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NULL HYPERSURFACES IN BRINKMANN SPACETIMES

CYRIAQUE ATINDOGBÉ, THÉOPHILE KEMAJOU MBIAKOP

Abstract. We study normalized null hypersurfaces in Brinkmann spacetimes
with special attention paid to Plane Fronted Waves. We explore geodesibil-

ity criterion and characterization for null hypersurfaces in links with relative

position of a global parallel null vector field or under relative harmonicity con-
dition on the local H−factor of the PFW−metric. We prove that there is

no compact null hypersurfaces in Plane Fronted Waves for which the local

H−factor has sign. We point out that Lorentzian Einstein manifolds with
non zero cosmology constant admit no global parallel null vector field, and

the same is for Lorentzian space forms with non zero sectional curvature. We

establish sufficient conditions for the unicity up to constant factor of parallel
null vector field.

1. Introduction

A famous proplem in Physics is to find exact solutions to equations which de-
scribe the fundamental interaction of gravitation as a result of spacetime being
curved by mass and energy called also Einstein’s equation given by

Ric− 1

2
Sg = 8πT .

As a model for electromagnetic and gravitational radiation, Lorentzian metric of
the local form

ds2 = 2dudv −H(u, xi)du2 +
∑
i

(dxi)2, (1.1)

were proposed ([8]) and some authors refer to these spacetimes as pp-waves. All
metrics of the above form admit the parallel lightlike vector field ∂

∂v .
According to [12],[13], Brinkmann spacetime (BST for short) is a Lorentzian

manifold admitting a global parallel null vector field V and Plane Fronted Waves
(PFW) is a Brinkmann spacetime locally of the form{

M =M× R2 (1.2)

g = h+ 2dudv +H(x, u)du2 (1.3)
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where (M, h) is a n-dimensional Riemannian manifold and x ∈ M, the variables
(v, u) are the natural coordinate of R2 and the smooth scalar field H :M×R −→ R
called the local H−factor is non zero everywhere. With this coordinates V coincides
with the coordinate vector field ∂v = ∂

∂v and the leaves of the distribution V ⊥|U
given by u ≡ constant = M× R × {u} are totally geodesic null hypersurfaces.
Some questions then arise naturally: Is any totally geodesic null hypersurfaces in
PFW , up to isometry, a member of the family Πu0

(u0 ∈ R)? Since the presence
of parallel null vector field has been essential in our analysis, it is worth to explore
the space of such vector fields such as unicity up to constant factor and algebraic
properties. When foliated by a screen structure, is there any relation between the
leaves and M?

The aim of this paper is to give some solutions to the above questions by study the
geometry of normalized null hypersurface in Brinkmann spacetime with particular
attention to Plane Fronted Waves. The paper is organized as follows; In Section 2,
we recall some basic notions needed in the rest of the paper. In Section 4, we prove
several characterization results (Theorems, 4.1, 4.8, and 4.5.).

2. Normalized null hypersurfaces

Let M be a null hypersurface in a Lorentzian manifold (M
n+2

, g), (n ≥ 1) i.e a
hypersurface for which the induced metric tensor g = g|M is degenerate on it. A

screen distribution on M , is a complementary bundle of TM⊥ in TM . It is then
a rank n non-degenerate distribution over M . From [3], it is known that for a
null hypersurface equipped with a screen distribution, there exists a unique rank 1
vector subbundle tr(TM) of TM over M , such that for any non-zero section ξ of
TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N of
tr(TM) on U satisfying

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0, ∀ W ∈ S (N)|U ) (2.1)

where S (N) denotes the fixed screen distribution.
Then TM admits the splitting:

TM |M = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕S (N). (2.2)

We call tr(TM) a (null) transverse vector bundle along M . A rigging for M is a
vector field ζ defined on some open set containing M such that ζp /∈ TpM for each
p ∈M .

Given a rigging ζ for M , let α denote the 1-form g-metrically equivalent to ζ,
i.e. α = g(ζ, .). Take ω = i∗α, being i : M ↪→ M the canonical inclusion. Next,
consider the tensors

^
g = g + α⊗ α and g̃ = i?

