Bulletin of Mathematical Analysis and Applications ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 12 Issue 1(2020), Pages 41-50.

PREDUAL OF $M^{p, \alpha}(\mathbb{R}^d)$ **SPACES**

BÉRENGER AKON KPATA

ABSTRACT. The space $M^{p, \alpha}(\mathbb{R}^d)$ introduced by I. Fofana is a subspace of the Wiener amalgam space of measures. In this note, we give a characterization of a predual space of this one.

1. INTRODUCTION

Let *d* be a positive integer. We denote by *dx* the Lebesgue measure on \mathbb{R}^d . For any Lebesgue measurable subset *E* of \mathbb{R}^d , |E| stands for its Lebesgue measure and χ_E denotes its characteristic function. For $1 \leq q \leq \infty$, $\|\cdot\|_q$ denotes the usual norm on the classical Lebesgue space $L^q(\mathbb{R}^d)$ and q' is the conjugate exponent of $q: \frac{1}{q'} + \frac{1}{q} = 1$, with the convention $\frac{1}{\infty} = 0$.

For any $k = (k_1, ..., k_d) \in \mathbb{Z}^d$ and r > 0, set

$$I_k^r = \prod_{i=1}^d [k_i r, (k_i + 1) r).$$

Let L^0 stands for the space of (equivalence classes modulo the equality Lebesgue almost everywhere of) all complex-valued functions defined on \mathbb{R}^d . By $L^1_{loc}(\mathbb{R}^d)$, we denote the set of all elements f of L^0 for which $||f\chi_K||_1 < \infty$ for any compact subset K of \mathbb{R}^d .

Let $1 \leq q, p \leq \infty$. For $f \in L^0$ and r > 0, we set

$${}_{r} \left\| f \right\|_{q, p} = \begin{cases} \left(\sum_{k \in \mathbb{Z}^{d}} \left(\left\| f \chi_{I_{k}^{r}} \right\|_{q} \right)^{p} \right)^{\frac{1}{p}} & \text{if } 1 \leq p < \infty \\ \sup_{k \in \mathbb{Z}^{d}} \left\| f \chi_{I_{k}^{r}} \right\|_{q} & \text{if } p = \infty. \end{cases}$$

The amalgam spaces $(L^q, l^p)(\mathbb{R}^d)$ are defined by

$$(L^{q}, l^{p})(\mathbb{R}^{d}) = \left\{ f \in L^{0} \mid _{1} ||f||_{q, p} < \infty \right\}.$$

They have been introduced by Wiener in 1926 (see [22]). But the first systematic study of these spaces is due to Holland [16]. Since then the amalgam spaces $(L^q, l^p)(\mathbb{R}^d)$ have been extensively studied (see [21], [14] and the references therein) and generalized in various directions (see [1], [6], [15] and the references therein).

²⁰¹⁰ Mathematics Subject Classification. 46B10, 46E27, 42B35.

Key words and phrases. Amalgam spaces; predual; spaces of Radon measures.

^{©2020} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted December 11, 2019. Published February 21, 2020.

Communicated by Enrique Jorda.

It is well-known that $_1 \| \cdot \|_{q,p}$ is a norm which makes $(L^q, l^p)(\mathbb{R}^d)$ into Banach spaces. Furthermore, $(L^1, l^p)(\mathbb{R}^d)$ $(1 \le p \le \infty)$ is embedded in the Wiener amalgam space of measures $M^p(\mathbb{R}^d)$. For $1 \le p \le \infty$, $M^p(\mathbb{R}^d)$ is the space of Radon measures μ such that $_1 \|\mu\|_p < \infty$, with

$$_{r} \|\mu\|_{p} = \begin{cases} \left(\sum_{k \in \mathbb{Z}^{d}} |\mu|(I_{k}^{r})^{p}\right)^{\frac{1}{p}} & \text{if } 1 \leq p < \infty, \\ \sup_{k \in \mathbb{Z}^{d}} |\mu|(I_{k}^{r}) & \text{if } p = \infty, \end{cases}$$

for all r > 0, where $|\mu|$ denotes the total variation of μ .

These spaces have been studied by several authors (see [14] and the references therein). They also occur as dual spaces. Actually, If (\mathcal{C}, l^p) denotes the space of continuous functions in $(L^{\infty}, l^p)(\mathbb{R}^d)$, where $1 \leq p < \infty$, then its dual space is $M^{p'}(\mathbb{R}^d)$ (see [2], [16] and [20]).

