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PREDUAL OF Mp, α(Rd) SPACES

BÉRENGER AKON KPATA

Abstract. The space Mp, α(Rd) introduced by I. Fofana is a subspace of the
Wiener amalgam space of measures. In this note, we give a characterization
of a predual space of this one.

1. Introduction

Let d be a positive integer. We denote by dx the Lebesgue measure on Rd. For
any Lebesgue measurable subset E of Rd, |E| stands for its Lebesgue measure and
χE denotes its characteristic function. For 1 ≤ q ≤ ∞, ‖ · ‖q denotes the usual
norm on the classical Lebesgue space Lq(Rd) and q′ is the conjugate exponent of
q: 1

q′ + 1
q = 1, with the convention 1

∞ = 0.
For any k = (k1, ..., kd) ∈ Zd and r > 0, set

Irk =
d

Π
i=1

[kir, (ki + 1) r) .

Let L0 stands for the space of (equivalence classes modulo the equality Lebesgue
almost everywhere of) all complex-valued functions defined on Rd. By L1

loc(Rd),
we denote the set of all elements f of L0 for which ‖fχK‖1 < ∞ for any compact
subset K of Rd.
Let 1 ≤ q, p ≤ ∞. For f ∈ L0 and r > 0, we set

r ‖f‖q, p =


∑
k∈Zd

(∥∥fχIrk∥∥q)p
 1

p

if 1 ≤ p <∞,

sup
k∈Zd

∥∥fχIrk∥∥q if p =∞.

The amalgam spaces (Lq, lp)(Rd) are defined by

(Lq, lp)(Rd) =
{
f ∈ L0 | 1 ‖f‖q, p <∞

}
.

They have been introduced by Wiener in 1926 (see [22]). But the first system-
atic study of these spaces is due to Holland [16]. Since then the amalgam spaces
(Lq, lp)(Rd) have been extensively studied (see [21], [14] and the references therein)
and generalized in various directions (see [1], [6], [15] and the references therein).
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It is well-known that 1‖ · ‖q, p is a norm which makes (Lq, lp)(Rd) into Banach
spaces. Furthermore, (L1, lp)(Rd) (1 ≤ p ≤ ∞) is embedded in the Wiener amal-
gam space of measures Mp(Rd). For 1 ≤ p ≤ ∞, Mp(Rd) is the space of Radon
measures µ such that 1‖µ‖p <∞, with

r ‖µ‖p =


∑
k∈Zd

|µ|(Irk)p

 1
p

if 1 ≤ p <∞,

sup
k∈Zd

|µ|(Irk) if p =∞,

for all r > 0, where |µ| denotes the total variation of µ.
These spaces have been studied by several authors (see [14] and the references
therein). They also occur as dual spaces. Actually, If (C, lp) denotes the space
of continuous functions in (L∞, lp)(Rd), where 1 ≤ p < ∞, then its dual space is
Mp′(Rd) (see [2], [16] and [20]).
In [9], Fofana has introduced the spaces (Lq, lp)α(Rd) defined as follows:

(Lq, lp)α(Rd) =
{
f ∈ L0 | ‖f‖q, p, α <∞

}
,

where
‖f‖q, p, α = sup

r>0
rd(

1
α−

1
q )

r ‖f‖q, p .

It is proved in [9] and [13] that, for 1 ≤ p, q, α ≤ ∞, the space (Lq, lp)α(Rd) is
non-trivial if and only if q ≤ α ≤ p and

(
(Lq, lp)α(Rd), ‖ · ‖q, p, α

)
is a Banach

space. It is clearly a subspace of the amalgam space (Lq, lp)(Rd). In addition, it
is closely related to the Lebesgue spaces as follows :

(Lq, lp)α(Rd) = Lα(Rd) if α ∈ {p, q},
with equivalent norm and

Lα(Rd)  (Lq, lp)α(Rd) if q < α < p.

Several useful results in Fourier analysis, well-known in the Lebesgue spaces, have
been extended to the framework of the spaces (Lq, lp)α(Rd) (see for instance [3],
[11], [12], [8], [17] and [19]). Let us recall that the space (L1, lp)α(Rd) is embedded
in a space of measures denoted by Mp, α(Rd) which has also been introduced by I.
Fofana (see [13] and [11]). Mp, α(Rd) is the space of Radon measures µ satisfying
‖µ‖p, α <∞, where

‖µ‖p, α = sup
r>0

rd(
1
α−1) r‖µ‖p.

