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A DISPERSION INEQUALITY AND ACCUMULATED

SPECTROGRAMS IN THE WEINSTEIN SETTING

KHALED HLEILI

Abstract. In this paper, we establish a quantitative version of Shapiro’s mean

dispersion theorem for the continuous wavelet transform. Next, we prove the
boundedness and compactness properties of the localization operators associ-

ated with Weinstein wavelet transforms. Finally, we study the scalograms for

the same wavelet transform.

1. Introduction

Time-frequency localization is an ongoing active topic of research in harmonic
analysis. In [7], Daubechies introduced time-frequency localization operators ob-
tained by restricting the integral in the inversion formula to a subset of R2. The
eigenfunctions and eigenvalues of these operators have been studied in ([8],[9]). The
study of the properties of time-frequency operators and its connection with other
mathematical topics have been a continued topic of research, e.g. [1, 6, 16].

In [23], Shapiro studied the localization for an orthonormal sequence of functions
and showed that if the means and the dispersions of an orthonormal sequence

(φk)k in L2(Rd) and their Fourier transforms (φ̂)k are uniformly bounded, then the
sequence (φk)k is necessarily finite. In [18], Jaming and Powell used the Rayleigh-
Ritz technique for estimating eigenvalues of operators to give a quantitative version
of Shapiro’s theorem. Recently, Malinnikova [19] obtained a quantitative multi-
variable version of Shapiro’s theorem for generalized dispersions by showing that if
(φk)k is an orthonormal sequence in L2(Rd) then for every positive real number p,
there exists a constant Cp,d such that for every n ∈ N∗

n∑
k=1

‖x
p
2 φk‖22 + ‖y

p
2 φ̂k‖22 > Cp,dn1+ p

2d .

Some other results on time-frequency localisation of orthonormal sequences have
been recently obtained by Ghobber and Omri (see[11, 12, 14]).
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We consider the Weinstein operator (see[3, 4]) defined on Rn×]0,+∞[ by

∆W =

n+1∑
j=1

∂2

∂x2
j

+
2α+ 1

xn+1

∂

∂xn+1
= ∆n + `α, α >

−1

2
,

where ∆n is the Laplacian operator in Rn and `α the Bessel operator with respect
to the variable xn+1 defined by

`α =
∂2

∂x2
n+1

+
2α+ 1

xn+1

∂

∂xn+1
, α >

−1

2
.

For n > 2, the operator ∆W is the Laplace-Beltrami operator on the Riemanian
space Rn×]0,+∞[ equipped with the metric [3]

ds2 = x
2(2α+1)
n−1

n+1

n+1∑
i=1

dx2
i .

The Weinstein operator ∆W has several applications in pure and applied Math-
ematics especially in Fluid Mechanics (see e.g. [5, 24]). The harmonic analysis
associated with the Weinstein operator is studied by Ben Nahia and Ben Salem
(see [3, 4]). In particular the authors have introduced and studied the generalized
Fourier transform associated with the Weinstein operator. This transform is called
the Weinstein transform.

In this paper, we prove a quantitative version of Shapiro’s mean dispersion theo-
rem for the continuous wavelet transform. Next, we establish the boundedness and
compactness properties of the localization operators and we study the scalograms
for the continuous wavelet transform.

This paper is arranged as follows. In section 2, we recall some harmonic analysis
results related to the Weinstein operator and we express wavelet transform associ-
ated with the Weinstein operator, which was introduced in [21]. In section 3, we
will show an analogue of Shapiro’s umbrella theorem for the continuous wavelet
transforms. In Section 4, we introduce the wavelet localization operators in the
setting of the Weinstein operator, more precisely some properties of the localiza-
tion wavelet operators are established. In the last section, we study the scalograms
associated with the Weinstein continuous wavelet transform.

2. Preliminaries

In order to set up basic and standard notation we briefly overview the Weinstein
operator and related harmonic analysis. Main references are [3, 4].

2.1. Harmonic analysis associated with the Weinstein transform. In the
following we denote by
• Rn+1

+ = Rn × [0,+∞[.

• x = (x1, ..., xn, xn+1) = (x′, xn+1) ∈ Rn+1
+ .

• −x = (−x′, xn+1)
• Ce(Rn+1), the space of continuous functions on Rn+1, even with respect to the
last variable.
• Se(Rn+1) the Schwartz space of rapidly decreasing functions on Rn+1, even with
respect to the last variable.
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• Lp(dνα), 1 6 p 6 +∞, the Lebesgue space constituted of measurable functions f
on Rn+1

+ such that

‖f‖να,p =

(∫
Rn+1

+

|f(x)|pdνα(x)

) 1
p

< +∞, 1 6 p < +∞,

‖f‖∞,p = ess sup
x∈Rn+1

+

|f(x)| < +∞.

• dνα is the measure defined on Rn+1
+ by

dνα(x) = x2α+1
n+1 dx = x2α+1

n+1 dx′dxn+1.

We consider the Weinstein operator ∆W defined on Rn+1
+ by

∆W =

n+1∑
j=1

∂2

∂x2
j

+
2α+ 1

xn+1

∂

∂xn+1
, α >

−1

2
.

Then
∆W = ∆n + `α,

where ∆n is the Laplacian operator in Rn and `α the Bessel operator with respect
to the variable xn+1 defined by

`α =
∂2

∂x2
n+1

+
2α+ 1

xn+1

∂

∂xn+1
.

The Weinstein kernel Λ is given by

∀(x, λ) ∈ Rn+1 × Cn+1, Λ(x, λ) = jα(λn+1xn+1)ei〈λ
′,x′〉,

where jα is the spherical Bessel function defined by

jα(z) = Γ(α+ 1)

+∞∑
k=0

(−1)k

k!Γ(α+ 1 + k)
(
z

2
)2k, z ∈ C.

The Weinstein kernel satisfies the following properties:
(i) For all z, t ∈ Cn+1, we have

Λ(z, t) = Λ(t, z), Λ(z, 0) = 1 and Λ(λz, t) = Λ(z, λt),∀λ ∈ C.
(ii)

∀x, y ∈ Rn+1, |Λ(x, y)| 6 1.

2.2. The Fourier-Weinstein transform.

Definition 2.1. The Weinstein transform is given for f ∈ L1(dνα) by

∀λ ∈ Rn+1
+ , FW (f)(λ) =

∫
Rn+1

+

f(x)Λ(−x, λ)dνα(x).