In [9], Fofana has introduced the spaces $(L^q, l^p)^{\alpha}(\mathbb{R}^d)$ defined as follows:

$$(L^{q}, l^{p})^{\alpha}(\mathbb{R}^{d}) = \left\{ f \in L^{0} \mid \|f\|_{q, p, \alpha} < \infty \right\},$$

where

$$\|f\|_{q, p, \alpha} = \sup_{r>0} r^{d\left(\frac{1}{\alpha} - \frac{1}{q}\right)} \|f\|_{q, p}$$

It is proved in [9] and [13] that, for $1 \leq p, q, \alpha \leq \infty$, the space $(L^q, l^p)^{\alpha}(\mathbb{R}^d)$ is non-trivial if and only if $q \leq \alpha \leq p$ and $((L^q, l^p)^{\alpha}(\mathbb{R}^d), \|\cdot\|_{q, p, \alpha})$ is a Banach space. It is clearly a subspace of the amalgam space $(L^q, l^p)(\mathbb{R}^d)$. In addition, it is closely related to the Lebesgue spaces as follows :

$$(L^q, l^p)^{\alpha}(\mathbb{R}^d) = L^{\alpha}(\mathbb{R}^d)$$
 if $\alpha \in \{p, q\}$

with equivalent norm and

$$L^{\alpha}(\mathbb{R}^d) \subsetneq (L^q, l^p)^{\alpha}(\mathbb{R}^d)$$
 if $q < \alpha < p$.

Several useful results in Fourier analysis, well-known in the Lebesgue spaces, have been extended to the framework of the spaces $(L^q, l^p)^{\alpha}(\mathbb{R}^d)$ (see for instance [3], [11], [12], [8], [17] and [19]). Let us recall that the space $(L^1, l^p)^{\alpha}(\mathbb{R}^d)$ is embedded in a space of measures denoted by $M^{p,\alpha}(\mathbb{R}^d)$ which has also been introduced by I. Fofana (see [13] and [11]). $M^{p,\alpha}(\mathbb{R}^d)$ is the space of Radon measures μ satisfying $\|\mu\|_{p,\alpha} < \infty$, where

$$\|\mu\|_{p,\alpha} = \sup_{r>0} r^{d\left(\frac{1}{\alpha}-1\right)} {}_r \|\mu\|_p.$$

Clearly, $M^{p,\alpha}(\mathbb{R}^d)$ is a subspace of $M^p(\mathbb{R}^d)$. It becomes a Banach space when equipped with the norm $\|\cdot\|_{p,\alpha}$ (see [13]). Furthermore, it is proved in [18] that if, for $1 \leq q \leq p < \infty$, there exists a constant C such that if a non-negative Radon measure μ satisfies

$$\|\mu * f\|_p \le C \|f\|_q, \qquad f \in L^q(\mathbb{R}^d),$$

then μ belongs to $M^{p, \alpha}(\mathbb{R}^d)$, with $\frac{1}{\alpha} = 1 - \frac{1}{q} + \frac{1}{p}$. Other interesting results involving the spaces $M^{p, \alpha}(\mathbb{R}^d)$ can be found in [4], [5] and

Other interesting results involving the spaces $M^{p,\alpha}(\mathbb{R}^{a})$ can be found in [4], [5] and [19].

Finally, we note that the dual spaces of $(L^q, l^p)^{\alpha}(\mathbb{R}^d)$ and $M^{p,\alpha}(\mathbb{R}^d)$ are still unknown. But recently, by using the idea of minimal invariant Banach spaces of functions with respect to a group of dilation operators, Feichtinger and Feuto have characterized a predual space of $(L^q, l^p)^{\alpha}(\mathbb{R}^d)$, when $1 < q \leq \alpha \leq p \leq \infty$ (see [7]). They have denoted by $\mathcal{H}(q, p, \alpha)$ this space (see Section 2 for a precise definition of this one).

In this note, we shall describe a predual space of $M^{p,\alpha}(\mathbb{R}^d)$, for $1 \leq \alpha \leq p \leq \infty$ and p > 1. This one is closely related to $\mathcal{H}(1, p, \alpha)$.

The paper is organized as follows. In Section 2, we recall the definition of the spaces $\mathcal{H}(q, p, \alpha)$ and some of their basic properties including the fact that they are Banach spaces. Then, in section 3, we introduce a particular linear subspace of $\mathcal{H}(1, p, \alpha)$. Finally, we shall prove in Section 4 that the closure of this linear subspace in $\mathcal{H}(1, p, \alpha)$ is a predual space of $M^{p, \alpha}(\mathbb{R}^d)$.