Clearly, Mp, α(Rd) is a subspace of Mp(Rd). It becomes a Banach space when
equipped with the norm ‖ · ‖p, α (see [13]). Furthermore, it is proved in [18] that
if, for 1 ≤ q ≤ p <∞, there exists a constant C such that if a non-negative Radon
measure µ satisfies

‖µ ∗ f‖p ≤ C‖f‖q, f ∈ Lq(Rd),
then µ belongs to Mp, α(Rd), with 1

α = 1− 1
q + 1

p .
Other interesting results involving the spacesMp, α(Rd) can be found in [4], [5] and
[19].
Finally, we note that the dual spaces of (Lq, lp)α(Rd) and Mp, α(Rd) are still
unknown. But recently, by using the idea of minimal invariant Banach spaces of
functions with respect to a group of dilation operators, Feichtinger and Feuto have



PREDUAL OF Mp, α(Rd) SPACES 43

characterized a predual space of (Lq, lp)α(Rd), when 1 < q ≤ α ≤ p ≤ ∞ (see [7]).
They have denoted by H(q, p, α) this space (see Section 2 for a precise definition
of this one).
In this note, we shall describe a predual space of Mp, α(Rd), for 1 ≤ α ≤ p ≤ ∞
and p > 1. This one is closely related to H(1, p, α).

The paper is organized as follows. In Section 2, we recall the definition of the
spaces H(q, p, α) and some of their basic properties including the fact that they
are Banach spaces. Then, in section 3, we introduce a particular linear subspace
of H(1, p, α). Finally, we shall prove in Section 4 that the closure of this linear
subspace in H(1, p, α) is a predual space of Mp, α(Rd).

2. A review of some basic properties of the spaces H(q, p, α)

For 1 ≤ α ≤ ∞, we set

Stαρ f = ρ−
d
α f(ρ−1·), ρ ∈ (0, ∞), f ∈ L1

loc(Rd).

The following remark summarizes some properties of the operator Stαρ .

Remark 2.1. (See [7].) Assume that 1 ≤ α ≤ ∞.
1) Then

a) for any real number ρ > 0, Stαρ applies linearly L1
loc(Rd) into itself;

b) for any f ∈ L1
loc(Rd), Stα1 f = f ;

c) for (ρ1, ρ2) ∈ (0, ∞)2 and f ∈ L1
loc(Rd), we have

Stαρ1 ◦ St
α
ρ2f = Stαρ1ρ2f,

that is, (Stαρ )ρ>0 is a group of operators on L1
loc(Rd) isomorphic to the

multiplicative group (0, ∞).

2) A direct calculation shows that for 1 ≤ q, p ≤ ∞,

1‖Stαρ f‖q, p = ρ−d(
1
α−

1
q )
ρ−1‖f‖q, p, ρ > 0.

Since for ρ > 0, the mapping f 7→ ρ−1‖f‖q, p is a norm on (Lq, lp) equivalent
to 1‖ · ‖q, p with the equivalence constants depending only on ρ, then Stαρ applies
(Lq, lp) into itself.

We may now define the spaces H(q, p, α).

Definition 2.2. Let 1 ≤ q ≤ α ≤ p ≤ ∞. The space H(q, p, α) is defined as the
set of all elements f of L1

loc(Rd) for which there exists a sequence {(cn, ρn, fn)}n≥1
of elements of C× (0, ∞)× (Lq

′
, lp
′
)(Rd) such that

∑
n≥1

|cn| <∞,

1‖fn‖q′, p′ ≤ 1, n ≥ 1,
f =

∑
n≥1

cnSt
α′

ρnfn in the sense of L1
loc(Rd).

(2.1)

Any sequence {(cn, ρn, fn)}n≥1 of elements of C×(0, ∞)×(Lq
′
, lp
′
)(Rd) satisfying

(2.1) is called an h-decomposition of f .
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For 1 ≤ q ≤ α ≤ p ≤ ∞ and for any element f of H(q, p, α), we set

‖f‖H(q, p, α) = inf

∑
n≥1

|cn|

 ,

where the infimum is taken over all h-decompositions of f .
The result below states some basic properties of H(q, p, α) and points out its con-
nections with the amalgam spaces.