Some basic properties of this transform are as follows. For the proofs, we refer
[3, 4].
• For every f ∈ L1(dνα), the function FW (f) is continuous on Rn+1

+ and we have

‖FW (f)‖να,∞ 6 ‖f‖να,1.
• Let f ∈ L1(dνα) such that FW (f) ∈ L1(dνα), then for almost every x ∈ Rn+1

+

f(x) = Cα,n

∫
Rn+1

+

FW (f)(λ)Λ(λ, x)dνα(λ),
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where

Cα,n =
1

πn4α+n
2 (Γ(α+ 1))2

.

• For all f, g ∈ Se(Rn+1), we have∫
Rn+1

+

f(x)g(x)dνα(x) = Cα,n

∫
Rn+1

+

FW (f)(λ)FW (g)(λ)dνα(λ).

• The Weinstein transform FW (f) is a topological isomorphism from Se(Rn+1)
onto itself and for all f ∈ Se(Rn+1)∫

Rn+1
+

|f(x)|2dνα(x) = Cα,n

∫
Rn+1

+

|FW (f)(λ)|2dνα(λ).

2.3. The translation operator associated with the Weinstein operator.
The translation operator τx, x = (x′, xn+1) ∈ Rn+1

+ associated with the Weinstein
operator ∆W is defined for f ∈ Ce(Rn+1) which is even with respect to the last
variable and for all y = (y′, yn+1) ∈ Rn+1

+ by

τx(f)(y) =
Γ(α+ 1)
√
πΓ(α+ 1

2 )

∫ π

0

f(x′+y′,
√
x2
n+1 + y2

n+1 + 2xn+1yn+1 cos θ) sin2α(θ)dθ.

(2.1)
In particular for all x, y ∈ Rn+1

+ we have τx(f)(y) = τy(f)(x) and τ0(f) = f .
Moreover for all Lp(dνα), 1 6 p 6 +∞, the function x 7−→ τx(f) belongs to Lp(dνα)
and we have

‖τx(f)‖να,p 6 ‖f‖να,p.
For f ∈ Lp(dνα), p = 1 or 2

FW (τx(f))(λ) = Λ(λ, x)FW (f)(λ), x, λ ∈ Rn+1
+ .

By using the generalized translation, we define the generalized convolution product
f ∗W g of functions f, g ∈ L1(dνα) as follows

f ∗W g(x) =

∫
Rn+1

+

τ−x(f̌)(y)g(y)dνα(y), x ∈ Rn+1
+ , (2.2)

where −x = (−x′, xn+1) and f̌(y) = f̌(y′, yn+1) = f(−y′, yn+1).
This convolution is commutative and associative. Then (see e.g. [3]), if 1 6 p, q, r 6

+∞ are such
1

p
+

1

q
− 1

r
= 1, the function f ∗W g belongs to Lr(dνα) and we have

the following Young’s inequality

‖f ∗W g‖να,r 6 ‖f‖να,p‖g‖να,q.

This then allows us to define f ∗W g for f ∈ Lp(dνα) and g ∈ Lq(dνα). Moreover
for f ∈ L1(dνα) and g ∈ Lq(dνα), q = 1 or 2, we have

FW (f ∗W g) = FW (f)FW (g).

Moreover, if f and g are in L2(dνα), then f ∗W g belongs to Ce,0(Rn+1) consisting
of continuous functions h on Rn+1, even with respect to the last variable, such that

lim
|x|−→+∞

h(x) = 0 and we have

f ∗W g = F−1
W (FW (f)FW (g)).
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Thus, for every f, g ∈ L2(dνα), the function f ∗W g belongs to L2(dνα) if and only
if FW (f)FW (g) belongs to L2(dνα) and in this case, we have

FW (f ∗W g) = FW (f)FW (g).

2.4. Basic Weinstein Wavelet Theory. In this subsection, we recall some re-
sults introduced and proved by authors in [10].

Definition 2.2. A Weinstein wavelet on Rn+1
+ is a measurable function g on Rn+1

+

satisfying, for almost all λ ∈ Rn+1
+ , the condition

0 < Cg =

∫ +∞

0

∣∣FW (g)(aλ)
∣∣2 da
a
< +∞.

Let a > 0 and g be a measurable function. we consider the function ga defined
by

∀s ∈ Rn+1
+ , ga(s) =

1

a2α+n+2
g(
s

a
).

Proposition 2.3. For all g ∈ Lp(dνα), 1 6 p 6 +∞ and (a, x) ∈]0,+∞[×Rn+1
+ ,

the function ga belongs to Lp(dνα) and we have

‖ga‖να,p 6 a
(2α+n+2) 1−p

p ‖g‖να,p.

Definition 2.4. Let g be a Weinstein Wavelet on Rn+1
+ in L2(dνα). The Weinstein

continuous Wavelet transform on Rn+1
+ is defined for regular functions f ∈ Rn+1

+

by

SWg (f)(a, x) =

∫
Rn+1

+

f(y)ga,x(y)dνα(y),

where ga,x, a > 0 are the family of Weinstein Wavelets on Rn+1
+ in L2(dνα) given

by

∀y ∈ Rn+1
+ , ga,x(y) = aα+1+n

2 τ−x(ga)(y),

and τ−x are the Weinstein translation operators given by the relation (2.1).

The Weinstein continuous Wavelet transform can be also be written in the form

SWg (f)(a, x) = aα+1+n
2 f ∗ ǧa(x) == 〈f, ga,x〉να , (2.3)

where ∗ is the Weinstein convolution product given by (2.2) and 〈., .〉να is the usual
inner product in the Hilbert space L2(dνα).

Remark 2.5. Let g ∈ Lp(dνα) and p ∈ [1,+∞], we have

∀(a, x) ∈]0,+∞[×Rn+1
+ , ‖ga,x‖να,p 6 a

(2α+n+2)( 1
p−

1
2 )‖g‖να,p. (2.4)

Define the measure γα on ]0,+∞[×Rn+1
+ by

dγα(a, x) = a2α+n+3da⊗ dνα(x),

and Lp(dγα), p ∈ [1,+∞], the Lebesgue space on ]0,+∞[×Rn+1
+ with respect to

the measure γα with the Lp-norm denoted by ‖.‖γα,p.
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Theorem 2.6. (Orthogonality relation) Let g be a Weinstein Wavelet on Rn+1
+ in

L2(dνα). Then for every functions f1 and f2 in L2(dνα), we have

〈f1, f2〉να =
1

Cg
〈SWg (f1), SWg (f2)〉γα , (2.5)

where 〈., .〉γα is the usual inner product in the Hilbert space L2(dγα).