2. A review of some basic properties of the spaces $\mathcal{H}(q, p, \alpha)$

For $1 \leq \alpha \leq \infty$, we set

$$St^{\alpha}_{\rho}f = \rho^{-\frac{a}{\alpha}}f(\rho^{-1}\cdot), \qquad \rho \in (0, \infty), \ f \in L^{1}_{loc}(\mathbb{R}^{d}).$$

The following remark summarizes some properties of the operator St_{a}^{α} .

Remark 2.1. (See [7].) Assume that $1 \leq \alpha \leq \infty$. 1) Then

- a) for any real number $\rho > 0$, St^{α}_{ρ} applies linearly $L^{1}_{loc}(\mathbb{R}^{d})$ into itself;
- b) for any $f \in L^1_{loc}(\mathbb{R}^d)$, $St_1^{\alpha}f = f$; c) for $(\rho_1, \rho_2) \in (0, \infty)^2$ and $f \in L^1_{loc}(\mathbb{R}^d)$, we have

$$St^{\alpha}_{\rho_1} \circ St^{\alpha}_{\rho_2}f = St^{\alpha}_{\rho_1\rho_2}f$$

that is, $(St^{\alpha}_{\rho})_{\rho>0}$ is a group of operators on $L^{1}_{loc}(\mathbb{R}^{d})$ isomorphic to the multiplicative group $(0, \infty)$.

2) A direct calculation shows that for $1 \leq q, p \leq \infty$,

$${}_{1}\|St^{\alpha}_{\rho}f\|_{q,\,p} = \rho^{-d(\frac{1}{\alpha} - \frac{1}{q})}{}_{\rho^{-1}}\|f\|_{q,\,p}, \qquad \rho > 0.$$

Since for $\rho > 0$, the mapping $f \mapsto \rho^{-1} ||f||_{q,p}$ is a norm on (L^q, l^p) equivalent to $_1 \| \cdot \|_{q,p}$ with the equivalence constants depending only on ρ , then St^{α}_{ρ} applies (L^q, l^p) into itself.

We may now define the spaces $\mathcal{H}(q, p, \alpha)$.

Definition 2.2. Let $1 \leq q \leq \alpha \leq p \leq \infty$. The space $\mathcal{H}(q, p, \alpha)$ is defined as the set of all elements f of $L^1_{loc}(\mathbb{R}^d)$ for which there exists a sequence $\{(c_n, \rho_n, f_n)\}_{n\geq 1}$ of elements of $\mathbb{C} \times (0, \infty) \times (L^{q'}, l^{p'})(\mathbb{R}^d)$ such that

$$\begin{cases} \sum_{\substack{n\geq 1\\1\|f_n\|_{q',p'}\leq 1, \quad n\geq 1,\\f=\sum_{n\geq 1}c_nSt_{\rho_n}^{\alpha'}f_n \text{ in the sense of } L^1_{loc}(\mathbb{R}^d). \end{cases}$$
(2.1)

Any sequence $\{(c_n, \rho_n, f_n)\}_{n\geq 1}$ of elements of $\mathbb{C} \times (0, \infty) \times (L^{q'}, l^{p'})(\mathbb{R}^d)$ satisfying (2.1) is called an h-decomposition of f.

For $1 \leq q \leq \alpha \leq p \leq \infty$ and for any element f of $\mathcal{H}(q, p, \alpha)$, we set

$$||f||_{\mathcal{H}(q, p, \alpha)} = \inf \left\{ \sum_{n \ge 1} |c_n| \right\},$$

where the infimum is taken over all *h*-decompositions of f. The result below states some basic properties of $\mathcal{H}(q, p, \alpha)$ and points out its connections with the amalgam spaces.

Proposition 2.3. (See [7].) Let $1 \le q \le \alpha \le p \le \infty$.

- (i) The space $\mathcal{H}(q, p, \alpha)$ endowed with $\|\cdot\|_{\mathcal{H}(q, p, \alpha)}$ is a Banach space.
- (ii) For all $\rho \in (0, \infty)$, the operator $St_{\rho}^{\alpha'}$ is an isometric automorphism of $\mathcal{H}(q, p, \alpha)$.
- (iii) The space $(L^{q'}, l^{p'})(\mathbb{R}^d)$ is continuously embedded in $\mathcal{H}(q, p, \alpha)$:

 $(L^{q'}, l^{p'})(\mathbb{R}^d) \hookrightarrow \mathcal{H}(q, p, \alpha) \hookrightarrow L^{\alpha'}(\mathbb{R}^d).$

3. A linear subspace of $\mathcal{H}(1, p, \alpha)$

Throughout the remainder of this paper, we assume that $1 \leq \alpha \leq p \leq \infty$ and 1 < p. We shall denote by C the space of continuous functions and by C_c the one of continuous functions with compact support.

