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COMMON FIXED POINT FOR GENERALIZED CONTRACTION

IN B-MULTIPLICATIVE METRIC SPACES WITH

APPLICATIONS

ABDULLAH SHOAIB

Abstract. The desired outcome of this paper is to extend the result of Al-

Mazrooei et al. (Journal of Mathematical Analysis, 8(3):157-166, 2017) by

applying new contractive condition only on a closed set instead of a whole set
and by using b-multiplicative metric spaces instead of multiplicative metric

spaces. We apply our result to obtain unique common solution of Fredholm

multiplicative integral equations. An example and a result on F -contraction
are also presented. Our results generate many new results in b-multiplicative

metric spaces and b-metric spaces.

1. Introduction and Preliminaries

Bakhtin [7] was the first who had given the idea of b-metric. After that, Czer-
wik [9] gave an axiom and formally defined a b-metric space. For further results
on b-metric space, see [17, 27]. Ozaksar and Cevical [16] investigated multiplica-
tive metric space and proved its topological properties. Mongkolkeha et al. [15]
described the concept of multiplicative proximal contraction mapping and proved
best proximity point theorems for such mappings. Recently, Abbas et al. [1] proved
some common fixed points results of quasi weak commutative mappings on a closed
ball in the setting of multiplicative metric spaces. For further results on multiplica-
tive metric space, see [2, 4, 10, 11, 14]. In 2017, Ali et al. [5] introduced the notion of
b-multiplicative and proved some fixed point result. As an application, they estab-
lished an existence theorem for the solution of a system of Fredholm multiplicative
integral equations. Shoaib et al. [27] discussed some results for mappings satisfying
contraction condition only on a closed ball in b-metric spaces. For further results
on closed ball, see [18, 19, 21, 22, 23, 24, 25, 26, 28, 29]. In this paper, we proved
a result in [4] by applying contractive condition only on a closed set instead of a
whole space and for b-multiplicative metric space instead of multiplicative metric
space. Moreover, we obtained corresponding new results on closed ball in b-metric
spaces. Example is given which shows the effectiveness of the new results. We
also showed that a specific type of generalization of F -contraction is not real. An
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application on integral equations is also given. The following definitions and results
are used to understand the paper.
Definition 1.1 [5] Let W be a non-empty set and let s ≥ 1 be a given real number.
A mapping mb : W ×W → [1,∞) is called a b-multiplicative metric with coefficient
s, if the following conditions hold:

(i) mb(w, y) > 1 for all w, y ∈ W with w 6= y and mb(w, y) = 1 if and only if
w = y.

(ii) mb(w, y) = mb(y, w) for all w, y ∈W.
(iii) mb(w, z) ≤ [mb(w, y).mb(y, z)]

s
for all w, y, z ∈W.

The triplet (W,mb) is called b-multiplicative metric space. If r > 1, u ∈W, then

Bmb(u, r) = {v : mb(u, v) < r} is called a closed ball in (W,mb).
Example 1.2 [5] Let W = [0,∞). Define a mapping ma : W ×W → [1,∞)

ma(w, y) = a(w−y)
2

,

where a > 1 is any fixed real number. Then for each a, ma is b-multiplicative metric
on W with s = 2. Note that ma is a not multiplicative metric on W.
Definition 1.3 [5] Let (W,mb) be a b-multiplicative metric space.

(i) A sequence {wn} is convergent iff there exist w ∈W such that

mb(wn, w)→ 1, as n→ +∞.

(ii) A sequence {wn} is called b−multiplicative Cauchy iff

mb(wm, wn)→ 1, as m,n→ +∞.

(iii) A b-multiplicative metric space (W,mb) is said to be complete if every
multiplicative Cauchy sequence in Y is convergent to some y ∈W.
Definition 1.4 [17] Let W be a non-empty set and s ≥ 1 be a real number. A
mapping b : W ×W → R+ ∪ {0} is said to be b-metric with coefficient s, if for all
w, y, z ∈W , the following conditions hold:

(i) b(w, y) = 0 if and only if w = y;
(ii) b(w, y) = b(y, w);
(iii) b(w, z) ≤ s [b(w, y) + b(y, z)] .

The pair (W, b) is called b-metric space. If r > 0, u ∈ W, then Bb(u, r) = {v :
b(u, v) < r} is called a closed ball in (W, b).
Remark 1.5 [5] Every b-metric space (W, b) generates a b−multiplicative metric
space (W,mb) defined as

mb (x, y) = eb(x,y).

Remark 1.6 Let (W,mb) be a b−multiplicative metric space generated by b-metric

space (W, b), r > 0 and x0 ∈ W . If Bb(x0, r) and Bmb(x0, e
r) are closed balls in

(W, b) and (W,mb) respectively, then Bb(x0, r) = Bmb(x0, e
r).