Corollary 2.7. Let g be a Weinstein Wavelet on Rn+1
+ in L2(dνα).

(i) Then the normalized Weinstein continuous wavelet transform 1√
Cg
SWg is an

isometry from L2(dνα) into a subspace of L2(dγα). In particular, we have the
following Plancherel formula∫

Rn+1
+

|f(x)|2dνα(x) =
1

Cg

∫ +∞

0

∫
Rn+1

+

|SWg (f)(a, x)|2dγα(a, x).

The adjoint of the wavelet transform is

(SWg )∗(h)(x) =
1

Cg

∫ +∞

0

∫
Rn+1

+

h(a, y)ga,y(x)dγα(a, y), x ∈ Rn+1
+ .

inverts the Weinstein continuous wavelet transform on its range.
(ii) For all f ∈ L1(dνα) ∩ L2(dνα) such that FW (f) ∈ L1(dνα), we have

f = (SWg )∗(SWg (f)). (2.6)

Proposition 2.8. Let g be a Weinstein Wavelet on Rn+1
+ in L2(dνα). Then,

SWg (L2(dνα)) is a reproducing kernel Hilbert space in L2(dγα) with kernel

Kg((a′, x′); (a, x)) =
1

Cg

∫
Rn+1

+

ga′,x′(y)ga,x(y)dνα(y) (2.7)

The kernel Kg is bounded and we have

∀(a, x), (a′, x′) ∈]0,+∞[×Rn+1
+ , |Kg((a′, x′); (a, x))| 6

‖g‖2να,2
Cg

.

Notation We denote by:
•Pg the orthogonal projection from L2(dγα) onto SWg (L2(dνα)).

•PΣF = χΣF, F ∈ L2(dγα), the orthogonal projection from L2(dγα) onto the
subspace of functions of L2(dγα) supported in a subset Σ ⊂]0,+∞[×Rn+1

+ satisfying

0 < γα(Σ) =

∫ ∫
Σ

dγα(a, y) <∞,

where χΣ is the characteristic function of Σ.
•`p(N), 1 6 p 6 ∞, the set of all infinite sequences of real (or complex) numbers
x = (xj)j∈N, such that

‖x‖pp =
∑+∞
j=1 |xj |p <∞, 1 6 p <∞.

‖x‖∞ = supj∈N |xj | <∞.
•B(Lp(dνα)), 1 6 p 6∞, the space of bounded operators from Lp(dνα) into itself.

Definition 2.9. (i) The singular values (sn(K))n∈N of a compact operator K in

B(Lp(dνα)) are the eigenvalues of the positive self-adjoint operator |K| =
√
K ∗K.
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(ii) For 1 6 p 6 ∞, the Schatten class Sp is the space of all compact operators
whose singular values lie in `p(N). The space Sp is equipped with the norm

‖K‖Sp =

(
+∞∑
k=1

|sk|p
) 1
p

.

We note that the space S2 is the space of Hilbert-Schmidt operators, and S1 is
the space of trace class operators.
The trace of an operator K in S1 is defined by

Tr(K) =

+∞∑
n=1

〈Kvn, vn〉να (2.8)

where (vn)n is any orthonormal basis of L2(dνα).
If K is positive, then

‖K‖S1 = Tr(K). (2.9)

Moreover, a compact operator K on the Hilbert space L2(dνα) is Hilbert-Schmidt,
then the positive operator K∗K is in the space of trace class and

‖K‖2HS = ‖K∗K‖S1
= Tr(K∗K) =

+∞∑
n=1

‖Kvn‖2να,2,

for any orthonormal basis (vn)n of L2(dνα).
We define S∞ = B(L2(dνα)), equipped with the norm

‖K‖S∞ = sup
g∈L2(dνα); ‖g‖να,2=1

‖Kg‖να,2.

3. Mean dispersion theorem for the SWg

In this section, we express an uncertainty principle by means of the generalized
time-phase dispersion of SWg . For this, let p be a positive real number, g be a Wein-

stein wavelet and f ∈ L2(dνα), we define the generalized pth-time-phase dispersion
of SWg (f) by

%p(S
W
g (f)) =

(∫ +∞

0

∫
Rn+1

+

|( 1

a
, x)|p|SWg (f)(a, x)|2dγα(a, x)

) 1
p

.

Theorem 3.1. [20] Let g be a Weinstein wavelet and let Σ be a subset of ]0,+∞[×Rn+1
+

such that 0 < γα(Σ) < +∞.
(i) If ‖PΣPg‖ < 1, then for every f in L2(dνα), we have√

Cg‖f‖να,2 6
1√

1− ‖PΣPg‖2
‖χcΣSWg (f)‖γα,2.

(ii) PΣPg is a Hilbert-Schmidt operator and we have

‖PΣPg‖2 6
γα(Σ)

Cg
‖g‖2να,2.
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Remark 3.2. The orthogonal projector Pg : L2(dγα) −→ SWg (L2(dνα)) is given by

SWg (SWg )∗. Explicitly, it is an integral operator

PgF (a, y) =

∫ +∞

0

∫
Rn+1

+

F (a′, y′)Kg((a, y); (a′, y′))dγα(a′, y′), (a, y) ∈]0,+∞[×Rn+1
+ .

(3.1)
Clearly, the kernel is hermitian symmetric

Kg((a′, y′); (a, y)) = Kg((a, y); (a′, y′)), (3.2)

and has the reproducing property

F (a, y) = 〈F,Kg((., .); (a, y))〉γα , F ∈ SWg (L2(dνα)).

Theorem 3.3. Let g be a Weinstein wavelet, (φβ)β∈Nn+1 be an orthonormal se-

quence in L2(dνα) and Σ be a measurable subset of ]0,+∞[×Rn+1
+ such that 0 <

γα(Σ) < +∞. Then for every non-empty subset K ⊂ Nn+1, we have∑
β∈K

(1− ‖χΣcS
W
g (φβ)‖γα,2) 6

γα(Σ)

Cg
‖g‖2να,2.

