) F is bounded on bounded sets.

Following proposition proved that the Algorithm 3.4 is well defined.
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Proposition 3.5. Let {xk} and {yk} are the sequences defined in Algorithm (3.4),
then the following declaration hold:

(i) If rλ(xk, uk) = 0, then current term xk is a solution of problem (1.1).
(ii) If rλ(xk, uk) 6= 0 then j(k) is well defined and yk ∈ D.

(iii) Qk is nonempty, closed and convex and xk+1 is well defined.

Proof. (i) This proof is trivial and can be obtained directly using Proposition 3.2.
(ii) Suppose that for all k, uk ∈ F (xk). We have

γ
′

k(t) = Pγk(t),xk
exp−1

xk

[
JGλ expxk

(−λuk)
]
.

Since the parallel transport is an isometry and using Lemma 2.3(iv), we have

lim
j→∞

γ
′

k(ζ−j) = lim
j→∞

Pγk(ζ−j),xk
exp−1

xk

[
JGλ expxk

(−λuk)
]

= exp−1
xk

[
JGλ expxk

(−λuk)
]

= rλ(xk, uk).

Since F is lower semicontinuous, uk ∈ F (xk) and lim
j→∞

γk(ζ−j) = xk, there

exists a sequence ukj ∈ F (γk(ζ−j) such that lim
j→∞

ukj = uxk
, therefore for vkj ∈

G(γk(ζ−j) and each j we have

lim
j→∞

<
(
uγk(ζ−j) + vγk(ζ−j), γ

′

k(ζ−j)
)

= <
(
uk + vk, exp−1

xk

[
JGλ expxk

(−λuxk
)
])

≤ − 1

λ
d2
(
xk, J

G
λ (expxk

(−λuk))
)
. (3.12)

If rλ(xk, uk) 6= 0, then d
(
xk, J

G
λ (expxk

(−λuk))
)
> 0. It follows from the inequality

that whatever we choose large j, the inequality (3.9) holds good. Thus j(k) is well
defined. Moreover yk = γk(µk) is geodesic joining xk and JGλ (expxk

(−λuk)) and
xk ∈ D. By the definition of yk and convexity of D, it follows that yk ∈ D.
(iii) To show that xk+1 is well defined it is sufficient to show that Qk is nonempty,
closed and convex subset of Hadamard manifold. Qk is closed by Lemma 2.3 (i)
and uyk + vyk ∈ TykD. In view of Lemma 2.4, we conclude that Qk is convex being
the intersection of convex sets and yk ∈ Qk. This completes the proof. �

Theorem 3.6. Let D be a nonempty bounded, closed and convex subset of Hadamard
Manifold M with constant curvature. F ∈ χ(M) be a monotone vector field on D
satisfying the condition C1, C2 and G ∈ χ(M) be a maximal monotone vector field
on D. Then the sequence {xk} achieved by Algorithm (3.4) converges to a solution
of problem (1.1).

Proof. Let x∗ is a solution of problem (1.1) such that u∗ ∈ F (x∗) and 0 ∈ u∗+G(x∗),
that is −u∗ ∈ G(x∗). For any x ∈ M, vx ∈ G(x) and using monotonicity of G, we
have

<(vx, exp−1
x x∗) ≤ <(u∗, exp−1

x∗ x). (3.13)

For any ux ∈ F (x), monotonicity of F implies that

<(u∗, exp−1
x∗ x) ≤ <(ux,−exp−1

x x∗). (3.14)

Taking together (3.13) and (3.14), we have

<(ux + vx, exp−1
x x∗) ≤ 0.
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In particular, yk ∈M, uyk ∈ F (yk) and vyk ∈ G(yk), we have

<(uyk + vyk , exp−1
yk
x∗) ≤ 0.