Definition 1.7 Let S, T : X → X, A ⊆ X and MA(S, T ) be the family of all
functions a : X ×X → [0, 1) with following assertions

a(TSx, y) ≤ a(x, y) and a(x, STy) ≤ a(x, y), for all x, y ∈ A.

If we take A = X, then MA(S, T ) become M(S, T ), which is defined in [3]. Now,
for a single mapping S : X → X, we define the family MA(S) of all functions
a : X ×X → [0, 1) with following assertions

a(S2x, y) ≤ a(x, y) and a(x, S2y) ≤ a(x, y), for all x, y ∈ A.
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Proposition 1.8 Let S, T : X → X be self mappings, A ⊆ X and x0 ∈ X,
we define the sequence {xn} by x2n+1 = Sx2n , x2n+2 = Tx2n+1 for all integers
n ≥ 0. If {xn} is a sequence in A and a ∈ MA(S, T ), then a(x2n,y) ≤ a(x0, y) and
a(x, x2n+1) ≤ a(x, x1) for all x, y ∈ A and integers n ≥ 0. Also, same is valid if
a ∈MA(S).

2. Main Result

Theorem 2.1 Let (X,mb) be a complete b- multiplicative metric space and
S, T : X → X be self-mappings. If there exist mappings α, β, ν, ξ ∈ MA(S, T ),

A = Bmb(x0, r), x0 ∈ X and r > 1 such that:

mb(x0, Sx0) ≤ r
(1− sh)

s ,

where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + β(x0, x1) + sξ(x0, x1)

1− ν(x0, x1)− sξ(x0, x1)
, h2 =

α(x0, x1) + ν(x0, x1) + sξ(x0, x1)

1− β(x0, x1)− sξ(x0, x1)
.

Also, if Bmb(x0, r) is closed and x, y belongs to Bmb(x0, r), then this implies

mb(Sx, Ty) ≤ (mb(x, y))α(x,y).(mb(x, Sx))β(x,y).(mb(y, Ty))ν(x,y).

(mb(y, Sx).mb(x, Ty))ξ(x,y). (2.1)

Then S and T have a unique common fixed point in Bmb(x0, r).

Proof. Let x0 be a given point in X. Let we construct sequence {xn} in X such
that

x2n+1 = Sx2n, x2n+2 = Tx2n+1,

for n = 0, 1, 2, .... Now we show that {xn} is a sequence in Bmb(x0, r). Note that

mb(x0, x1) = mb(x0, Sx0) ≤ r
(1 − sh)

s ≤ r. (2.2)

Hence x1 ∈ Bmb(x0, r). Assume x2, x3, ...xj ∈ Bmb(x0, r) for some j ∈ N. Then, if
j = 2k + 1

mb(x2k+1, x2k+2) = mb(Sx2k, Tx2k+1)

≤ (mb(x2k, x2k+1))α(x2k, x2k+1).(mb(x2k,Sx2k))β(x2k, x2k+1)

.(mb(x2k+1, Tx2k+1))ν(x2k, x2k+1)

.(mb(x2k+1,Sx2k).mb(x2k,Tx2k+1))ξ(x2k,x2k+1)

≤ (mb(x2k, x2k+1))α(x2k, x2k+1).(mb(x2k,x2k+1))β(x2k,x2k+1)

.(mb(x2k+1, x2k+2))ν(x2k, x2k+1).(mb(x2k, x2k+2))ξ(x2k, x2k+1).

From the Proposition 1.8 and by triangle inequality, we have

mb(x2k+1, x2k+2)

≤ (mb(x2k, x2k+1))α(x0, x2k+1).(mb(x2k, x2k+1))β(x0, x2k+1)

.(mb(x2k+1, x2k+2))ν(x0, x2k+1).(mb(x2k, x2k+1)s.mb(x2k+1, x2k+2)s)ξ(x0, x2k+1).
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Again from the Proposition 1.8, we have

mb(x2k+1, x2k+2)

≤ (mb(x2k, x2k+1))α(x0, x1).(mb(x2k, x2k+1))β(x0, x1)

.(mb(x2k+1, x2k+2))ν(x0, x1).(mb(x2k, x2k+1)s.mb(x2k+1, x2k+2)s)ξ(x0, x1)

≤ (mb(x2k, x2k+1))α(x0, x1)+β(x0, x1)+sξ(x0, x1).(mb(x2k+1, x2k+2))ν(x0, x1)+sξ(x0, x1)

≤ (mb(x2k, x2k+1))
α(x0, x1)+β(x0, x1)+sξ(x0, x1)

1−ν(x0, x1)−sξ(x0, x1) = (mb(x2k, x2k+1))h1

mb(x2k+1, x2k+2) ≤ (mb(x2k, x2k+1)h. (2.3)

Similarly If j = 2k, we have

mb(x2k, x2k+1) = mb(Tx2k−1, Sx2k) = mb(Sx2k, Tx2k−1)

≤ (mb(x2k−1, x2k))α(x2k,x2k−1).(mb(x2k, x2k+1))β(x2k,x2k−1)

.(mb(x2k−1, x2k))ν(x2k,x2k−1).mb(x2k−1, x2k+1))ξ(x2k,x2k−1).