Definition 3.1. The space X_0 is defined as the set of all elements f of $L^1_{loc}(\mathbb{R}^d)$ for which there exists a sequence $\{(c_n, \rho_n, f_n)\}_{n\geq 1}$ of elements of $\mathbb{C} \times (0, \infty) \times (\mathcal{C}, l^{p'})$ such that

(i)
$$\sum_{n\geq 1} |c_n| < \infty$$
,
(ii) for all $n \geq 1$, $_1 ||f_n||_{\infty, p'} \leq 1$,
(iii) $f = \sum_{n\geq 1} c_n St_{\rho_n}^{\alpha'} f_n$ in the sense of $L^1_{loc}(\mathbb{R}^d)$.

Remark 3.2. From the above definition, it is easy to see that X_0 is a linear subspace of $\mathcal{H}(1, p, \alpha)$.

In the sequel, we shall assume that X_0 is equipped with the norm $\|\cdot\|_{\mathcal{H}(1,p,\alpha)}$.

Proposition 3.3. The space $(\mathcal{C}, l^{p'})$ is continuously embedded in X_0 .

Proof. Let $g \in (\mathcal{C}, l^{p'})$. It is obvious that if g = 0 then $g \in X_0$ and

$$||g||_{\mathcal{H}(1,\,p,\,\alpha)} = 0 = \,_1 ||g||_{\infty,\,p'}.$$

Suppose that $g \neq 0$ and write

$$g = {}_1 \|g\|_{\infty, p'} \frac{g}{{}_1 \|g\|_{\infty, p'}}.$$

We have

$$\frac{g}{1\|g\|_{\infty,p'}} \in (\mathcal{C}, l^{p'}), \quad 1\|\frac{g}{1\|g\|_{\infty,p'}}\|_{\infty,p'} = 1 \quad \text{and} \quad St_1^{\alpha'}\left(\frac{g}{1\|g\|_{\infty,p'}}\right) = \frac{g}{1\|g\|_{\infty,p'}}.$$

So $g \in X_0$ and

$$||g||_{\mathcal{H}(1, p, \alpha)} \leq ||g||_{\infty, p'}.$$

This ends the proof.

Proposition 3.4. The spaces C_c , $(C, l^{p'})$ and X_0 have the same closure in $\mathcal{H}(1, p, \alpha)$.

Proof. It is clear that $C_c \subset (C, l^{p'})$. This fact together with Proposition 3.3 and Remark 3.2 implies that

$$\mathcal{C}_c \subset (\mathcal{C}, l^{p'}) \subset X_0 \subset \mathcal{H}(1, p, \alpha).$$

Let $f \in X_0$. Let us consider an *h*-decomposition $\{(c_n, \rho_n, f_n)\}_{n \ge 1}$ of f with $f_n \in C$ for all $n \ge 1$.

Let us set

$$g_m = \sum_{n=1}^m c_n S t_{\rho_n}^{\alpha'} f_n, \qquad m \ge 1$$

and

$$g_{m,k} = g_m \max\left(1 - \frac{|\cdot|}{k}, 0\right), \quad m \ge 1, \ k \ge 1.$$

We notice that $g_m \in (\mathcal{C}, l^{p'})$ for all $m \ge 1$ and

$$\lim_{m \to \infty} \|f - g_m\|_{\mathcal{H}(1, p, \alpha)} = 0.$$

Also, $g_{m,k} \in \mathcal{C}_c$ for all $m \ge 1$ and for all $k \ge 1$, and

$$\lim_{k \to \infty} {}_1 \|g_m - g_{m,k}\|_{\infty, p'} = 0, \qquad m \ge 1.$$

Hence, by Proposition 3.3

$$\lim_{k \to \infty} \|g_m - g_{m,k}\|_{\mathcal{H}(1, p, \alpha)} = 0, \quad m \ge 1.$$

It follows that for all $\varepsilon > 0$, there exists $m_{\varepsilon} \ge 1$ and $k_{\varepsilon} \ge 1$ such that

$$|f - g_{m,k}||_{\mathcal{H}(1, p, \alpha)} < \varepsilon, \quad m \ge m_{\varepsilon}, \quad k \ge k_{\varepsilon}.$$

So, X_0 is included in the closure of C_c in $\mathcal{H}(1, p, \alpha)$. We deduce that, the spaces C_c , $(C, l^{p'})$ and X_0 have the same closure in $\mathcal{H}(1, p, \alpha)$.

