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PREDUAL OF M?%(RY) SPACES

BERENGER AKON KPATA

ABsTrRACT. The space MP> O‘(Rd) introduced by I. Fofana is a subspace of the
Wiener amalgam space of measures. In this note, we give a characterization
of a predual space of this one.

1. INTRODUCTION

Let d be a positive integer. We denote by dz the Lebesgue measure on R?. For
any Lebesgue measurable subset E of R?, |E| stands for its Lebesgue measure and
XE denotes its characteristic function. For 1 < ¢ < oo, || - ||, denotes the usual
norm on the classical Lebesgue space L(R?) and ¢ is the conjugate exponent of
q: % + % = 1, with the convention é =0.

For any k = (ky, ..., kg) € Z% and r > 0, set

d

Ir = _[[1 [kir, (k; + 1) 7).
Let L stands for the space of (equivalence classes modulo the equality Lebesgue
almost everywhere of) all complex-valued functions defined on R%. By L (R?),
we denote the set of all elements f of L for which ||fxk||1 < oo for any compact
subset K of R?,

Let 1 < ¢, p < oo. For f € L? and r > 0, we set

p

P
> (Ilfxf,g q) if 1 <p < oo,
T Hf”q,p = kezd
sup fo[; . if p = co.
kezd

The amalgam spaces (L9, [?)(R?) are defined by

(L1, my®RY = {7 e1° | 1Ifll,, < oo}

They have been introduced by Wiener in 1926 (see [22]). But the first system-
atic study of these spaces is due to Holland [I6]. Since then the amalgam spaces
(L9, I?)(R?) have been extensively studied (see [21], [I4] and the references therein)
and generalized in various directions (see [I]], [6], [I5] and the references therein).
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It is well-known that 1|| - [|4,, is a norm which makes (L9, [?)(R?) into Banach
spaces. Furthermore, (L!, IP)(R?) (1 < p < o0) is embedded in the Wiener amal-
gam space of measures MP(R?). For 1 < p < oo, MP(R?) is the space of Radon
measures p such that q||pl], < oo, with

S| i1 <p< oo,
T Hl’(’”p = k‘EZd

sup || (1) if p = oo,

kezd
for all » > 0, where |u| denotes the total variation of p.
These spaces have been studied by several authors (see [I4] and the references
therein). They also occur as dual spaces. Actually, If (C, {?) denotes the space
of continuous functions in (L°°, I?)(R?), where 1 < p < oo, then its dual space is
MP' (RY) (see |2, [16] and [20]).
In [9], Fofana has introduced the spaces (L%, I?)*(R%) defined as follows:

(L9, )R = {f € L0 | fll, 0 < o0}
where

d(L -1
171, 5, =sup +G75) 7],
s

It is proved in [9] and [I3] that, for 1 < p, g, a < oo, the space (L9, P)*(R%) is
non-trivial if and only if ¢ < a < p and ((L%, I?)*(R?), |- |4, p, «) is a Banach
space. It is clearly a subspace of the amalgam space (L?, [?)(R%). In addition, it
is closely related to the Lebesgue spaces as follows :

(L%, 1)*(RY) = L*(R?) if a € {p, ¢},
with equivalent norm and

LYRY) ¢ (L9, IP)*(RY) if ¢ < a < p.
Several useful results in Fourier analysis, well-known in the Lebesgue spaces, have
been extended to the framework of the spaces (L7, IP)*(R?) (see for instance [3],
[11], [12], [8], |[17] and [19]). Let us recall that the space (L', 1?)*(R?) is embedded
in a space of measures denoted by MP?>*(R?) which has also been introduced by I.