Proposition 2.3. (See [7].) Let 1 ≤ q ≤ α ≤ p ≤ ∞.
(i) The space H(q, p, α) endowed with ‖ · ‖H(q, p, α) is a Banach space.
(ii) For all ρ ∈ (0, ∞), the operator Stα

′

ρ is an isometric automorphism of
H(q, p, α).

(iii) The space (Lq
′
, lp
′
)(Rd) is continuously embedded in H(q, p, α) :

(Lq
′
, lp
′
)(Rd) ↪→ H(q, p, α) ↪→ Lα

′
(Rd).

3. A linear subspace of H(1, p, α)

Throughout the remainder of this paper, we assume that 1 ≤ α ≤ p ≤ ∞ and
1 < p. We shall denote by C the space of continuous functions and by Cc the one
of continuous functions with compact support.

Definition 3.1. The space X0 is defined as the set of all elements f of L1
loc(Rd) for

which there exists a sequence {(cn, ρn, fn)}n≥1 of elements of C× (0, ∞)× (C, lp′)
such that

(i)
∑
n≥1 |cn| <∞,

(ii) for all n ≥ 1, 1‖fn‖∞, p′ ≤ 1 ,
(iii) f =

∑
n≥1 cnSt

α′

ρnfn in the sense of L1
loc(Rd).

Remark 3.2. From the above definition, it is easy to see that X0 is a linear subspace
of H(1, p, , α).

In the sequel, we shall assume that X0 is equipped with the norm ‖ · ‖H(1, p, α).

Proposition 3.3. The space (C, lp′) is continuously embedded in X0.

Proof. Let g ∈ (C, lp′).
It is obvious that if g = 0 then g ∈ X0 and

‖g‖H(1, p, α) = 0 = 1‖g‖∞, p′ .
Suppose that g 6= 0 and write

g = 1‖g‖∞, p′
g

1‖g‖∞, p′
.

We have
g

1‖g‖∞, p′
∈ (C, lp

′
), 1‖

g

1‖g‖∞, p′
‖∞, p′ = 1 and Stα

′

1

(
g

1‖g‖∞, p′

)
=

g

1‖g‖∞, p′
.

So g ∈ X0 and
‖g‖H(1, p, α) ≤ 1‖g‖∞, p′ .

This ends the proof. �
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Proposition 3.4. The spaces Cc, (C, lp′) and X0 have the same closure in H(1, p, , α).

Proof. It is clear that Cc ⊂ (C, lp′). This fact together with Proposition 3.3 and
Remark 3.2 implies that

Cc ⊂ (C, lp
′
) ⊂ X0 ⊂ H(1, p, α).

Let f ∈ X0. Let us consider an h-decomposition {(cn, ρn, fn)}n≥1 of f with fn ∈ C
for all n ≥ 1.
Let us set

gm =

m∑
n=1

cnSt
α′

ρnfn, m ≥ 1

and

gm, k = gm max

(
1− | · |

k
, 0

)
, m ≥ 1, k ≥ 1.

We notice that gm ∈ (C, lp′) for all m ≥ 1 and

lim
m→∞

‖f − gm‖H(1, p, α) = 0.

Also, gm, k ∈ Cc for all m ≥ 1 and for all k ≥ 1, and

lim
k→∞

1‖gm − gm, k‖∞, p′ = 0, m ≥ 1.

Hence, by Proposition 3.3

lim
k→∞

‖gm − gm, k‖H(1, p, α) = 0, m ≥ 1.

It follows that for all ε > 0, there exists mε ≥ 1 and kε ≥ 1 such that

‖f − gm, k‖H(1, p, α) < ε, m ≥ mε, k ≥ kε.

So, X0 is included in the closure of Cc in H(1, p, α).
We deduce that, the spaces Cc, (C, lp′) and X0 have the same closure in H(1, p, , α).

�

In the sequel we shall denote by X the closure of (C, lp′) in H(1, p, α). It is clear
that (X, ‖ · ‖H(1, p, α)) is a Banach space. We shall denote by X∗ its dual space.