In the sequel we shall denote by X the closure of $(\mathcal{C}, l^{p'})$ in $\mathcal{H}(1, p, \alpha)$. It is clear that $(X, \|\cdot\|_{\mathcal{H}(1, p, \alpha)})$ is a Banach space. We shall denote by X^* its dual space.

4. A predual of $M^{p, \alpha}(\mathbb{R}^d)$ spaces

Proposition 4.1. Let μ be an element of $M^{p, \alpha}(\mathbb{R}^d)$. There is a unique element T_{μ} of X^* satisfying

$$\langle T_{\mu}, f \rangle = \int_{\mathbb{R}^d} f(x) d\mu(x), \quad f \in X_0$$
(4.1)

and

$$|\langle T_{\mu}, f \rangle| \le \|\mu\|_{p, \alpha} \|f\|_{\mathcal{H}(1, p, \alpha)}, \quad f \in X.$$
 (4.2)

Proof. a) Assume that f is in X_0 and consider an h-decomposition $\{(c_n, \rho_n, f_n)\}_{n\geq 1}$ of f with $f_n \in \mathcal{C}$ for all $n \geq 1$. We have $f = \sum_{n\geq 1} c_n St_{\rho_n}^{\alpha'} f_n$. For any $n \geq 1$,

$$\begin{split} \int_{\mathbb{R}^{d}} |St_{\rho_{n}}^{\alpha'} f_{n}(x)| \, d|\mu|(x) &= \rho_{n}^{-\frac{d}{\alpha'}} \int_{\mathbb{R}^{d}} |f_{n}(\rho_{n}^{-1}x)| \, d|\mu|(x) \\ &= \rho_{n}^{-\frac{d}{\alpha'}} \sum_{k \in \mathbb{Z}^{d}} \int_{I_{k}^{\rho_{n}}} |f_{n}(\rho_{n}^{-1}x)| \, d|\mu|(x) \\ &\leq \rho_{n}^{-\frac{d}{\alpha'}} \sum_{k \in \mathbb{Z}^{d}} \|f_{n}\chi_{I_{k}^{1}}\|_{\infty} |\mu|(I_{k}^{\rho_{n}}) \\ &\leq \rho_{n}^{-\frac{d}{\alpha'}} \rho_{n} \|\mu\|_{p,1} \|f_{n}\|_{\infty,p'} \\ &\leq \|\mu\|_{p,\alpha,1} \|f_{n}\|_{\infty,p'} \\ &\leq \|\mu\|_{p,\alpha}. \end{split}$$

It follows that

$$\sum_{n\geq 1} \int_{\mathbb{R}^d} |c_n St_{\rho_n}^{\alpha'} f_n(x)| \, d|\mu|(x) \le \left(\sum_{n\geq 1} |c_n|\right) \|\mu\|_{p,\alpha}$$

and consequently

$$\int_{\mathbb{R}^d} |f(x)| \, d|\mu|(x) \le \left(\sum_{n \ge 1} |c_n|\right) \|\mu\|_{p,\,\alpha}.$$

Hence $f = \sum_{n \geq 1} c_n S t_{\rho_n}^{\alpha'} f_n$ is $\mu\text{-integrable}$ and

$$\left| \int_{\mathbb{R}^d} f(x) \, d\mu(x) \right| \le \left(\sum_{n \ge 1} |c_n| \right) \|\mu\|_{p, \alpha}.$$

As the above inequality holds for any h-decomposition of f, we have

$$\left|\int_{\mathbb{R}^d} f(x) \, d\mu(x)\right| \le \|\mu\|_{p,\,\alpha} \, \|f\|_{\mathcal{H}(1,\,p,\,\alpha)}.$$

From the foregoing and the linearity of the integral,

$$J_{\mu} : f \mapsto \langle J_{\mu}, f \rangle = \int_{\mathbb{R}^d} f(x) \, d\mu(x)$$

is a bounded linear functional on X_0 such that

$$|\langle J_{\mu}, f \rangle| \le \|\mu\|_{p, \alpha} \, \|f\|_{\mathcal{H}(1, p, \alpha)}, \qquad f \in X_0.$$

b) Since X_0 is a dense linear subspace of X, there exists a unique element T_{μ} of X^* satisfying (4.1) and (4.2).

As a consequence of Proposition 4.1, we have the following result.