Proof. Let (eβ)β∈Nn+1 be an orthonormal basis of L2(dγα), since PΣPg is a Hilbert-

Schmidt operator satisfying ‖PΣPg‖2HS 6
γα(Σ)
Cg
‖g‖2να,2, we deduce that the positive

operator PgPΣPg satisfies∑
β∈Nn+1

〈PgPΣPgeβ , eβ〉γα =
∑

β∈Nn+1

‖PΣPgeβ‖2γα,2 = ‖PΣPg‖2HS < +∞,

which means according to Gohberg et al. [15, p. 63], that PgPΣPg is a trace class
operator with

Tr(PgPΣPg) = ‖PΣPg‖2HS 6
γα(Σ)

Cg
‖g‖2να,2.

Actually since (φβ)β∈K is an orthonormal sequence in L2(dνα)), then by (2.5) we
deduce that (SWg (φβ))β∈K is an orthonormal sequence in L2(dγα) and therefore
again by Gohberg et al. [15, p. 63], we get that∑

β∈K

〈PΣS
W
g (φβ), SWg (φβ)〉γα =

∑
β∈K

〈PgPΣPgS
W
g (φβ), SWg (φβ)〉γα

6 Tr(PgPΣPg), (3.3)

and by combining (5.5) and (3.3), we obtain∑
β∈K

〈PΣS
W
g (φβ), SWg (φβ)〉γα 6

γα(Σ)

Cg
‖g‖2να,2. (3.4)

Now, by Cauchy-Schwarz inequality, we have for every β ∈ K

〈PΣS
W
g (φβ), SWg (φβ)〉γα = 1− 〈PΣcS

W
g (φβ), SWg (φβ)〉γα

> 1− ‖χΣcS
W
g (φβ)‖γα,2,

and (3.4) completes the proof of the theorem. �
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Definition 3.4. Let 0 < η < 1 and Σ be a measurable subset of ]0,+∞[×Rn+1
+ .

Let g be a Weinstein wavelet and f ∈ L2(dνα) be a nonzero function. We say that
SWg is η-time- frequency concentrated in Σ, if

‖χΣcS
W
g (f)‖γα,2 6 η‖SWg (f)‖γα,2.

Proposition 3.5. Let η and ρ be positive real numbers such that η < 1√
Cg

, Bρ =

{(a, x) ∈]0,+∞[×Rn+1
+ , 1

a2 + |x|2 6 ρ2} and let g be a Weinstein wavelet. Let

Ω ⊂ Nn+1 be a non-empty subset and (φβ)β∈Nn+1 be an orthonormal sequence in

L2(dνα). If SWg (φβ) is η-time-frequency concentrated in the set Bρ, then Ω is finite
and

Card(Ω) 6
‖g‖2να,2

Cg(1− η
√
Cg)

π
n
2 Γ(α+ 1)Γ( 2α+n+4

2 )

4Γ(2α+ n+ 4)
ρ4α+2n+6.

Proof. According to Theorem 3.3, we have∑
β∈K

(1− ‖χBcρS
W
g (φβ)‖γα,2) 6

γα(Bρ)

Cg
‖g‖2να,2. (3.5)

However for every β ∈ Ω, ‖χBcρS
W
g (φβ)‖γα,2 6 η

√
Cg and

γα(Bρ) =
π
n
2 Γ(α+ 1)Γ( 2α+n+4

2 )

4Γ(2α+ n+ 4)
ρ4α+2n+6. (3.6)

By combining (3.5) and (3.6), we obtain

Card(Ω) 6
‖g‖2να,2

Cg(1− η
√
Cg)

π
n
2 Γ(α+ 1)Γ( 2α+n+4

2 )

4Γ(2α+ n+ 4)
ρ4α+2n+6,

which means that Ω is finite. �

Corollary 3.6. Let A and p be positive real numbers and g be a Weinstein wavelet.
Let Ω ⊂ Nn+1 be a non-empty subset and (φβ)β∈Nn+1 be an orthonormal sequence

in L2(dνα). If the sequence (%p(S
W
g (φβ))β∈K is uniformly bounded by A, then Ω is

finite and

Card(Ω) 6
‖g‖2να,2
Cg

π
n
2 2

2
p (4α+2n+6)Γ(α+ 1)Γ( 2α+n+4

2 )

2Γ(2α+ n+ 4)
A4α+2n+6.

Proof. Assume that %p(S
W
g (φβ) 6 A, then for every β ∈ Ω we have

‖χBc
A2

2
p

SWg (φβ)‖2γα,2 6
∫ ∫

|( 1
a ,x)|>A2

2
p

|( 1

a
, x)|−p|( 1

a
, x)|p|SWg (φβ)(a, x)|2dγα(a, x)

6
(%p(S

W
g (φβ)))p

4Ap
6

1

4
.

This means that for every β ∈ Ω, SWg (φβ) is 1

2
√
Cg

-concentrated in the set B
A2

2
p

and by Proposition 3.5, we deduce that Ω is finite and

Card(Ω) 6
‖g‖2να,2
Cg

π
n
2 2

2
p (4α+2n+6)Γ(α+ 1)Γ( 2α+n+4

2 )

2Γ(2α+ n+ 4)
A4α+2n+6.

�
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Lemma 3.7. Let p be a positive real number and g be a Weinstein wavelet. If
(φβ)β∈Nn+1 is an orthonormal sequence in L2(dνα), then there exists j0 ∈ Z such
that

∀β ∈ Nn+1, %p(S
W
g (φβ) > 2j0 .

Proof. For every j ∈ Z, let

Pj = {β ∈ Nn+1; %p(S
W
g (φβ) ∈ [2j−1, 2j [},

then for every β ∈ Pj , we have∫ +∞

0

∫
Rn+1

+

|( 1

a
, x)|p|SWg (φβ)(a, x)|2dγα(a, x) 6 2jp,

hence∫ ∫
|( 1
a ,x)|>2

j+ 2
p

|( 1

a
, x)|p|SWg (φβ)(a, x)|2dγα(a, x) 6

(%p(S
W
g (φβ)))p

2pj4
6

1

4
.

By the last inequality, we deduce that for every β ∈ Pj , SWg (φβ) is 1

2
√
Cg

-concentrated

in the ball B
2
j+ 2

p
, since the sequence (φβ)β∈Pj satisfies the conditions of Corollary

3.6, which shows that Pj is finite and

Card(Pj) 6
‖g‖2να,2
Cg

π
n
2 2

2
p (4α+2n+6)Γ(α+ 1)Γ( 2α+n+4

2 )

2Γ(2α+ n+ 4)
2j(4α+2n+6), (3.7)

in particular limj−→−∞ Card(Pj) = 0. �

Theorem 3.8. (Shapiro’s dispersion theorem for SWg ) Let g be a Weinstein wavelet

and (φβ)β∈Nn+1 be an orthonormal sequence in L2(dνα). Then, for every positive
real number p and for every non-empty subset Ω ⊂ Nn+1, we have

∑
β∈Ω

%pp(S
W
g (φβ)) > (Card(Ω))1+ p

4α+2n+6
1

2p+1

(
2Cg

Cα,p,n‖g‖2να,2

) p
4α+2n+6

.