Again from the Proposition 1.8, we have

mb(x2k,x2k+1)

≤ (mb(x2k−1, x2k))α(x0,x1).(mb(x2k, x2k+1))β(x0,x1)

.(mb(x2k−1, x2k))ν(x0,x1).(mb(x2k−1, x2k).mb(x2k, x2k+1))sξ(x0,x1)

≤ (mb(x2k−1, x2k))α(x0,x1)+ν(x0,x1)+sξ(x0,x1)

.(mb(x2k, x2k+1))β(x0,x1)+sξ(x0,x1)

≤ (mb(x2k−1, x2k)
α(x0,x1)+ν(x0,x1)+sξ(x0,x1)

1−[β(x0,x1)+sξ(x0,x1)] = (mb(x2k−1, x2k)h2 .

mb(x2k, x2k+1) ≤ (mb(x2k−1, x2k)h. (2.4)

Thus from (2.3) and (2.4), we conclude that for all k ∈ N

mb(xk, xk+1) ≤ mb(xk−1, xk)h ≤ .... ≤ mb(x0, x1)h
k

. (2.5)

Now,

mb(x0, xj+1) ≤ mb(x0, x1)s.mb(x1, x2)s
2

....mb(xj , xj+1)s
j+1

≤ mb(x0, x1)sh
0

.mb(x0, x1)s
2h1

....mb(x0, x1)s
j+1h j

≤ mb(x0, x1)s(s
0h0+s1h1+s2h2+....+s jh j)

mb(x0,xj+1) ≤ mb(x0,x1)s(
1−(sh)j

1−sh ).

Since x1 ∈ Bmb(x0, r), we have

mb(x0, xj+1) ≤
(
r

1−sh
s

)s( 1−(sh)j

1−sh )

= (r)1−(sh)
j

≤ r,

This implies xj+1 ∈ Bmb(x0, r). By induction on n, we conclude that {xn} ∈
Bmb(x0, r) for all n ∈ N. Therefore

mb(xn, xn+1) ≤ mb(x0, x1)h
n

for all n ∈ N. (2.6)
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We claim that the sequence {xn} satisfies the multiplicative Cauchy criterion for

convergence in (Bmb(x0, r),mb). Let m,n > 0 with m > n as m = n+ p; p ∈ N.

mb(xn, xm)

≤ mb(xn, xn+1)s.mb(xn+1, xn+2)s
2

....mb(xn+p−1, xn+p)
sp

≤ (mb(x0, x1)sh
n

.(mb(x0, x1)s
2hn+1

....(mb(x0, x1))s
phn+p−1

≤ (mb(x0, x1))sh
n+s2hn+1+.....+sphn+p−1

< (mb(x0, x1))sh
n+s2hn+1...... = (mb(x0,x1))

shn

1−sh

≤ (mb(x0,x1))
shn

1−sh .

Taking limit as m,n → ∞, we get mb(xn, xm) → 1. Hence the sequence {xn} is

a multiplicative Cauchy sequence. As the closed set (Bmb(x0, r),mb) is complete.

So, the completeness of (Bmb(x0, r),mb) follows that xn → x∗ ∈ Bmb(x0, r). So

mb(xn, x
∗)→ 1, as n→ +∞. (2.7)

Now, we have to show that x∗ is a fixed point of mapping T .

mb(x2n+1, Tx
∗)

≤ (mb(x2n, x
∗))α(x2n,x

∗).(mb(x2n, Sx2n))β(x2n,x
∗)

.(mb(x
∗, Tx∗))ν(x2n,x

∗).(mb(x
∗, Sx2n).mb(x2n, Tx

∗))ξ(x2n,x
∗)

≤ (mb(x2n, x
∗))α(x2n,x

∗).(mb(x2n, x2n+1))β(x2n,x
∗)

.(mb(x
∗, Tx∗))ν(x2n,x

∗).(mb(x
∗, x2n+1).mb(x2n, Tx

∗))ξ(x2n,x
∗).

From the Proposition 1.8, we have

mb(x2n+1, Tx
∗)

≤ (mb(x2n, x
∗))α(x0,x

∗).(mb(x2n, x2n+1))β(x0,x
∗)

.(mb(x
∗, Tx∗))ν(x0,x

∗).(mb(x
∗, x2n+1).mb(x2n, Tx

∗))ξ(x0,x
∗)

≤ (mb(x2n, x
∗))α(x0,x

∗).(mb(x2n, x2n+1))β(x0,x
∗)

.(mb(x
∗, Tx∗))ν(x0,x

∗).(mb(x
∗, x2n+1)

.mb(x2n, x
∗)s.mb(x

∗, Tx∗)s)ξ(x0,x
∗).