4. A predual of Mp, α(Rd) spaces

Proposition 4.1. Let µ be an element of Mp, α(Rd). There is a unique element
Tµ of X∗ satisfying

〈Tµ, f〉 =

∫
Rd
f(x) dµ(x), f ∈ X0 (4.1)

and

|〈Tµ, f〉| ≤ ‖µ‖p, α ‖f‖H(1, p, α), f ∈ X. (4.2)
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Proof. a) Assume that f is inX0 and consider an h-decomposition {(cn, ρn, fn)}n≥1
of f with fn ∈ C for all n ≥ 1. We have f =

∑
n≥1 cnSt

α′

ρnfn.
For any n ≥ 1,∫

Rd
|Stα

′

ρnfn(x)| d|µ|(x) = ρ
− d
α′

n

∫
Rd
|fn(ρ−1n x)| d|µ|(x)

= ρ
− d
α′

n

∑
k∈Zd

∫
Iρnk

|fn(ρ−1n x)| d|µ|(x)

≤ ρ
− d
α′

n

∑
k∈Zd

‖fnχI1k‖∞|µ|(I
ρn
k )

≤ ρ
− d
α′

n ρn‖µ‖p 1‖fn‖∞, p′
≤ ‖µ‖p, α 1‖fn‖∞, p′
≤ ‖µ‖p, α.

It follows that ∑
n≥1

∫
Rd
|cnStα

′

ρnfn(x)| d|µ|(x) ≤

∑
n≥1

|cn|

 ‖µ‖p, α
and consequently ∫

Rd
|f(x)| d|µ|(x) ≤

∑
n≥1

|cn|

 ‖µ‖p, α.
Hence f =

∑
n≥1 cnSt

α′

ρnfn is µ-integrable and∣∣∣∣∫
Rd
f(x) dµ(x)

∣∣∣∣ ≤
∑
n≥1

|cn|

 ‖µ‖p, α.
As the above inequality holds for any h-decomposition of f , we have∣∣∣∣∫

Rd
f(x) dµ(x)

∣∣∣∣ ≤ ‖µ‖p, α ‖f‖H(1, p, α).

From the foregoing and the linearity of the integral,

Jµ : f 7→ 〈Jµ, f〉 =

∫
Rd
f(x) dµ(x)

is a bounded linear functional on X0 such that

|〈Jµ, f〉| ≤ ‖µ‖p, α ‖f‖H(1, p, α), f ∈ X0.

b) Since X0 is a dense linear subspace of X, there exists a unique element Tµ of
X∗ satisfying (4.1) and (4.2). �

As a consequence of Proposition 4.1, we have the following result.

Corollary 4.2. The operator
T : µ 7→ Tµ,

where Tµ is defined by (4.1) and (4.2), is linear and bounded from Mp, α(Rd) to X∗
and satisfies ‖T‖ ≤ 1.
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Proof. It follows from Proposition 4.1 that T is an operator from Mp, α(Rd) to X∗
satisfying

‖Tµ‖ ≤ ‖µ‖p, α, µ ∈Mp, α(Rd).

In addition, T is clearly linear.
So, T is a bounded linear operator from Mp, α(Rd) to X∗ with ‖T‖ ≤ 1. �

Proposition 4.3. For any element Φ of X∗, there exists a unique measure µ
belonging to Mp, α(Rd) such that Φ = Tµ, where Tµ is defined by (4.1) and (4.2).

Proof. Let Φ ∈ X∗.
a) Let us set

Φ0(g) = Φ(g), g ∈ (C, lp
′
).

It follows from Proposition 3.3 that Φ0 is a linear functional on (C, lp′) such that,
for all g ∈ (C, lp′),

|Φ0(g)| = |Φ(g)| ≤ ‖Φ‖ ‖g‖H(1, p, α) ≤ ‖Φ‖ 1‖g‖∞, p′ .

Thus, Φ belongs to the dual space of (C, lp′) (with respect to the norm 1‖ · ‖∞, p′).
Since 1 ≤ p′ < +∞, there exists an element µ of Mp(Rd) such that

Φ(g) =

∫
Rd
g(x) dµ(x), g ∈ (C, lp

′
),

(see [20] or [21]).
b) Let us consider a real number ρ > 0.
Let {(ψk, ck)}k∈Zd be a subset of Cc × C such that∑

k∈Zd
|ck|p

′

 1
p′

<∞, (4.3)

supp(ψk) ⊂
◦
Iρk and ‖ψk‖∞ ≤ 1, k ∈ Zd, (4.4)

where supp(ψk) stands for the support of ψk and
◦
Iρk denotes the interior of Iρk .

Let us notice that

φk := ψk(ρ ·) ∈ Cc with supp(φk) ⊂ I1k and ‖φk‖∞ ≤ 1.