From (3.10), we conclude that x∗ ∈ Qk and xk+1 = Qkxk. By Lemma 2.6, we have

d2(xk+1, x
∗) + d2(xk, xk+1) ≤ d2(xk, x

∗). (3.15)

This implies that

d2(xk+1, x
∗) ≤ d2(xk, x

∗). (3.16)

Thus the sequence generated by Algorithm (3.4) is Fej́er’s convergent with respect
to S. This implies that {xk} is bounded. Also from (3.15), since {xk} is bounded

d2(xk, xk+1) ≤ d2(xk, x
∗)− d2(xk+1, x

∗), (3.17)

implies that {d(xk, x
∗)} is nonincreasing and bounded and hence convergent. There-

fore by (3.17), we have

lim
k→∞

d(xk+1, xk) = 0. (3.18)

Boundedness of {xk} implies that there exists a subsequence {xkj} converging to x̄.
Since F is bounded on bounded sets implies that {F (xk) : k ∈ N} is bounded hence
uk ∈ F (xk) is also bounded, hence there exists a subsequence {ukj} converging

to ū. Furthermore, since JGλ is nonexpansive, we have {JGλ (exp(−λuk))} is also
bounded and so {yk} is bounded.

To completes the proof, it is sufficient to show that any cluster point x̄
of {xk} belong to S. We have limj→∞ xkj = x̄. By (3.18), we can also have
limj→∞ xkj+1 = x̄.

Since {<(uyk+vyk , exp−1
yk
xk)} is bounded, we can easily obtain that limj→∞<(uykj

+

vykj
, exp−1

ykj
xkj ) exists. From (3.9), we have

<(uyk + vyk , γ
′

k(µk)) ≤ − 1

λ
d2
(
xk, J

G
λ (expxk

(−λuk))
)

<(uyk + vyk ,−µkγ
′

k(µk)) ≥ µk
λ
d2
(
xk, J

G
λ (expxk

(−λuk))
)
. (3.19)

Define ϕ(s) = γk(1 − s)µk, ∀ s ∈ [0, 1]. Then ϕ(s) is a geodesic joining yk and xk
and

ϕ
′
(s) = −µkγ

′

k(µk), (3.20)

and ϕ(s) = expyks exp−1
yk
xk, ∀ s ∈ [0, 1] is also a geodesic joining yk to xk and

ϕ
′
(0) = −exp−1

yk
xk. (3.21)

From (3.19), (3.20) and (3.21), we conclude

<(uyk + vyk , exp−1
yk
xk) ≥ µk

λ
d2
(
xk, J

G
λ (expxk

(−λuk))
)
. (3.22)

On the other hand

xkj+1 ∈ Qkj =
⋂

uykj
∈F (ykj

),

vykj
∈G(ykj

)

{
x ∈M : <

(
uykj

+ vykj
, exp−1

ykj
x
)
≤ 0

}
, (3.23)
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we have limj→∞ xkj = xkj+1
= x̄. From (3.21) and Lemma 2.3 (i), we have

lim
j→∞

<
(
uykj

+ vykj
, exp−1

ykj
x
)
≤ lim

j→∞
<
(
uykj

+ vykj
, exp−1

ykj
xkj+1

)
≤ 0. (3.24)

From (3.22) and (3.24), we have

lim
j→∞

µkjd(xkj , J
G
λ (expxkj

(−λukj )) = 0. (3.25)

Now, we have two possible cases.
Suppose first that µkj 9 0, then there exists µ > 0 such that µkj > µ for all j.
Thus following (3.25), we have

lim
j→∞

d(xkj , J
G
λ (expxkj

(−λukj )) = 0,

and so

d(x̄, JGλ (expx̄(−λū)) = 0,

that is x̄ ∈ S.
Suppose now that limj→∞ d(xkj , J

G
λ (expxkj

(−λukj )) 6= 0, then limj→∞ µkj = 0.