Proof. For k ∈ Z, k > j0, we denote by Qk = ∪kj=j0Pj then according to (3.7), we
have

Card(Qk) =

k∑
j=j0

Card(Pj)

6
‖g‖2να,2
Cg

π
n
2 2

2
p (4α+2n+6)Γ(α+ 1)Γ( 2α+n+4

2 )

(24α+2n+7 − 2)Γ(2α+ n+ 4)
2(k+1)(4α+2n+6)

=
Cα,p,n‖g‖2να,2

2Cg
2(k+1)(4α+2n+6).

Now, if Card(Ω) >
Cα,p,n‖g‖2να,2

2Cg
2j0(4α+2n+6) then we can choose an integer k > j0

such that

Cα,p,n‖g‖2να,2
2Cg

2(k−1)(4α+2n+6) < Card(Ω) 6
Cα,p,n‖g‖2να,2

2Cg
2k(4α+2n+6), (3.8)
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so that Card(Qk−1) <
Card(Ω)

2
, hence by (3.8), we obtain∑

β∈Ω

(%p(S
W
g (φβ)))p >

∑
β∈Qk−1

(%p(S
W
g (φβ)))p

>
Card(Ω)∑
j=k

∑
β∈Pj

(%p(S
W
g (φβ)))p

>
Card(Ω)

2
2(k−1)p

> (Card(Ω))1+ p
4α+2n+6

1

2p+1

(
2Cg

Cα,p,n‖g‖2να,2

) p
4α+2n+6

.

Finally, if Card(Ω) 6
Cα,p,n‖g‖2να,2

2Cg
2j0(4α+2n+6), then∑

β∈Ω

(%p(S
W
g (φβ)))p > Card(Ω)2j0p

> (Card(Ω))1+ p
4α+2n+6

(
2Cg

Cα,p,n‖g‖2να,2

) p
4α+2n+6

.

�

Theorem 3.9. (Shapiro’s umbrella theorem for SWg ) Let g be a Weinstein wavelet,

(φβ)β∈K be an orthonormal sequence in L2(dνα) and K ⊂ Nn+1 be a non-empty
subset. If there is a function g ∈ L2(dγα) such that

SWg (φβ)(a, x)| 6 g(a, x),

for every β ∈ K, then K is finite.

Proof. Using analogous proof as for Theorem 3.3 of [17] page 11, we obtain the
result. �

4. Time-frequency localization operators and their properties

Definition 4.1. Let g be a Weinstein wavelet on Rn+1
+ in L2(dνα) and σ be a

bounded nonnegative function on ]0,+∞[×Rn+1
+ . The time-frequency localization

operator Lg(σ) with Weinstein wavelet g and symbol σ is formally defined as

Lg(σ)(f) =
1

Cg

∫ +∞

0

∫
Rn+1

+

σ(a, y)SWg (f)(a, y)ga,ydγα(a, y)

= (SWg )∗σSWg (f), f ∈ L2(dνα). (4.1)

We note that if σ = 1, then by the inversion formula (2.6), we have Lg(σ)(f) = f .
If σ is compactly supported on Σ, then Lg(σ)(f) is interpreted as the part of f that
lies essentially in Σ.
It is usually more convenient to use the alternative weak definition of Lg(σ) given
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by

〈Lg(σ)(f), h〉να

=
1

Cg

∫ +∞

0

∫
Rn+1

+

σ(a, y)SWg (f)(a, y)SWg (h)(a, y)dγα(a, y), f, h ∈ L2(dνα). (4.2)

In this section, we shall keep our focus on localization operators Lg(σ) with symbol

σ = χΣ, where g is a Weinstein wavelet on Rn+1
+ in L2(dνα) and Σ is subset of

]0,+∞[×Rn+1
+ with finite measure γα(Σ) <∞.

Theorem 4.2. Let g be a Weinstein wavelet on Rn+1
+ in L2(dνα) such that ‖g‖να,2 =

1 and Σ is subset of ]0,+∞[×Rn+1
+ . Then

(i) the localization Lg(Σ) is in S∞ and we have

‖Lg(Σ)‖S∞ 6
1√
Cg
. (4.3)

(ii) the localization Lg(Σ) is a compact operator and even trace class with

Tr(Lg(Σ)) = Λα(g,Σ),

where

Λα(g,Σ) =
1

Cg

∫ ∫
Σ

‖ga,y‖2να,2dγα(a, y). (4.4)

Proof. (i) Let g be a Weinstein wavelet on Rn+1
+ in L2(dνα). From Corollary 2.7

we get for f ∈ L2(dνα)

‖Lg(Σ)(f)‖να,2 = ‖(SWg )∗(χΣS
W
g (f))‖να,2

6
1

Cg
‖χΣS

W
g (f)‖γα,2

6
1

Cg
‖SWg (f))‖γα,2

6
1√
Cg
‖f‖να,2.

so, Lg(Σ) ∈ B(Lp(dνα)) and ‖Lg(Σ)‖S∞ 6 1√
Cg

.

(ii) We now show that Lg(Σ) is a compact operator. Let (fk)k∈N be a sequence in
L2(dνα) such that fk −→ 0 weakly in L2(dνα) as k −→ ∞. It is enough to prove
that

lim
k−→+∞

‖Lg(Σ)(fk)‖να,2 = 0.

We have

‖Lg(Σ)(fk)‖2να,2 6
1

C2
g

∫
Rn+1

+

∫ ∫
Σ

|SWg (fk)(a, y)ga,y(x)|2dγα(a, y)dνα(x)

6
1

C2
g

∫
Rn+1

+

∫ ∫
Σ

|〈fk, ga,y〉να |2|ga,y(x)|2dγα(a, y)dνα(x).

Using the fact that fk −→ 0 weakly in L2(dνα), we deduce that

∀a > 0,∀(x, y) ∈ (Rn+1
+ )2, lim

k−→+∞
|〈fk, ga,y〉να |2|ga,y(x)|2 = 0.
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On the other hand as fk −→ 0 weakly in L2(dνα) as k −→ +∞, then there exists
a positive constant A such that ‖fk‖να,2 6 A. So, ∀a > 0,∀(x, y) ∈ (Rn+1

+ )2

|〈fk, ga,y〉να |2 6 ‖fk‖2να,2‖ga,y‖
2
να,2.