Corollary 4.2. The operator

$$T : \mu \mapsto T_{\mu}$$

where T_{μ} is defined by (4.1) and (4.2), is linear and bounded from $M^{p, \alpha}(\mathbb{R}^d)$ to X^* and satisfies $||T|| \leq 1$. *Proof.* It follows from Proposition 4.1 that T is an operator from $M^{p, \alpha}(\mathbb{R}^d)$ to X^* satisfying

$$||T_{\mu}|| \le ||\mu||_{p,\alpha}, \qquad \mu \in M^{p,\alpha}(\mathbb{R}^d).$$

In addition, T is clearly linear.

So, T is a bounded linear operator from $M^{p,\alpha}(\mathbb{R}^d)$ to X^* with $||T|| \leq 1$.

Proposition 4.3. For any element Φ of X^* , there exists a unique measure μ belonging to $M^{p,\alpha}(\mathbb{R}^d)$ such that $\Phi = T_{\mu}$, where T_{μ} is defined by (4.1) and (4.2).

Proof. Let $\Phi \in X^*$. a) Let us set

$$\Phi_0(g) = \Phi(g), \qquad g \in (\mathcal{C}, l^{p'})$$

It follows from Proposition 3.3 that Φ_0 is a linear functional on $(\mathcal{C}, l^{p'})$ such that, for all $g \in (\mathcal{C}, l^{p'})$,

$$|\Phi_0(g)| = |\Phi(g)| \le ||\Phi|| \, ||g||_{\mathcal{H}(1, p, \alpha)} \le ||\Phi|| \, _1 ||g||_{\infty, p'}.$$

Thus, Φ belongs to the dual space of $(\mathcal{C}, l^{p'})$ (with respect to the norm $_1 \| \cdot \|_{\infty, p'}$). Since $1 \leq p' < +\infty$, there exists an element μ of $M^p(\mathbb{R}^d)$ such that

$$\Phi(g) = \int_{\mathbb{R}^d} g(x) \, d\mu(x), \qquad g \in (\mathcal{C}, \, l^{p'}),$$

(see [20] or [21]).

b) Let us consider a real number $\rho > 0$.

Let $\{(\psi_k, c_k)\}_{k \in \mathbb{Z}^d}$ be a subset of $\mathcal{C}_c \times \mathbb{C}$ such that

$$\left(\sum_{k\in\mathbb{Z}^d} |c_k|^{p'}\right)^{\frac{1}{p'}} < \infty, \tag{4.3}$$

$$supp(\psi_k) \subset I_k^{\rho} \text{ and } \|\psi_k\|_{\infty} \le 1, \qquad k \in \mathbb{Z}^d,$$

$$(4.4)$$

where $supp(\psi_k)$ stands for the support of ψ_k and $\overset{\circ}{I_k^{\rho}}$ denotes the interior of I_k^{ρ} . Let us notice that

$$\phi_k := \psi_k(\rho \cdot) \in \mathcal{C}_c$$
 with $supp(\phi_k) \subset I_k^1$ and $\|\phi_k\|_{\infty} \le 1$.

Then

$$\sum_{k \in \mathbb{Z}^d} c_k \phi_k \in \mathcal{C} \quad \text{and} \quad {}_1 \| \sum_{k \in \mathbb{Z}^d} c_k \phi_k \|_{\infty, p'} \le \left(\sum_{k \in \mathbb{Z}^d} |c_k|^{p'} \right)^{\frac{1}{p'}} < \infty.$$

 \mathbf{So}

$$\sum_{k \in \mathbb{Z}^d} c_k \phi_k \in (\mathcal{C}, l^{p'}), \quad St_{\rho}^{\alpha'} \left(\sum_{k \in \mathbb{Z}^d} c_k \phi_k \right) \in (\mathcal{C}, l^{p'}) \subset X$$

and by Proposition 2.3 and Proposition 3.3,

$$\|St_{\rho}^{\alpha'}\left(\sum_{k\in\mathbb{Z}^d}c_k\phi_k\right)\|_{\mathcal{H}(1,\,p,\,\alpha)} = \|\sum_{k\in\mathbb{Z}^d}c_k\phi_k\|_{\mathcal{H}(1,\,p,\,\alpha)}$$
$$\leq \|\sum_{k\in\mathbb{Z}^d}c_k\phi_k\|_{\infty,\,p'} \leq \left(\sum_{k\in\mathbb{Z}^d}|c_k|^{p'}\right)^{\frac{1}{p'}}$$

•

We have

$$\begin{aligned} \left| \int_{\mathbb{R}^d} St_{\rho}^{\alpha'} \left(\sum_{k \in \mathbb{Z}^d} c_k \phi_k \right) (x) \, d\mu(x) \right| &\leq \left| \Phi \left(St_{\rho}^{\alpha'} \left(\sum_{k \in \mathbb{Z}^d} c_k \phi_k \right) \right) \right| \\ &\leq \left\| \Phi \right\| \left(\sum_{k \in \mathbb{Z}^d} |c_k|^{p'} \right)^{\frac{1}{p'}}. \end{aligned}$$