Again from (3.9), we have

<
(
uγkj

(ζ−j) + vγkj
(ζ−j), γ

′

kj (µkj )
)
> − 1

λ
d2

(
xkj , J

G
λ (expxkj

(−λukj ))

)
, (3.26)

for all uγkj
∈ F (γkj (ζ−j)), vγkj

∈ G(γkj (ζ−j)). Taking into account that

γ
′

kj (t) = Pγkj
(t)xkj

{
exp−1

xkj

[
JGλ expxkj

(−λukj )
]}
, (3.27)

we have for all uγkj
∈ F (γkj (ζ−j)) and vγkj

∈ G(ζ−j)).

<
(
uγkj

(ζ−j) + vγkj
(ζ−j),Pγkj

(µkj
)xkj

{
exp−1

xkj

[
JGλ expxkj

(−λukj )
]})

> − 1

λ
d2

(
xkj , J

G
λ (expkj (−λukj )

)
. (3.28)

If limj→∞ γkj (ζ−j) = x̄. Since ū ∈ F (x̄), the lower continuity of F implies the

existence of ukj ∈ F (γkj (ζ−1)) such that ukj → ū as j → ∞. Since the parallel
transport is an isometry, letting limj→∞ in (3.28), we have

−λ<
(
ux̄ + vx̄, exp−1

x̄

[
JGλ (expx̄(−λū))

])
< d2

(
x̄, JGλ [expx̄(−λū)]

)
. (3.29)

It follows from (3.29) and (3.1), that

d2

(
x̄,
[
JGλ (expx̄(−λū)

])
≤ −λ<

(
ux̄ + vx̄, exp−1

x̄

[
JGλ (expx̄(−λū))

])
< d2

(
x̄, JGλ [expx̄(−λū)]

)
,

which is a contradiction to our assumption. Hence, we have

d

(
x̄, JGλ [expx̄(−λū)]

)
= 0.

Thus x̄ ∈ S. This completes the proof. �
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In support of problem (1.1), we have the following example in Hadamard
manifold.

Example 3.7. Let

M = L2 = {a = (a1, a2, a3) ∈ R3 : 〈a, a〉 = −1, a3 > 0},

be the 2-dimensional hyperbolic space endowed with the Lorentz metric

〈a, b〉 = a1b1 + a2b2 − a3b3, ∀ a = (a1, a2, a3), b = (b1, b2, b3) ∈ L2.

It is well known that L2 is Hadamard manifold with sectional curvature -1. The
normalized geodesic γ : R→ L2, starting from a ∈ L2 is given by

γ(t) = (cosht)a+ (sinht)v, ∀ t ∈ R,

where v ∈ TaL2 is a unit vector, with the distance on L2 is

d(a, b) = arccosh(−〈a, b〉), ∀ a, b ∈ L2.

this implies that expa(tv) = (cosht)a+ (sinht)v, and the inverse exponential map-
ping is given by

exp−1
a b = arccosh(−〈a, b〉) b+ 〈a, b〉a√

〈a, b〉2 − 1
, ∀ a, b ∈ L2.

Let us consider a bounded, closed and convex sunset D of L2, D = {a = (a1, a2, a3) ∈
L2 : 1 ≤ a3 ≤ 2} and F,G : D ⇒ TL2 are two multi-valued monotone vector field on
D defined as F (a) = (a1, a2, ta3) and G(a) = (a1, a2,−t2a2

3), ∀ a = (a1, a2, a3) ∈
D, t ∈ [−1, 0], for more detail see [24, 23]. One can check that the x = (0, 0, 1) and
u = (0, 0, 0) ∈ F (0, 0, 1) is a solution of multi-valued variational inclusion problem
(1.1).

4. Conclusion

This paper is devoted to the study of multi-valued variational inclusion problem
in Hadamard manifold. We prove the convergence of Korpelevich’s type algorithm
to solve a multi-valued variational inclusion problem. The results presented in this
paper are new and some existing results followed as special cases of our results.
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