Moreover, by Fubini’s theorem and (2.4), we have

‖Lg(Σ)(fk)‖2να,2 6
A2γ(Σ)

C2
g

‖g‖4να,2 =
A2γ(Σ)

C2
g

.

By the dominated Convergence Theorem, limk−→+∞ ‖Lg(Σ)(fk)‖να,2 = 0 and
therefore Lg(Σ) is compact.
To show that Lg(Σ) is trace class, we let {uk}+∞k=1 be an arbitrary orthonormal basis
of L2(dνα), and we calculate

+∞∑
k=1

∣∣∣〈Lg(Σ)(uk), uk〉να
∣∣∣ =

+∞∑
k=1

∣∣∣〈(SWg )∗(χΣS
W
g (uk)), uk〉να

∣∣∣
=

1

Cg

+∞∑
k=1

∣∣∣〈χΣS
W
g (uk)), SWg (uk)〉γα

∣∣∣
=

1

Cg

+∞∑
k=1

∫ ∫
Σ

∣∣∣SWg (uk)(a, y)
∣∣∣2dγα(a, y).

Using Fubini’s theorem and (2.3), we get

+∞∑
k=1

∣∣∣〈Lg(Σ)(uk), uk〉να
∣∣∣ =

1

Cg

∫ ∫
Σ

+∞∑
k=1

∣∣∣〈uk, ga,y〉να∣∣∣2dγα(a, y)

=
1

Cg

∫ ∫
Σ

‖ga,y‖2να,2dγα(a, y)

= Λα(g,Σ).

Therefore Lg(Σ) is trace class with

‖Lg(Σ)‖S1
= Tr(Lg(Σ)) = Λα(g,Σ).

�

Proposition 4.3. Let g and g′ be a Weinstein wavelet on Rn+1
+ in L2(dνα) and Σ

is subset of ]0,+∞[×Rn+1
+ . Then for every f ∈ L2(dνα)

|〈(Lg(Σ)− Lg′(Σ))(f), f〉να | 6 (
1√
Cg−g′

+

√
Cg′

Cg−g′
+

√
Cg−g′

Cg′
)‖f‖2να,2.
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Proof. From the boundedness of the time-frequency localization operators in L2(dνα),
we get

|〈(Lg(Σ)− Lg′(Σ))(f), f〉να |
=
∣∣〈((SWg )∗(χΣS

W
g )− (SWg′ )∗(χΣS

W
g′ ))(f), f〉να

∣∣
=
∣∣〈((SWg−g′)∗(χΣS

W
g−g′) + (SWg−g′)

∗(χΣS
W
g′ )) + (SWg′ )∗(χΣS

W
g−g′))(f), f〉να

∣∣
6
∣∣〈((SWg−g′)∗(χΣS

W
g−g′)(f), f〉να

∣∣+
∣∣〈(SWg−g′)∗(χΣS

W
g′ ))(f), f〉να

∣∣
+
∣∣〈(SWg′ )∗(χΣS

W
g−g′))(f), f〉να

∣∣
6 ‖Lg−g′(Σ)(f)‖να,2‖f‖να,2 + ‖(SWg−g′)∗(χΣS

W
g′ ))(f)‖να,2‖f‖να,2

+ ‖(SWg′ )∗(χΣS
W
g−g′))(f)‖να,2‖f‖να,2

6 (
1√
Cg−g′

+

√
Cg′

Cg−g′
+

√
Cg−g′

Cg′
)‖f‖2να,2.

�

5. Weinstein wavelet Scalograms

The main aim of this section is to generalize the results proved by Ghobber in
[13], in the context of Weinstein wavelet.

5.1. Calderón-Toeplitz Operator.

Definition 5.1. Let g be a Weinstein wavelet on Rn+1
+ in L2(dνα). We define the

Weinstein wavelet scalogram of as

φWg (f)(a, s) = |SWg (f)(a, s)|2, (a, s) ∈]0,+∞[×Rn+1
+ .

From the Plancherel formula of SWg , we have∫ +∞

0

∫
Rn+1

+

φWg (f)(a, s)dγα(a, s) = Cg‖f‖2να,2. (5.1)

Definition 5.2. We define the Calderón-Toeplitz operator

Tg,Σ : SWg (L2(dνα)) −→ SWg (L2(dνα))

by
Tg,ΣF = PgPΣF. (5.2)

Proposition 5.3. The operator Tg,Σ is trace-class and satisfies

0 6 Tg,Σ 6 PΣ 6 I, (5.3)

and
Tg,Σ = SWg Lg(Σ)(SWg )∗. (5.4)

Proof. For every F ∈ SWg (L2(dνα)), we have

〈Tg,ΣF, F 〉γα = 〈PgPΣF, F 〉γα = 〈PΣF, F 〉γα

=

∫ ∫
Σ

|F (a, y)|2dγα(a, y).

This gives (5.3), and in particular shows that Tg,Σ is bounded and positive.
Now, we want to prove (5.4). By (4.1), we have

Lg(Σ)(f) = (SWg )∗χΣS
W
g (f) = (SWg )∗PΣS

W
g (f), f ∈ L2(dνα).
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Therefore

(SWg Lg(Σ)(SWg )∗)F = PgPΣF = Tg,ΣF, F ∈ SWg (L2(dνα)).

Then, the time-frequency operator Lg(Σ) and the Calderón-Toeplitz operator Tg,Σ
are related by

SWg Lg(Σ)(SWg )∗ = Tg,Σ.

�

Let Mg,Σ : L2(dγα) −→ L2(dγα) be the inflated operator defined by

Mg,Σ = PgPΣPg.

The advantage of Mg,Σ compared to Tg,Σ is that it is defined on L2(dγα) and
consequently its spectral properties can be easily related to its integral kernel.

Lemma 5.4. The trace of Mg,Σ is given by

Tr(Mg,Σ) = Tr(Tg,Σ) = Λα(g,Σ),

where Λα(g,Σ) is given by relation (4.4).

Proof. Since Tg,Σ is positive and trace class, then using the decomposition L2(dγα) =

SWg (L2(dνα)) + (SWg (L2(dνα)))⊥, we deduce that Mg,Σ is also positive and trace
class with

Tr(Mg,Σ) = Tr(Tg,Σ).