^
g . (2.3)

It is easy to show that g̃ defines a Riemannian metric on the (whole) hypersurface
M . The rigged vector field of ζ is the g̃-metrically equivalent vector field to the 1-
form ω and it is denoted by ξ. In fact the rigged vector field ξ is the unique lightlike
vector field in M such that g(ζ, ξ) = 1. Moreover, ξ is g̃-unitary. To a rigging ζ
for M is associated the screen distribution S (ζ) given by S (ζ) = TM ∩ ζ⊥. It is
the g̃-orthogonal subspace to ξ and the corresponding null transverse vector field
on M is

N = ζ − 1

2
g(ζ, ζ)ξ. (2.4)
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A null hypersurface M equipped with a rigging ζ is said to be normalized and
is denoted (M, ζ) (the latter is called a normalization of the null hypersurface).
A normalization (M, ζ) is said to be closed (resp. conformal) if the rigging ζ is
closed i.e the 1-form α is closed (resp. ζ is a conformal vector field, i.e there exists
a function ρ on the domain of ζ such that Lζg = 2ρg ). We say that ζ is a null
rigging for M if the restriction of ζ to the null hypersurface M is a null vector
field. The screen distribution S (ζ) = kerω is integrable whenever ω is closed, in
particular if the rigging is closed. Throughout, the ambient Lorentzian metric g
will also be denoted 〈 , 〉.

For any vector field X on U ⊂M we have

divgX =

n∑
i=1

g̃(∇ ?
Ei

X,
?

Ei) + g̃(∇ξX, ξ).

If f ∈ C∞(U) we have

gradgf = ∇f = g[ij](
?

Ei ·f)
?

Ej and ∆gf = −
n∑
i=0

g̃(∇ ?
Ei

∇f,
?

Ei) (2.5)

where the (0,2)-tensor g[.,.], inverse of g̃ is called the pseudo-inverse of g [1]. The
Gauss and Weingarten formulas are given by

∇XY = ∇XY +B(X,Y )N, ∇XN = −ANX + τ(X)N, (2.6)

∇XPY =
?

∇XPY + C(X,PY )ξ, ∇Xξ = −
?

AξX − τ(X)ξ, (2.7)

for any X,Y ∈ Γ(TM), where ∇ denotes the Levi-Civita connection on (M, g),
∇ denotes the connection on M induced from ∇ through the projection along

the null transverse vector field N and
?

∇ denotes the connection on the screen
distribution S (ζ) induced from ∇ through the projection morphism P of Γ(TM)
onto Γ

(
S (ζ)

)
with respect to the decomposition (2.7). Now the (0, 2) tensors B

and C are the second fundamental forms on TM and S (ζ) respectively, AN and
?

Aξ are the shape operators on TM with respect to the rigging ζ and the rigged

vector field ξ respectively and τ a 1-form on TM defined by τ(X) = g(∇XN, ξ)
A null hypersurface M is said to be totally umbilic (resp. totally geodesic) if there

exists a smooth function β on M such that at each p ∈M and for all u, v ∈ TpM ,
B(p)(u, v) = β(p)g(u, v) (resp. B vanishes identically on M). These are intrinsic
notions on any null hypersurface in the sense that they are independent of the
normalization. Remark that M is totally umbilic (resp. totally geodesic) if and

only if
?

Aξ = βP (resp.
?

Aξ = 0).

The (non normalized) null mean curvature is Hξ = tr(
?

Aξ). Let denote by R and

R the Riemannian curvature tensors of ∇ and ∇, respectively. Then the following
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are the Gauss-Codazzi equations [3].〈
R(X,Y )Z, ξ

〉
= (∇XBN )(Y, Z)− (∇YBN )(X,Z) (2.8)

+τN (X)BN (Y,Z)− τN (Y )BN (X,Z), (2.9)〈
R(X,Y )Z,PW

〉
=

〈
R(X,Y )Z,PW

〉
+BN (X,Z)CN (Y, PW )

−BN (Y, Z)CN (X,PW ), (2.10)〈
R(X,Y )ξ,N

〉
=

〈
R(X,Y )ξ,N

〉
= CN (Y,X)

−CN (X,Y ) (2.11)

−2dτN (X,Y ), ∀X,Y, Z,W ∈ Γ(TM |U ). (2.12)〈
R(X,Y )PZ,N

〉
=

〈
(∇XAN )Y, PZ

〉
−
〈

(∇YAN )X,PZ
〉

(2.13)

+τN (Y )
〈
ANX,PZ

〉
− τN (X)

〈
ANY, PZ

〉
. (2.14)

for every X,Y and Z in Γ(TM).