Fofana (see [I3] and [T1]). MP? ®(R%) is the space of Radon measures p satisfying
leellp, o < 00, where

d(L—
Il = suprC 1) .
:

Clearly, MP ®(R%) is a subspace of MP(R?). It becomes a Banach space when
equipped with the norm || - ||, o (see [13]). Furthermore, it is proved in [I8] that
if, for 1 < ¢ < p < oo, there exists a constant C' such that if a non-negative Radon
measure p satisfies

s fll, < Clifllg,  f € LURY),
then y belongs to M?-*(R?), with 2 =1 — % + ]%.
Other interesting results involving the spaces MP?®(R?) can be found in [4], [5] and
[19].
Finally, we note that the dual spaces of (L9, IP)*(R%) and MP “(R9) are still
unknown. But recently, by using the idea of minimal invariant Banach spaces of
functions with respect to a group of dilation operators, Feichtinger and Feuto have
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characterized a predual space of (L?, IP)*(R%), when 1 < ¢ < a < p < oo (see [7]).
They have denoted by H(g, p, ) this space (see Section 2 for a precise definition
of this one).

In this note, we shall describe a predual space of M“"‘(Rd)7 forl<a<p<x
and p > 1. This one is closely related to H(1, p, «).

The paper is organized as follows. In Section 2, we recall the definition of the
spaces H(q, p, &) and some of their basic properties including the fact that they
are Banach spaces. Then, in section 3, we introduce a particular linear subspace
of H(1, p, «). Finally, we shall prove in Section 4 that the closure of this linear
subspace in H(1, p, ) is a predual space of MP?:*(R?).

2. A REVIEW OF SOME BASIC PROPERTIES OF THE SPACES H(q, p, @)

For 1 < a < 0o, we set
_d .,
Stﬁf =p af(p 1')7 pe (07 00)7 f € Llloc(Rd)'
The following remark summarizes some properties of the operator Stj.

Remark 2.1. (See [7].) Assume that 1 < a < 0.
1) Then

a) for any real number p > 0, Sto applies linearly L} (RY) into itself;
b) for any f € L}, (RY), St¢f = f;

c) for (p1, p2) € (0, 00)? and f € L}, (R?), we have

loc

Ste o Sto f = Sto . f,

P1pP2

that is, (St5),>0 s a group of operators on L} (RY) isomorphic to the
multiplicative group (0, co).

2) A direct calculation shows that for 1 < ¢, p < oo,

—d(Lr -1
1||St;¥f||q,p:p (o q)p—1||f||q,p7 p>0.
Since for p > 0, the mapping f +— ,-1|fllq,p is a norm on (L9, I) equivalent
to 1| - llg,p with the equivalence constants depending only on p, then St applies

(L4, IP) into itself.
We may now define the spaces H(q, p, «).

Definition 2.2. Let 1 < ¢ < a < p < co. The space H(q, p, o) is defined as the
set of all elements f of L, .(R?) for which there exists a sequence {(cn, pn, fn)n>1

loc

of elements of C x (0, co) x (L7, I"")(R%) such that

Z len| < oo,

n>1
lfnlly,pr <1, n2=1, (2.1)

f= Z cnSt;’;fn in the sense of Li, .(RY).
n>1

Any sequence {(cn, pn, fn)tn>1 of elements of Cx (0, 00) x (L9, IP")(RY) satisfying
is called an h-decomposition of f.
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For 1 < ¢ < a <p< oo and for any element f of H(q, p, a), we set

”f”?-l(q,p,a) = inf Z ‘Cn‘ )

n>1
where the infimum is taken over all hA-decompositions of f.
The result below states some basic properties of H(q, p, @) and points out its con-
nections with the amalgam spaces.
Proposition 2.3. (See [7].) Let 1 < ¢ < a <p < 0.
(i) The space H(q, p, o) endowed with || - ||l34(q, p, ) 5 @ Banach space.
(ii) For all p € (0, ), the operator Stg/ is an isometric automorphism of

H(g,p,a).
(iii) The space (L9, IP")(R?) is continuously embedded in H(q, p, a) :

(L9, 1P)(RY) < H(q, p, a) = L™ (RY).

3. A LINEAR SUBSPACE OF H(1,p, a)

Throughout the remainder of this paper, we assume that 1 < a < p < oo and
1 < p. We shall denote by C the space of continuous functions and by C. the one
of continuous functions with compact support.