Then

∑
k∈Zd

ckφk ∈ C and 1‖
∑
k∈Zd

ckφk‖∞, p′ ≤

∑
k∈Zd

|ck|p
′

 1
p′

<∞.

So ∑
k∈Zd

ckφk ∈ (C, lp
′
), Stα

′

ρ

∑
k∈Zd

ckφk

 ∈ (C, lp
′
) ⊂ X
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and by Proposition 2.3 and Proposition 3.3,

‖Stα
′

ρ

∑
k∈Zd

ckφk

 ‖H(1, p, α) = ‖
∑
k∈Zd

ckφk‖H(1, p, α)

≤ 1‖
∑
k∈Zd

ckφk‖∞, p′ ≤

∑
k∈Zd

|ck|p
′

 1
p′

.

We have∣∣∣∣∣∣
∫
Rd
Stα

′

ρ

∑
k∈Zd

ckφk

 (x) dµ(x)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Φ
Stα′ρ

∑
k∈Zd

ckφk

∣∣∣∣∣∣
≤ ‖Φ‖

∑
k∈Zd

|ck|p
′

 1
p′

.

We also have∑
k∈Zd

ck

∫
Rd
ψk(x) dµ(x) =

∑
k∈Zd

ck

∫
Rd
φk(ρ−1x) dµ(x)

= ρ
d
α′
∑
k∈Zd

ck

∫
Rd
ρ−

d
α′ φk(ρ−1x) dµ(x)

= ρ
d
α′
∑
k∈Zd

ck

∫
Rd
Stα

′

ρ (φk)(x) dµ(x)

= ρ
d
α′

∫
Rd
Stα

′

ρ

∑
k∈Zd

ckφk

 (x) dµ(x).

So ∣∣∣∣∣∣
∑
k∈Zd

ck

∫
Rd
ψk(x) dµ(x)

∣∣∣∣∣∣ ≤ ρ d
α′ ‖Φ‖

∑
k∈Zd

|ck|p
′

 1
p′

.

Since the above inequality holds for all {ck}k∈Zd ⊂ C satisfying (4.3), we have

∑
k∈Zd

∣∣∣∣∫
Rd
ψk(x) dµ(x)

∣∣∣∣p
 1
p

≤ ‖Φ‖ρ d
α′ if 1 < p <∞,

sup
k∈Zd

∣∣∣∣∫
Rd
ψk(x) dµ(x)

∣∣∣∣ ≤ ‖Φ‖ρ d
α′ if p =∞.

Since the above inequalities hold for all {ψk}k∈Zd ⊂ Cc satisfying (4.4), we have

∑
k∈Zd

|µ|(
◦
Iρk )p

 1
p

≤ ‖Φ‖ρ d
α′ if 1 < p <∞,

sup
k∈Zd

|µ|(
◦
Iρk ) ≤ ‖Φ‖ρ d

α′ if p =∞.



PREDUAL OF Mp, α(Rd) SPACES 49

Then we deduce that µ belongs to Mp, α(Rd) and

‖µ‖p, α ≤ C‖Φ‖, (4.5)

(see [5]), where C is a positive real number depending on d and p.
c) Let f be an element of X0.
There exists a sequence {gm}m≥1 of elements of (C, lp′) that converges to f in X0

and we have
Φ(gm) =

∫
Rd
gm(x) dµ(x), m ≥ 1.

It follows that
Φ(f) = lim

m→∞

∫
Rd
gm(x) dµ(x).

In addition, by Proposition 4.1, f is µ-integrable and∫
Rd
f(x) dµ(x) = lim

m→∞

∫
Rd
gm(x)dµ(x).

Thus,

Φ(f) =

∫
Rd
f(x) dµ(x).

Since the above equality holds for any element f of X0, we have φ = Tµ.
d) The uniqueness of the measure µ belonging to Mp,α(Rd) such that Φ = Tµ
follows easily from (4.5).
This ends the proof. �

Corollary 4.2 and Proposition 4.3 yield the following characterization of a predual
space of Mp, α(Rd).

Proposition 4.4. The mapping T : Mp, α(Rd) → X∗ given by T (µ) = Tµ is an
isomorphism and there exists a positive real number C such that

‖T (µ)‖ ≤ ‖µ‖p, α ≤ C‖T (µ)‖, µ ∈Mp, α(Rd).
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