Lemma 2.1. For every X,Y, Z ∈ Γ(TM) we have

(∇XB)(Y,Z)− (∇YB)(X,Z) = g

(
(∇X

∗
Aξ)Y,Z

)
− g
(

(∇Y
∗
Aξ)X,Z

)
. (2.15)

Lemma 2.2. [4] Let (M, ζ) be a normalized null hypersurface and ζ a rigging for
it. If ζ is conformal, then ∇ξξ = 0, that is τ(ξ) = 0.

3. Null Hypersurfaces in Brinkmann spacetime

Throughout, V denotes a fixed global parallel null vector field in a Brinkmann
spacetime (M, g). [12]The orthogonal complenent distribution

V ⊥p = {X ∈ TpM, g(Vp, X) = 0}, p ∈M
defines a parallel sub-distribution of the tangent bundle of codimension one and it
is integrable.

Indeed, for X,Y ∈ V ⊥,

g([X,Y ], V ) = g(∇XY −∇YX,V ) = −g(Y,∇XV ) + g(X,∇Y V ) = 0.

This induces a totally geodesic null foliation on the BST.
Let (M, ζ) be a normaized null hypersurface in the BST . The global null vector

field V has the following decomposition along M :

V = VS + νξ + µN, (3.1)

where µ and ν are smooth functions on M and VS ∈ Γ(S (ζ)). Then the following
holds.

Theorem 3.1. The functions µ and ν satisfy the partial differential equations of
first order,

ξ · µ = −µτ(ξ), (3.2)

ξ · ν = ντ(ξ)− g(ANξ, VS ). (3.3)

In particular, if ζ is conformal,
ξ · µ = 0, (3.4)

ξ · ν = −g(ANξ, VS ). (3.5)
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Proof. For every X ∈ Γ(TM), by straightforward computation, we have,

0 = ∇XV =
?

∇X VS − g(V,N)
?

Aξ X − g(V, ξ)ANX

+
(
C(X,VS ) +X · g(V,N)− g(V,N)τ(X)

)
ξ

+
(
X · g(V, ξ) + g(V, ξ)τ(X) +B(X,VS )

)
N. (3.6)

Using this and the fact that

0 = g(V, V ) = g(VS , VS ) + 2µν. (3.7)

we get 
?

∇X VS = ν
?

Aξ X + µANX, (3.8)

X · ν = ντ(X)− C(X,VS ), (3.9)

X · µ = −µτ(X)−B(X,VS ), (3.10)

g(VS , VS ) + 2µν = 0. (3.11)

Then the results follow setting X = ξ. �

Proposition 3.2. Let (M, ζ) be a normalized null hypersurface of n+2-dimensional
BST (M, g) such that the global null vector field V is tangent to M . Then M is
totally geodesic and τ is exact.

Proof. Since V is tangent to M , we have that µ = 0, and it follows from (3.11) that
VS = 0 as the screen in Riemannian. Using this in (3.8), and (3.9), together with

the fact that µ = 0, we have
?

Aξ= 0, and τ = d ln(ν). �

Lemma 3.3. Let (M, ζ) be a normalized null hypersurface of n + 2-dimensional
BST such that decomposition (3.1) is given. Then,

Ric(VS , ξ) = −µRic(N, ξ)− νRic(ξ, ξ). (3.12)

Proof. Since V is parallel, we have,

Ric(VS , ξ) = Ric(V − µN − νξ, ξ)
= Ric(V, ξ)− µRic(N, ξ)− νRic(ξ, ξ)
= −µRic(N, ξ)− νRic(ξ, ξ). (3.13)

�

Proposition 3.4. Let M be a null hypersurface of n+ 2-dimensional BST (M, g)
furnished with a closed rigging ζ. If M is totally geodesic then either V is tangent
to M or Ric(N, ξ) = 0.