Now, let {φk}+∞k=1 be an arbitrary orthonormal basis for SWg (L2(dνα)). Then if we

denote by ψk = (SWg (φk))∗, then {ψk}+∞k=1 is an orthonormal basis for L2(dνα).
Thus by (4.2) and Fubini’s theorem

+∞∑
k=1

〈Tg,Σ(φk), φk〉γα =

+∞∑
k=1

〈Lg(Σ)(SWg )∗(φk), (SWg )∗(φk)〉να

=

+∞∑
k=1

∫ ∫
Σ

∣∣∣SWg (ψk)(a, y)
∣∣∣2dγα(a, y)

=

∫ ∫
Σ

+∞∑
k=1

∣∣∣〈ψk, ga,y〉να ∣∣∣2dγα(a, y)

=

∫ ∫
Σ

‖ga,y‖2να,2dγα(a, y)

= Λα(g,Σ).

Therefore, by (2.8) and (2.9), the operator Tg,Σ is trace class with

Tr(Tg,Σ) = Λα(g,Σ).

�

Proposition 5.5. The trace of T 2
g,Σ is given by

Tr(T 2
g,Σ) =

∫ ∫
Σ

∫ ∫
Σ

∣∣∣Kg(a, y; a1, y1)
∣∣∣2dγα(a, y)dγα(a1, y1).
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Proof. Since Mg,Σ is positive, then

Tr(T 2
g,Σ) = Tr(M2

g,Σ).

Using (3.1) and (5.2), we get

Mg,ΣF (a, y) = Tg,Σ(PgF )(a, y) = 〈F,Hg((a, y); (., .))〉γα ,
with

Hg((a, y); (u, v))

=

∫ +∞

0

∫
Rn+1

+

χΣ(a′, y′)Kg((a′, y′); (u, v))Kg((a, y); (a′, y′))dγα(a′, y′).

This means that Mg,Σ has integral kernel Hg((a, y); (u, v)), and therefore

M2
g,ΣF (a, y) =

∫ +∞

0

∫
Rn+1

+

F (a′, y′)Hg((a, y); (a′, y′))dγα(a′, y′),

where

Hg((a, y); (a′, y′)) =

∫ +∞

0

∫
Rn+1

+

Hg((a, y); (u, v))Hg((u, v); (a′, y′))dγα(u, v)

Then

Tr(M2
g,Σ)

=

∫ +∞

0

∫
Rn+1

+

Hg((a, y); (a, y))dγα(a, y)

=

∫ +∞

0

∫
Rn+1

+

∫ +∞

0

∫
Rn+1

+

Hg((a, y); (u, v))Hg((u, v); (a, y))dγα(a, y)dγα(u, v)

=

∫ +∞

0

∫
Rn+1

+

∫ +∞

0

∫
Rn+1

+

χΣ(x1, y1)χΣ(x2, y2)N ((x1, y1); (x2, y2))dγα(x1, y1)dγα(x2, y2),

where

N ((x1, y1); (x2, y2)) =

∫ +∞

0

∫
Rn+1

+

∫ +∞

0

∫
Rn+1

+

Kg((x2, y2); (a, y))Kg((a, y); (x1, y1))

×Kg((x1, y1); (u, v))Kg((u, v); (x2, y2))dγα(a, y)dγα(u, v).

On the other hand by (2.5), (2.7) and (3.2), we obtain∫ +∞

0

∫
Rn+1

+

Kg((x2, y2); (a, y))Kg((a, y); (x1, y1))dγα(a, y)

=
1

C2
g

∫ +∞

0

∫
Rn+1

+

SWg (gx2,y2)(a, y)SWg (gx1,y1)(a, y)dγα(a, y)

=
1

Cg

∫
Rn+1

+

gx2,y2(t)gx1,y1(t)dνα(t)

= Kg((x2, y2); (x1, y1)).

By the same way, we have∫ +∞

0

∫
Rn+1

+

Kg((x1, y1); (u, v))Kg((u, v); (x2, y2))dγα(u, v) = Kg((x1, y1); (x2, y2)).
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Therefore

Tr(M2
g,Σ)

=

∫ ∫
Σ

∫ ∫
Σ

Kg((x2, y2); (x1, y1))Kg((x1, y1); (x2, y2))dγα(x1, y1)dγα(x2, y2)

=

∫ ∫
Σ

∫ ∫
Σ

|Kg((x2, y2); (x1, y1))|2dγα(x1, y1)dγα(x2, y2).

�

5.2. Eigenvalues and Eigenfunctions. Since the localization operator Lg(Σ) =

(SWg )∗χΣS
W
g that we consider is a compact and self-adjoint operator, the spectral

theorem gives the following spectral representation

Lg(Σ)(f) =

+∞∑
k=1

uk〈f, vk〉ναvk, f ∈ L2(dνα), (5.5)

where {uk}∞k=1 are the positive eigenvalues arranged in a nonincreasing manner and
{vk}∞k=1 is the corresponding orthonormal set of eigenfunctions. Note that uk ↘ 0
and by (4.3), we have for all k > 1

0 6 uk 6 u1 6 1.

We denote by C(Σ, ε, g) the set of functions in L2(dνα) that are (ε, g)-concentrated
in a subset Σ

C(Σ, ε, g) = {f ∈ L2(dνα), 〈Lg(Σ)(f), f〉να > (1− ε)‖f‖2να,2}.
Moreover, since

〈Lg(Σ)(f), f〉να =

+∞∑
k=1

uk|〈f, vk〉να |2 =
1

Cg

∫ ∫
Σ

|SWg (f)(a, y)|2dγα(a, y),

then the operator Lg(Σ) is useful in studying the following optimization problem:

Maximize
1

Cg

∫ ∫
Σ

|SWg (f)(a, y)|2dγα(a, y), ‖f‖να,2 = 1,

which aims to look for functions in C(Σ, ε, g) that are well concentrated in Σ. It
follows that the first eigenfunction v1 satisfies

u1 = 〈Lg(Σ)(v1), v1〉να = max {〈Lg(Σ)(f), f〉να , ‖f‖να,2 = 1.}
Now, if vk is an eigenfunction of Lg(Σ) with eigenvalue uk > 1 − ε, then from
the spectral representation 〈Lg(Σ)(vk), vk〉να = uk > 1 − ε. Hence, by (5.5) the
eigenfunction vk is in C(Σ, ε, g). Moreover, the min- max lemma for self-adjoint
operators states that (see e.g.[22, Section 95]),

uk = max {〈Lg(Σ)(f), f〉να , ‖f‖να,2 = 1, f ⊥ v1, ..., vk−1} .
So that the eigenvalues of Lg(Σ) determine the number of orthogonal functions that
are in C(Σ, ε, g). Let VN be the span of the first N eigenfunctions of Lg(Σ) corre-
sponding to the N largest eigenvalues {uk}Nk=1, then for all f ∈ Vn = span{vk}Nk=1

〈Lg(Σ)(f), f〉να =

+∞∑
k=1

uk|〈f, vk〉να |2 > uN
+∞∑
k=1

|〈f, vk〉να |2 = uN‖f‖2να,2.
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This implies that a function f in VN is in C(Σ, 1− uN , g).