Taking limit as n→∞ and by inequality (2.7), we have

lim
n→∞

mb(x2n+1, Tx
∗) ≤ (mb(x

∗, Tx∗))ν(x0,x
∗)+sξ(x0,x

∗).

Now,

mb(x
∗, Tx∗) ≤ (mb(x

∗, x2n+1).mb(x2n+1, Tx
∗))

s
.

Taking limit as n→∞ and by inequality (2.7), we have

mb(x
∗, Tx∗) ≤ (mb(x

∗, Tx∗))sν(x0,x
∗)+s2ξ(x0,x

∗),

which implies that

(mb(x
∗, Tx∗))1−[sν(x0,x

∗)+s2ξ(x0,x
∗)] ≤ 1,

which further implies that

(mb(x
∗, Tx∗)) ≤ 1

1
1−[sν(x0,x

∗)+s2ξ(x0,x
∗)] ≤ 1.
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Thus x∗ is a fixed point of mapping T . Now,

mb(Sx
∗, x2n+2)

≤ (mb(x
∗, x2n+1))α(x

∗,x2n+1).(mb(x
∗, Sx∗))β(x

∗,x2n+1)

.(mb(x2n+1, Tx2n+1))ν(x
∗,x2n+1).(mb(x2n+1, Sx

∗).mb(x
∗, Tx2n+1))ξ(x

∗,x2n+1)

≤ (mb(x
∗, x2n+1))α(x

∗,x2n+1).(mb(x
∗, Sx∗))β(x

∗,x2n+1)

.(mb(x2n+1, x2n+2))ν(x
∗,x2n+1).(mb(x2n+1, Sx

∗).mb(x
∗, x2n+2))ξ(x

∗,x2n+1).

From Proposition 1.8, We have

mb(Sx
∗, x2n+2)

≤ (mb(x
∗, x2n+1))α(x

∗,x1).(mb(x
∗, Sx∗))β(x

∗,x1)

.(mb(x2n+1, x2n+2))ν(x
∗, x1).(mb(x2n+1, Sx

∗).mb(x
∗, x2n+2))ξ(x

∗, x1)

≤ (mb(x
∗, x2n+1))α(x

∗,x1).(mb(x
∗, Sx∗))β(x

∗,x1).(mb(x2n+1, x2n+2))ν(x
∗,x1)

.(mb(x2n+1, x
∗)s.mb(x

∗, Sx∗)s.mb(x
∗, x2n+2))ξ(x

∗,x1).

Taking the limit as n −→∞, we get

lim
n→∞

mb(Sx
∗, x2n+2) ≤ (mb(x

∗, Sx∗))β(x
∗,x1)+sξ(x

∗,x1).

By using above inequality and the triangle inequality, we have

(mb(x
∗, Sx∗))1−[sβ(x◦,x

∗)+s2ξ(x◦,x
∗)] ≤ 1,

which further implies that

(mb(x
∗, Sx∗)) ≤ (1)

1
1−[β(x◦,x∗)+ sδ(x◦,x∗)] ≤ 1.

Thus x∗ is a fixed point of mapping S. Hence x∗ is a common fixed point of mapping
S and T. Let u be another common fixed point of the mappings S and T other than
x∗. Now consider

mb(x
∗, u) = mb(Sx

∗, Tu)

≤ (mb(x
∗, u))α(x

∗,u).(mb(x
∗, Sx∗))β(x

∗,u)

.(mb(u, Tu))ν(x
∗,u).(mb(u, Sx

∗).mb(x
∗, Tu))ξ(x

∗,u)

≤ (mb(x
∗, u))α(x

∗,u).(mb(x
∗, x∗))β(x

∗,u).(mb(u, u))ν(x
∗,u).

.(mb(u, x
∗).mb(x

∗, u))ξ(x
∗,u)

≤ (mb(x
∗, u))α(x

∗,u)+2ξ(x∗,u).

This implies that

(mb(x
∗, u))1−[α(x

∗,u)+2ξ(x∗,u)] ≤ 1,

which further implies that

mb(x
∗, u) ≤ (1)

1
1−[α(x∗,u)+2ξ(x∗,u)] ≤ 1.

which is a contradiction to the fact that x∗ 6= u. Thus x∗ is a unique common fixed
point of the mapping S and T in Bmb(x0, r). �

Example 2.2 Let X = [0,∞) be endowed with a b-multiplicative metric with
s = 2.

mb(x, y) =

{
2(x+y)

2

if x 6= y
1 if x = y

}
.
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Define

S : X → X, Sx =

{
3x
10 if 0 ≤ x ≤ 3

x5 +
√
x+ 6 otherwise.