We also have

$$\begin{split} \sum_{k \in \mathbb{Z}^d} c_k \int_{\mathbb{R}^d} \psi_k(x) \, d\mu(x) &= \sum_{k \in \mathbb{Z}^d} c_k \int_{\mathbb{R}^d} \phi_k(\rho^{-1}x) \, d\mu(x) \\ &= \rho^{\frac{d}{\alpha'}} \sum_{k \in \mathbb{Z}^d} c_k \int_{\mathbb{R}^d} \rho^{-\frac{d}{\alpha'}} \phi_k(\rho^{-1}x) \, d\mu(x) \\ &= \rho^{\frac{d}{\alpha'}} \sum_{k \in \mathbb{Z}^d} c_k \int_{\mathbb{R}^d} St^{\alpha'}_{\rho}(\phi_k)(x) \, d\mu(x) \\ &= \rho^{\frac{d}{\alpha'}} \int_{\mathbb{R}^d} St^{\alpha'}_{\rho}\left(\sum_{k \in \mathbb{Z}^d} c_k \phi_k\right)(x) \, d\mu(x). \end{split}$$

 So

$$\left|\sum_{k\in\mathbb{Z}^d} c_k \int_{\mathbb{R}^d} \psi_k(x) \, d\mu(x)\right| \le \rho^{\frac{d}{\alpha'}} \|\Phi\| \left(\sum_{k\in\mathbb{Z}^d} |c_k|^{p'}\right)^{\frac{1}{p'}}.$$

Since the above inequality holds for all $\{c_k\}_{k\in\mathbb{Z}^d}\subset\mathbb{C}$ satisfying (4.3), we have

$$\begin{cases} \left[\sum_{k\in\mathbb{Z}^d} \left| \int_{\mathbb{R}^d} \psi_k(x) \, d\mu(x) \right|^p \right]^{\frac{1}{p}} \le \|\Phi\|\rho^{\frac{d}{\alpha'}} & \text{if } 1$$

Since the above inequalities hold for all $\{\psi_k\}_{k\in\mathbb{Z}^d} \subset \mathcal{C}_c$ satisfying (4.4), we have

$$\begin{cases} \left[\sum_{k\in\mathbb{Z}^d} |\mu| (I_k^{\rho})^p\right]^{\frac{1}{p}} \le \|\Phi\|\rho^{\frac{d}{\alpha'}} & \text{if } 1$$

48

Then we deduce that μ belongs to $M^{p,\alpha}(\mathbb{R}^d)$ and

$$\|\mu\|_{p,\,\alpha} \le C \|\Phi\|,\tag{4.5}$$

(see [5]), where C is a positive real number depending on d and p. c) Let f be an element of X_0 .

There exists a sequence $\{g_m\}_{m\geq 1}$ of elements of $(\mathcal{C}, l^{p'})$ that converges to f in X_0 and we have

$$\Phi(g_m) = \int_{\mathbb{R}^d} g_m(x) \, d\mu(x), \qquad m \ge 1.$$

It follows that

$$\Phi(f) = \lim_{m \to \infty} \int_{\mathbb{R}^d} g_m(x) \, d\mu(x).$$

In addition, by Proposition 4.1, f is μ -integrable and

$$\int_{\mathbb{R}^d} f(x) \, d\mu(x) = \lim_{m \to \infty} \int_{\mathbb{R}^d} g_m(x) d\mu(x).$$

Thus,

$$\Phi(f) = \int_{\mathbb{R}^d} f(x) \, d\mu(x).$$

Since the above equality holds for any element f of X_0 , we have $\phi = T_{\mu}$. d) The uniqueness of the measure μ belonging to $M^{p,\alpha}(\mathbb{R}^d)$ such that $\Phi = T_{\mu}$ follows easily from (4.5).

This ends the proof.

Corollary 4.2 and Proposition 4.3 yield the following characterization of a predual space of $M^{p, \alpha}(\mathbb{R}^d)$.

Proposition 4.4. The mapping $T : M^{p,\alpha}(\mathbb{R}^d) \to X^*$ given by $T(\mu) = T_{\mu}$ is an isomorphism and there exists a positive real number C such that

$$|T(\mu)|| \le ||\mu||_{p,\alpha} \le C ||T(\mu)||, \qquad \mu \in M^{p,\alpha}(\mathbb{R}^d).$$

Acknowledgements. The author would like to thank the anonymous referee for his/her valuable comments and suggestons that helped him to improve this article.