5.3. Scalogram of a subspace. Given an N-dimensional subspace V of L2(dνα),
PV the orthogonal projection onto V with projection kernel κV , i.e.

PV f(.) =

∫
Rn+1

+

κV (.; y)f(y)dνα(y).

Recall that if {ek}Nk=1 is an orthonormal basis of V , then

κV (s; y) =

N∑
k=1

ek(s)ek(y).

The kernel κV is independent of the choice of orthonormal basis for V .

Definition 5.6. The scalogram of the space V with Weinstein wavelet g is defined

SCALgV (a, y) =

∫
Rn+1

+

∫
Rn+1

+

κV (r;x)ga,y(x)ga,y(r)dνα(r)dνα(x).

Lemma 5.7. The scalogram SCALgV is given by

SCALgV =

N∑
k=1

φWg (ek).

Proof. We have

SCALgV (a, y) =

∫
Rn+1

+

∫
Rn+1

+

N∑
k=1

ek(r)ga,y(x)ga,y(r)ek(x)dνα(r)dνα(x)

=

N∑
k=1

〈ek, ga,y〉να〈ek, ga,y〉να

=

N∑
k=1

SWg (ek)(a, y)SWg (ek)(a, y)

=

N∑
k=1

|SWg (ek)(a, y)|2.

And relation (5.1) complete the proof. �

Definition 5.8. We define the time-frequency concentration of a subspace VN in
Σ as

ξΣ,g(VN ) =
1

N

N∑
k=1

∫ ∫
Σ

φWg (vk)(a, y)dγα(a, y).

If the {vk}+∞k=1 are eigenfunctions of the localization operator Lg(Σ) then

ξΣ,g(VN ) =
1

N

N∑
k=1

uk.

We can see that uN 6 ξΣ,g(VN ) 6 u1 6 1. The min-max characterization of the
eigenvalues of compact operators implies that any N-dimensional subset cannot be
better concentrated in Σ, i.e. if V ′N is any N-dimensional subspace of L2(dνα), then

ξΣ,g(V
′
N ) 6 ξΣ,g(VN ).
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5.4. Accumulated Scalogram. Denote by dΛα(g,Σ)e the smallest integer greater
than or equal to Λα(g,Σ). In [2] the authors showed that the corresponding spectro-
grams of the first dΛα(g,Σ)e eigenfunctions of Lg(Σ) approximately form a partition
of unity on Σ.
Define the accumulated scalogram of Σ with respect to g as the scalogram of the

subspace VdΛα(g,Σ)e = span{vk}dΛα(g,Σ)e
k=1 , where vk, k = 1, ..., dΛα(g,Σ)e are the

eigenfunctions of Lg(Σ), i.e. SCALgVdΛα(g,Σ)e.
Then

SCALgVdΛα(g,Σ)e(a, y) =

dΛα(g,Σ)e∑
k=1

|SWg (vk)(a, y)|2.

Note that

‖SCALgVdΛα(g,Σ)e‖γα,1 = CgdΛα(g,Σ)e = CgΛα(g,Σ) +O(1).

Moreover, since
dΛα(g,Σ)e∑

k=1

uk 6 Tr(Lg(Σ)) = Λα(g,Σ),

then we can define the inequality

E(g,Σ) = 1−
∑dΛα(g,Σ)e
k=1 uk

Λα(g,Σ)
,

which satisfies

0 6 E(g,Σ) 6 1.

More precisely, we have the following result

Lemma 5.9. Let 0 < ε < 1. We have

0 6 E(g,Σ) 6 1− (1− ε) min(1,
k(ε,Σ)

Λα(g,Σ)
),

where k(ε,Σ) = card{k, uk > 1− ε}.

Proof. Let 0 < ε < 1, it follows that

uk > 1− ε, 1 6 k 6 min(k(ε,Σ), dΛα(g,Σ)e).

As dΛα(g,Σ)e > min(k(ε,Σ), dΛα(g,Σ)e), we get

dΛα(g,Σ)e∑
k=1

uk >
min(k(ε,Σ),dΛα(g,Σ)e)∑

k=1

uk > (1− ε) min(k(ε,Σ), dΛα(g,Σ)e).

Therefore

0 6 E(g,Σ) 6 1− (1− ε)min(k(ε,Σ), dΛα(g,Σ)e)
Λα(g,Σ)

.

As dΛα(g,Σ)e > Λα(g,Σ), we obtain the desired result. �

Acknowledgments. The authors gratefully acknowledge the approval and the
support of this research study by the grant number SCI-2018-3-9-F-7841 from the
Deanship of Scientific Research at the Northern Border University, Arar, KSA.



70 K. HLEILI

References

[1] L. D Abreu and M. Dörfler, An inverse problem for localization operators, Inverse Problems,
28 115001 (2012) 1–16.

[2] L.D. Abreu, K. Gröchenig and J.L. Romero, On accumulated spectrograms, Trans. Am. Math.

Soc. 368 (2016) 3629–3649.
[3] Z. Ben Nahia and N. Ben Salem, Spherical harmonics and applications associated with the

Weinstein operator, In: Potential Theory- Proceedings of the ICPT f 94 (1994) 223–241.

[4] Z. Ben Nahia and N. Ben Salem, On a mean value property associated with the Weinstein
operator, In: Potential Theory - Proceedings of the ICPT 94 (1994) 243–253.

[5] M. Brelot, Equation de Weinstein et potentiels de Marcel Riesz, In: Hirsch F, Mokobodzki
G, editors. Seminaire de Thorie du Potentiel, No. 3 (Paris, 1976/1977). Lecture Notes in

Mathematics, Vol. 681. Berlin: Springer; (1978) 18–38.
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