Definition 3.1. The space X, is defined as the set of all elements f of L}, .(R?) for
which there exists a sequence {(Cn, pny fn)tns1 of elements of C x (0, 00) x (C, I*")
such that

(1) 22> len] <00,
(ii) foralln > 1, 1l fallsc,pr <1,

(iti) f =51 cnStg;fn in the sense of L}, (R?).
Remark 3.2. From the above definition, it is easy to see that Xq is a linear subspace
of H(1, p,, ).

In the sequel, we shall assume that Xy is equipped with the norm || - |41, p, a)-

Proposition 3.3. The space (C, lp/) s continuously embedded in X.

Proof. Let g € (C, I?).
It is obvious that if g = 0 then g € Xy and

l9ll34(1,p,0) = 0 = 1llglloo, p-

Suppose that g # 0 and write

9= 1llglloe.py ———.
1”9”00,11’
We have
g / g 4 g g
—— e (C, ), 1]l——|loo,pr =1 and St‘f( ): .
lglloc, p lglloc, " 1l19llso, p 1l19llse, p
So g € Xy and

190%(1,p,0) < 1l19llo0, -
This ends the proof. O
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Proposition 3.4. The spacesC,, (C, l”,) and Xg have the same closure in H(1, p,, «).

Proof. Tt is clear that C. C (C, I?"). This fact together with Proposition and
Remark [3:2] implies that

C.c(C,1")C XoCH(,p, )

Let f € Xg. Let us consider an h-decomposition {(c,, pn, fn)}n>1 of f with f,, € C
for all n > 1.

Let us set
m
gm:chStﬁnfna m2>1
n=1
and
gm,k:gmmax<1_|].€|70)v mzlvkz]-

We notice that g, € (C, I?) for all m > 1 and
731_1}100 Il.f = gmllna,p,a) = 0.
Also, gm,x € C. for all m > 1 and for all £ > 1, and
khﬁn;o 1||gmfgm,k||oo,p’ =0, m > 1.
Hence, by Proposition [3.3]
B g~ sl oy 0. 31

It follows that for all € > 0, there exists m. > 1 and k. > 1 such that

||f —9m,k |7~[(1,p,o¢) <g, m 2> me, k > k€~

So, X is included in the closure of C. in H(1, p, a).
We deduce that, the spaces C,, (C, lp/) and X have the same closure in H(1, p,, a).
[l

In the sequel we shall denote by X the closure of (C, lp') in H(1, p, ). It is clear
that (X, || - |l3(1,p,)) is @ Banach space. We shall denote by X* its dual space.

4. A PREDUAL OF MP %(R%) SPACES

Proposition 4.1. Let p be an element of MP*(R%). There is a unique element
T, of X* satisfying

@ f)= [ @) ey (4.1

and
Ty )] < 1]

j2yet Hf”?-l(l,p,a)a f c X. (42)
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Proof. a) Assume that f isin X and consider an h-decomposition {(cy, pn, fn)}n>1
of f with f, € C for all n > 1. We have f =3, <, ¢, StS. fo.
For any n > 1, -

/ISt‘S‘;fn(ﬂf)ldlul(x) = pn%/ ()] d]l ()
R
= ) / [fn(pn )] d] ()

kezd

_d
< pn® D N faxa lloolul(TE)
kezd
-4
< P oo llp 1l frlloo, o
< ey aillfallso,
< ey, o

It follows that

§;/ww%m Vll@) < | S leal | lalla

n>1 n>1

and consequently

/Wf Wlul@) < [ 3 leal | il o

n>1

Hence f =", -, cnStz‘; fn is p-integrable and

< | D leal | lnllp,a-

n>1

f(@) dp(z
Rd

~—

As the above inequality holds for any h-decomposition of f, we have

f(@) d(a
Rd

From the foregoing and the linearity of the integral,

Tos fro 0 )= [ 1) dnto)
is a bounded linear functional on Xy such that

‘<J}1«a f>| < ||/’[’||P,a ||fH7-l(1,p,a)a f S X0~

b) Since Xj is a dense linear subspace of X, there exists a unique element 7}, of
X* satisfying (4.1]) and ( . O

As a consequence of Proposition we have the following result.