T : X → X, Tx =

{
x
9 if 0 ≤ x ≤ 3

4x6 +
√

7x+ 9 otherwise.

Define α(x, y) = 3
10 , β(x, y) = xy4, ξ(x, y) = x+y

70 , ν(x, y) = (x−2y)3
40 . Consider

x0 = 1, r = 216, then Bmb(x0, r) = [0, 3]. Clearly α, β, ξ, ν ∈ MA(S, T ), where

A = Bmb(x0, r). Now x1 = S1 = 3
10 , α(x0, x1) = 3

10 , β(x0, x1) = 81
10000 , ξ(x0,

x1) = 13
700 , ν(x0, x1) = 1

625 . Now, h = max{h1, h2} ≈ max{0.355, 0.359} = 0.359.
So, sh < 1. We know that(

1 +
3

10

)2

<
16(1− 2(0.359))

2

or 2(1+ 3
10 )

2

< 2
16(1−2(0.359))

2

or mb(x0, Sx0) ≤ r
(1− sh)

s .

For each x, y ∈ Bmb(x0, r), we have

2(
3x
10+

y
9 )

2

≤ (2(x+y)
2

)
3
10 .(2(x+

3x
10 )

2

)xy
4

.(2(y+
y
9 )

2

)
(x−2y)3

40 .(2(y+
3x
10 )

2

.2(x+
y
9 )

2

)
x+y
70

or mb(Sx, Ty) ≤ (mb(x, y))α(x,y).(mb(x, Sx))β(x,y).(mb(y, Ty))ν(x,y)

.(mb(y, Sx).mb(x, Ty))ξ(x,y).

Thus, all conditions of Theorem 2.1 hold. Therefore, S and T have a unique
common fixed point in Bmb(x0, r). Note that α, β, ξ, ν /∈ M(S, T ), so the result in
[4] can not be applied to ensure the existence of a unique common fixed point.

If we take β(x, y) = 0 in Theorem 2.1, then we obtain the following result.
Theorem 2.3 Let (X,mb) be a complete b- multiplicative metric space and S, T :
X → X be self-mappings. If there exist mappings α, ν, ξ ∈ MA(S, T ), A =

Bmb(x0, r), x0 ∈ X and r > 1 such that:

mb(x0, Sx0) ≤ r
(1− sh)

s ,

where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + sξ(x0, x1)

1− ν(x0, x1)− sξ(x0, x1)
, h2 =

α(x0, x1) + ν(x0, x1) + sξ(x0, x1)

1− sξ(x0, x1)
.

Also, if Bmb(x0, r) is closed and x, y belongs to Bmb(x0, r), then this implies

mb(Sx, Ty) ≤ (mb(x, y))α(x,y).(mb(y, Ty))ν(x,y).

(mb(y, Sx).mb(x, Ty))ξ(x,y).

Then S and T have a unique common fixed point in Bmb(x0, r).
If we take β(x, y) = ν(x, y) = 0 in Theorem 2.1, then we obtain the following

result.
Theorem 2.4 Let (X,mb) be a complete b- multiplicative metric space and S, T :

X → X be self-mappings. If there exist mappings α, ξ ∈MA(S, T ), A = Bmb(x0, r),
x0 ∈ X and r > 1 such that:

mb(x0, Sx0) ≤ r
(1− sh)

s ,
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where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + sξ(x0, x1)

1− sξ(x0, x1)
, h2 =

α(x0, x1) + sξ(x0, x1)

1− sξ(x0, x1)
.

Also, if Bmb(x0, r) is closed and x, y belongs to Bmb(x0, r), then this implies

mb(Sx, Ty) ≤ (mb(x, y))α(x,y).(mb(y, Sx).mb(x, Ty))ξ(x,y).

Then S and T have a unique common fixed point in Bmb(x0, r).
If we take β(x, y) = ξ(x, y) = 0 in Theorem 2.1, then we obtain the following

result.
Theorem 2.5 Let (X,mb) be a complete b- multiplicative metric space and S, T :

X → X be self-mappings. If there exist mappings α, ν ∈MA(S, T ), A = Bmb(x0, r),
x0 ∈ X and r > 1 such that:

mb(x0, Sx0) ≤ r
(1− sh)

s ,

where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1)

1− ν(x0, x1)
, h2 = α(x0, x1) + ν(x0, x1).

Also, if Bmb(x0, r) is closed and x, y belongs to Bmb(x0, r), then this implies

mb(Sx, Ty) ≤ (mb(x, y))α(x,y).(mb(y, Ty))ν(x,y).