References

- [1] I. Aydin, On variable exponent amalgam spaces, An. St. Univ. Ovidius Constanta 20 (3) (2012), 5-20.
- [2] J. P. Bertrandias, C. Dupuis, Transformation de Fourier sur les espaces $l^p(L^{p'})$, Ann. Inst. Fourier (Grenoble) **29** (1) (1979), 189-206.
- [3] M. Dosso, I. Fofana, M. Sanogo, On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals, Ann. Polon. Math. 108 (2) (2013), 133-153.
- [4] D. Douyon, I. Fofana, A Sobolev inequality for functions with locally bounded variation in \mathbb{R}^d , Afr. Math. Ann. **1** (1) (2010), 49-67.
- [5] D. Douyon, M. Sanogo, B. Savadogo, Characterization of $W^1(L^1_{loc}(\mathbb{R}^d), T^{p, \alpha}(\mathbb{R}^d))$ and $W^1(L^1_{loc}(\mathbb{R}^d), M^{p, \alpha}(\mathbb{R}^d))$, Manuscript.
- [6] H. G. Feichtinger, Generalized amalgams and its applications to Fourier transforms, Canad. J. Math. 42 (1990), 395-409.
- [7] H. G. Feichtinger, J. Feuto, Pre-dual of Fofana's spaces, Mathematics 7 (6) (2019), 528.
- [8] J. Feuto, Norm inequalities in some subspaces of Morrey space, Ann. Math. Blaise Pascal 21 (2) (2014), 21-37.
- [9] I. Fofana, Étude d'une classe de fonctions contenant les espaces de Lorentz, Afr. Mat. 1 (1988), 29-50.
- [10] I. Fofana, Continuité de l'intégrale fractionnaire et espaces $(L^q, l^p)^{\alpha}$, C.R.A.S. Paris 308 (I) (1989), 525-527.

B. A. KPATA

- [11] I. Fofana, Transformation de Fourier dans $(L^q, l^p)^{\alpha}$ et $M^{p, \alpha}$, Afr. Mat. 3 (5) (1995), 53-76.
- [12] I. Fofana, Espace (L^q, l^p)^α et continuité de l'opérateur maximal fractionnaire de Hardy-Littlewood, Afr. Mat. 3 (12) (2001), 23-37.
- [13] I. Fofana, Espace $(L^q, l^p)^{\alpha}(\mathbb{R}^d, n)$, espace de fonctions à moyenne fractionnaire intégrable, Thèse d'État, Université d'Abidjan-Cocody, 1995.

 $http://greenstone.refer.bf/collect/thef/index/assoc/HASH6a39.dir/CS_02767.pdf.$

- [14] J. J. F. Fournier, J. Stewart, Amalgams of L^p and l^q , Bull. Amer. Math. Soc. 13 (1985), 1-21.
- [15] C. Heil, An introduction to weighted Wiener amalgams, Wavelets and their Applications (Chennai, January 2002), M. Krishna, R. Radha and S. Thangavelu, eds., Allied Publishers, New Delhi (2003), pp. 183-216.
- [16] F. Holland, Harmonic Analysis on amalgams of L^p and l^q, J. London Math. Soc. (2) 10 (1975), 295-305.
- [17] B. A. Kpata, I. Fofana, Isomorphism between Sobolev spaces and Bessel potential spaces in the setting of Wiener amalgam spaces, Comm. Math. Anal. 16 (2) (2014), 57-73.
- [18] B. A. Kpata, I. Fofana, K. Koua, Necessary condition for measures which are (L^q, L^p) multipliers, Ann. Math. Blaise Pascal, **16** (2) (2009), 339-353.
- [19] M. Sanogo, I. Fofana, Fourier transform and compactness in $(L^q, l^p)^{\alpha}$ and $M^{p, \alpha}$, Comm. Math. Anal. **11** (2) (2011), 139-153.
- [20] J. Stewart, Fourier transforms of unbounded measures, Canad. J. Math. 31 (1979), 1281-1292.
- [21] M. L. T. D. Squire, Amalgams of L^p and l^q, Ph. D. Thesis, McMaster University, Hamilton, ON, Canada, 1984.
- [22] N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926), 575-616.

Bérenger Akon Kpata

Laboratoire de Mathématiques et Informatique, UFR des Sciences Fondamentales et Appliquées, Université Nangui Abrogoua, $02~{\rm BP}$ 801 Abidjan02,Côte d'Ivoire

E-mail address: kpata_akon@yahoo.fr