~

< lpllp, o 1121 p, 00

Corollary 4.2. The operator
T: p—=1,,

where T}, is defined by and , is linear and bounded from MP *(R?) to X*
and satisfies ||T| < 1.
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Proof. It follows from Proposition that T is an operator from MP? “(R9) to X*
satisfying

1Tl < Ml llp, o pe M7 (R?).
In addition, T is clearly linear.
So, T is a bounded linear operator from MP ®(R%) to X* with ||T| < 1. O

Proposition 4.3. For any element ® of X*, there exists a unique measure [
belonging to MP *(R?) such that ® = T,,, where T, is defined by and .

Proof. Let ® € X*.
a) Let us set

Bo(g) = (g), ge(c, ).

It follows from Proposition [3.3] that ®; is a linear functional on (C, ') such that,
for all g € (C, I*"),

[@o(9)] = [®(9)] < (@I 91171, p.0) < 1] 1[glloo, p-

Thus, ® belongs to the dual space of (C, I’') (with respect to the norm 1| - ||, p)-
Since 1 < p’ < 400, there exists an element u of MP(R?) such that

#o) = [ a@ ). ge (),

(see [20] or [21]).
b) Let us consider a real number p > 0.
Let {(¢k, ck)}reze be a subset of C. x C such that

D’

Z ek’ < 00, (4.3)
kezd
supp(r) C If and Yl <1, k ez, (4.4)

where supp(1r) stands for the support of ¢, and I denotes the interior of I.
Let us notice that

¢r =i (p-) € Cc with supp(¢y) C Iy and [[¢ploe < 1.

Then

k-l

Z ckgbk cC and 1” Z Ck¢k||oo,p/ < Z |Ck|p, < Q.

kezd kezd keza

So

Soadre @), St [ > e | €)X

kezd kezd
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and by Proposition [2:3] and Proposition [3.3]

15t | D ewdn | Intmay = I D crdrllr.p o
keZd kezd
L
P
<l D il < | D lerl
keZa kez
We have
/dStf; > ektw | (@)du(z)| < || S| D cxdn
R kezd kezd
%
P
< @l [ D lenl
kezd

We also have

S o[ @) = X o[ ol e duta)

kezd kezd

= o S a [ o ) duto)

kezd

= Y e [ S 00 duta)

kezd

= p% /Rd Stz/ Z ckd)k ((E) d[l,(x)

kezd

So

1
I

d ’
> o [ e due)| < p¥ ] { X ferp
keza  R? kezd
Since the above inequality holds for all {c }reze C C satisfying (4.3)), we have

1

P P
> | @) | <lolp# it1<p<,
kez? Re
a_ .
sup | [ (o) du(e)| < ] if p = co.
keZd | JR4

Since the above inequalities hold for all {t}1ecze C C. satistying (4.4), we have

° d
ST IHpP| <@l 1< p <o,
kezd
° a4 .
sup |p|(I7) < [[@|p=7 if p = oc.
kezd
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Then we deduce that u belongs to M?>“(R%) and

l1ellp, o < Cl12], (4.5)

(see [5]), where C' is a positive real number depending on d and p.

¢) Let f be an element of Xj.

There exists a sequence {g,, }m>1 of elements of (C, IP") that converges to f in X
and we have

B(g) = / Cgm(@)dp@),  m=1

It follows that

m—o0

o(f) = Tim [ gu(@)du().
Rd

In addition, by Proposition [{.1] f is u-integrable and

/Rd f@) dp(z) = lim /R gm(@)dp().

Thus,

#(1) = | fa)duta).

Since the above equality holds for any element f of X, we have ¢ =T),.
d) The uniqueness of the measure u belonging to MP*(R?) such that ® = T},

follows easily from (4.5).
This ends the proof. O

Corollary [£:2]and Proposition[f.3]yield the following characterization of a predual

space of MP ®(R%).

Proposition 4.4. The mapping T : MP*(R?) — X* given by T(u) = T}, is an
isomorphism and there exists a positive real number C' such that

1T < lpllp.a < CITWI,  ne MP(RY).
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