Then S and T have a unique common fixed point in Bmb(x0, r).
If we take β(x, y) = ν(x, y) = ξ(x, y) = 0 in Theorem 2.1, then we obtain the

following result.
Theorem 2.6 Let (X,mb) be a complete b- multiplicative metric space and S, T :

X → X be self-mappings. If there exist mappings α ∈ MA(S, T ), A = Bmb(x0, r),
x0 ∈ X and r > 1 such that:

mb(x0, Sx0) ≤ r
(1− sα(x0,x1))

s ,

where sα(x0, x1) < 1. Also, if Bmb(x0, r) is closed and x, y belongs to Bmb(x0, r),
then this implies

mb(Sx, Ty) ≤ (mb(x, y))α(x,y).

Then S and T have a unique common fixed point in Bmb(x0, r).
If we take S = T in Theorem 2.1, then we obtain the following result.

Theorem 2.7 Let (X,mb) be a complete b- multiplicative metric space and S :
X → X be self-mappings. If there exist mappings α, β, ν, ξ ∈ MA(S), A =

Bmb(x0, r), x0 ∈ X and r > 1 such that:

mb(x0, Sx0) ≤ r
(1− sh)

s ,

where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + β(x0, x1) + sξ(x0, x1)

1− ν(x0, x1)− sξ(x0, x1)
, h2 =

α(x0, x1) + ν(x0, x1) + sξ(x0, x1)

1− β(x0, x1)− sξ(x0, x1)
.

Also, if Bmb(x0, r) is closed and x, y belongs to Bmb(x0, r), then this implies

mb(Sx, Sy) ≤ (mb(x, y))α(x,y).(mb(x, Sx))β(x,y).(mb(y, Sy))ν(x,y).

(mb(y, Sx).mb(x, Sy))ξ(x,y).

Then S has a unique fixed point in Bmb(x0, r).
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If we take whole space instead of closed ball in Theorem 2.1, then we obtain the
following result.
Theorem 2.8 Let (X,mb) be a complete b- multiplicative metric space and S, T :
X → X be self-mappings. If there exist mappings α, β, ν, ξ ∈ MA(S, T ), x0 ∈ X
and r > 1 such that:

mb(x0, Sx0) ≤ r
(1− sh)

s ,

where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + β(x0, x1) + sξ(x0, x1)

1− ν(x0, x1)− sξ(x0, x1)
, h2 =

α(x0, x1) + ν(x0, x1) + sξ(x0, x1)

1− β(x0, x1)− sξ(x0, x1)
.

Also, if Bmb(x0, r) is closed and x, y belongs to Bmb(x0, r), then this implies

mb(Sx, Ty) ≤ (mb(x, y))α(x,y).(mb(x, Sx))β(x,y).(mb(y, Ty))ν(x,y).

(mb(y, Sx).mb(x, Ty))ξ(x,y).

Then S and T have a unique common fixed point in Bmb(x0, r).
If we take multiplicative metric space instead of b- multiplicative metric space

in Theorem 2.1, then we obtain the following result.
Theorem 2.9 Let (X,m) be a complete multiplicative metric space and S, T : X →
X be self-mappings. If there exist mappings α, β, ν, ξ ∈MA(S, T ), A = Bm(x0, r),
x0 ∈ X and r > 1 such that:

mb(x0, Sx0) ≤ r(1− h),

where h < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + β(x0, x1) + ξ(x0, x1)

1− ν(x0, x1)− ξ(x0, x1)
, h2 =

α(x0, x1) + ν(x0, x1) + ξ(x0, x1)

1− β(x0, x1)− ξ(x0, x1)
.

Also, if Bm(x0, r) is closed and x, y belongs to Bm(x0, r), then this implies

m(Sx, Ty) ≤ (m(x, y))α(x,y).(m(x, Sx))β(x,y).(m(y, Ty))ν(x,y).

(m(y, Sx).m(x, Ty))ξ(x,y).

Then S and T have a unique common fixed point in Bm(x0, r).
If we take whole space instead of closed ball and multiplicative metric space

instead of b- multiplicative metric space in Theorem 2.1, then we obtain the fol-

lowing result. In this result, we have omitted the condition mb(x0, Sx0) ≤ r
(1− sh)

s ,
because it was applied to restrict the sequence in a closed ball.
Theorem 2.10 Let (X,m) be a complete multiplicative metric space and S, T :
X → X be self-mappings. If there exist mappings α, β, ν, ξ ∈M(S, T ), x0 ∈ X and
α(x0, x1) + β(x0, x1) + ν(x0, x1) + 2ξ(x0, x1) < 1 such that:

m(Sx, Ty) ≤ (m(x, y))α(x,y).(m(x, Sx))β(x,y).(m(y, Ty))ν(x,y).

(m(y, Sx).m(x, Ty))ξ(x,y), for all x, y ∈ X.

Then S and T have a unique common fixed point in X.

Proof. (X,m) is a complete b-multiplicative metric space with s = 1. Now,

α(x0, x1) + β(x0, x1) + ν(x0, x1) + 2ξ(x0, x1) < 1
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implies

h1 =
α(x0, x1) + β(x0, x1) + sξ(x0, x1)

1− ν(x0, x1)− sξ(x0, x1)
< 1,

h2 =
α(x0, x1) + ν(x0, x1) + sξ(x0, x1)

1− β(x0, x1)− sξ(x0, x1)
< 1.

Hence sh < 1, h = max{h1, h2}. As the condition holds for all x, y ∈ X then it
obviously holds for it’s closed subsets. Now, by Theorem 2.1, S and T have a unique
common fixed point in X. �

Now, we present the b-metric version of Theorem 2.1.
Theorem 2.11 Let (X, b) be a complete b-metric space and S, T : X → X be self-

mappings. If there exist mappings α, β, ν, ξ ∈ MA(S, T ), A = Bb(x0, r), x0 ∈ X
and r > 0 such that:

b(x0, Sx0) ≤ r(1− sh)

s
, (2.8)

where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + β(x0, x1)

1− ν(x0, x1)− sξ(x0, x1)
, h2 =

α(x0, x1) + ν(x0, x1)

1− β(x0, x1)− sξ(x0, x1)
.

Also, if Bb(x0, r) is closed and x, y belongs to Bb(x0, r), then this implies

b(Sx, Ty) ≤ α(x, y)b(x, y) + β(x, y)b(x, Sx) + ν(x, y)b(y, Ty)+

ξ(x, y)(b(y, Sx) + b(x, Ty)). (2.9)

Then S and T have a unique common fixed point in Bb(x0, r).

Proof. Define mb (x, y) = eb(x,y). Then by Remark 1.5 (W,mb) is a b−multiplicative
metric space. By taking exponential on both sides of inequality (2.7), we have

eb(x0,Sx0) ≤ e
r(1−sh)

s ,

or mb(x0, Sx0) ≤ ε
(1− sh)

s

where ε = er > 1. Now, by taking exponential on both sides of inequality (2.8) and
by using Remark 1.6, we have

eb(Sx,Ty) ≤ eα(x,y)b(x,y).eβ(x,y)b(x,Sx).eν(x,y)b(y,Ty).

eξ(x,y)(b(y,Sx)+b(x,Ty)),

for all x, y belong to the closed set Bb(x0, r). Now by using Remark 1.5 and Remark
1.6, we have

mb(Sx, Ty) ≤ (mb(x, y))α(x,y).(mb(x, Sx))β(x,y).(mb(y, Ty))ν(x,y).

(mb(y, Sx).mb(x, Ty))ξ(x,y).

for all x, y belong to the closed set Bmb(x0, ε). Now by Theorem 2.1, S and T have

a unique common fixed point in Bmb(x0, ε) or Bb(x0, r).
�

Now, we present a corresponding result for a strictly increasing mapping F. We
give a short and simple proof. Other recent results in literature see [3, 8, 19] can
be proved and improved in a similar way by using strictly increasing mapping F
instead of mapping F introduced by Wardowski [32]. This also shows that this type
of generalization of the result of Wardowski is not a real generalization.
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Theorem 2.12 Let (X, b) be a complete b-metric space, S, T : X → X be
self-mappings and F be a strictly increasing mapping. If there exist mappings
α, β, ν, ξ ∈MA(S, T ), A = Bb(x0, r), x0 ∈ X and r > 0 such that:

b(x0, Sx0) ≤ r(1− sh)

s
,

where sh < 1, h = max{h1, h2} and

h1 =
α(x0, x1) + β(x0, x1)

1− ν(x0, x1)− sξ(x0, x1)
, h2 =

α(x0, x1) + ν(x0, x1)

1− β(x0, x1)− sξ(x0, x1)
.

Also, if Bb(x0, r) is closed, x, y belongs to Bb(x0, r) and τ > 0, then this implies

τ + F (b(Sx, Ty)) ≤ F
(
α(x, y)b(x, y) + β(x, y)b(x, Sx) + ν(x, y)b(y, Ty)

+ξ(x, y)(b(y, Sx) + b(x, Ty))

)
.

(2.10)

Then S and T have a unique common fixed point in Bb(x0, r).

Proof. Since τ > 0, then inequality (2.10) implies

F (b(Sx, Ty)) < F

(
α(x, y)b(x, y) + β(x, y)b(x, Sx) + ν(x, y)b(y, Ty)

+ξ(x, y)(b(y, Sx) + b(x, Ty))

)
.

As F is a strictly increasing mapping, so

b(Sx, Ty) < α(x, y)b(x, y) + β(x, y)b(x, Sx) + ν(x, y)b(y, Ty)

+ξ(x, y)(b(y, Sx) + b(x, Ty)).

So, all hypotheses of Theorem 2.11 are satisfied and hence S and T have a unique
common fixed point in Bb(x0, r). �

Example 2.13 Let X = R endowed with the b-metric b(x, y) = |x − y| for all
x, y ∈ X and f : X → X be defined by

fx =

{
− 1

2x if x ∈ [−9, 11]
2x if x ∈ R\[−9, 11]

}
Let r = 10 and x0 = 1, then Bb(x0, r) = [−9, 11] is closed. Take α(x, y) = 1

2 ,

β(x, y) = ν(x, y) = 1
9 , ξ(x, y) = 1

18 , then

sh = h1 = h2 =
1
2 + 1

9 + 1
18

1− 1
9 −

1
18

< 1.

If x, y belong to Bb(x0, r), then

b(fx, fy) ≤ α(x, y)b(x, y) + β(x, y)b(x, fx) + ν(x, y)b(y, fy) +

ξ(x, y)(b(y, fx) + b(x, fy)).

So, inequality (2.8) holds. Also,

b(x0, fx0) ≤ r(1− sh)

s
.

So, all hypotheses of Theorem 2.11 are satisfied and therefore, f has a unique fixed
point.
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3. Application

Let X = C([a, b],R+), a > 0 and R+ = (0,∞), be the space of all positive,
continuous real valued functions, endowed with the b-multiplicative metric

mb(x, y) = sup
t∈[a,b]

{
max

{∣∣∣∣x(t)

y(t)

∣∣∣∣2 , ∣∣∣∣y(t)

x(t)

∣∣∣∣2
}}

Define B(x0(t), r) = {y(t) : sup
t∈[a,b]

{
max

{∣∣∣x0(t)
y(t)

∣∣∣2 , ∣∣∣ y(t)x0(t)

∣∣∣2}} ≤ r}.
As an application, we give an existence theorem for the Fredholm multiplicative

integral equations of the following type.

x(t) =

∫ b

a

Q1(t, s, x(s))ds, t, s ∈ [a, b] (3.1)

x(t) =

∫ b

a

Q2(t, s, x(s))ds, t, s ∈ [a, b] (3.2)

where Q1, Q2 : [a, b]× [a, b]× R+ → R+ are integrable functions.
Theorem 3.1 Let X = C([a, b],R+), a > 0 and let the mappings S, T : X → X,

Sx(t) =

∫ b

a

Q1(t, s, x(s))ds

Tx(t) =

∫ b

a

Q2(t, s, x(s))ds

where Q1, Q2 : [a, b]× [a, b]× R+ → R+ are integrable functions. Assume that the
following conditions hold:

(i) for each t, s ∈ [a, b] and x, y ∈ B(x0(t), r), x0(t) ∈ X, r > 1, there exists a

function β ∈MA(S, T ), A = B(x0(t), r), such that

∣∣∣∣Q1(t, s, x(s))

Q2(t, s, y(s))

∣∣∣∣ ≤ (∣∣∣∣x(s)

y(s)

∣∣∣∣)β(x,y) ;

(ii) the function β(x, y) is such that 2β(x0, x1) < 1
b−a ;

(iii)

sup
t∈[a,b]

{
max

{∣∣∣∣x0(t)

x1(t)

∣∣∣∣2 , ∣∣∣∣x1(t)

x0(t)

∣∣∣∣2
}}
≤ r

1− 2β(x0,x1)(b−a)
2 ;

Then the integral equations (3.1) and (3.2) have a unique common solution.
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Proof. Let x, y ∈ B(x0(t), r). Now, we have∣∣∣∣Sx(t)

Ty(t)

∣∣∣∣2 ≤

(∫ b

a

∣∣∣∣Q1(t, s, x(s))

Q2(t, s, y(s))

∣∣∣∣ds
)2

≤

∫ b

a

(∣∣∣∣x(s)

y(s)

∣∣∣∣β(x,y)
)ds2

≤

(∫ b

a

(
mb(x, y)

β(x,y)
2

)ds)2

=

((
mb(x, y)

b−a
) β(x,y)

2

)2

= mb(x, y)β(x,y)(b−a) for each t ∈ [a, b].

Thus, we getmb(Sx, Ty) ≤ mb(x, y)α(x,y), α(x, y) = β(x, y)(b− a). As 2β(x0, x1) <
1
b−a , so sα(x0, x1) < 1. Also, hypothesis (iii) implies

mb(x0, Sx0) ≤ r(
1−sα(x0, x1)

s ).

Therefore by Theorem 2.6, there exists a unique common fixed point of the opera-
tors S and T . Hence, the integral equations (3.1) and (3.2) have a unique common
solution. �
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[10] T. Došenović, M. Postolache, S. Radenović, On multiplicative metric spaces: survey, Fixed

Point Theory Appl. 2016 (2016).
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