Proof. From [6](see item 3 in Corollary 32 ), M is totally geodesic implyRic(VS , ξ) =
0. Using this in item (a) lemma 3.3, we have µRic(N, ξ) = 0. That is either µ = 0
or Ric(N, ξ) = 0. That is V = νξ or Ric(N, ξ) = 0. �

As V is parallel, we have the following nonexistence result concerning to Einstein
BST or BST of constant sectional curvature.

Proposition 3.5. There is no Lorentzian Einstein manifold(respectively, Lorentzian
space form) with non zero cosmology constant ∧ (respectively, with non zero sec-
tional curvature k) admitting a parallel null vector field V .
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Proof. Suppose that such a Lorentzian manifold exists. Being V parallel, we have

0 = Ric(V, ξ −N) = ∧
(
g(V, ξ)− g(V,N)

)
= ∧(µ− ν).

Thus ∧ = 0 along the null hypersurface. Indeed, if ∧ 6= 0 then µ = ν and from
(3.11), we have 0 ≤ g(VS , VS ) = −2µ2 = −2ν2 which is not possible for ν 6= 0.
But µ = ν = 0 leads to V = VS which is also not possible since VS is spacelike
and V 6= 0. Since ∧ is constant on M and vanishes along the null hypersurface,
then it is vanished also along M .

Similar, we prove for Lorentzian space form case. �

Lemma 3.6. Let (M, ζ) be a normalized null hypersurface of n + 2-dimensional
BST (M, g). If τ = 0 along the screen, then ν, and µ satisfy the following

∗
∇ ν = −ANVS and

∗
∇ µ = −

∗
Aξ VS . (3.14)

Proof. From equation (3.9) and (3.10), we have for every X ∈ S(ζ){
X · ν = ντ(X)− g(ANVS , X)

X · µ = µτ(X)− g(
∗
Aξ VS , X)

⇒

{
g(
∗
∇ ν,X) = ντ(X)− g(ANVS , X),

g(
∗
∇ µ,X) = µτ(X)− g(

∗
Aξ VS , X),

⇒

{
g(
∗
∇ ν +ANVS , X) = ντ(X),

g(
∗
∇ µ+

∗
Aξ VS , X) = µτ(X).

(3.15)

Setting τ = 0 in (3.15), we have the result. �

Let {
?

E0= ξ,
?

E1, ...,
?

En} be a quasi-orthonormal frame field for (M, ζ). From
equation (3.8), we obtain for all i = 1, ..., n

?

∇ ?
Ei

VS = ν
?

Aξ
?

Ei +µAN
?

Ei . (3.16)

Thus we have the following.

Proposition 3.7. Let M be a normalized null hypersurface of BST (M, g) admit-
ting a rigging vector field ζ. If τ = 0 along the screen, then

(1)

∆?µ = −VS ·Hξ +Ric(VS , ξ)

−νtr(
?

A
2

ξ)− µtr(AN◦
?

Aξ) + g
( ?

Aξ VS , ANξ
)
. (3.17)

(2)

∆?ν = −VS ·HN +Ric(VS , N)

+µtr(A2
N ) + ν(tr(AN◦

?

Aξ) + g(R(VS , N)ξ,N) (3.18)

(3)

∆gµ = −
n∑
j=1

n∑
i=1

g
(
g[i,0](

?

Ei ·µ)
?

Aξ
?

Ej ,
?

Ej

)
+

?

∆ µ+

n∑
i=1

ξ ·
(
g[i,0](

?

Ei ·µ)
)

+ C(ξ,
?

∇ µ).
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Proof. (1) Since
?

Aξ is diagonalizable, from the quasi-orthonormal frame field {
?

E0=

ξ,
?

E1, ...,
?

En}, we have,

−div(
?

∇ µ) = −∆?µ = div
?
∇(

?

Aξ VS ) =

n∑
i=1

g
( ?

∇ ?
Ei

(
?

Aξ VS ),
?

Ei

)
(3.8)
=

n∑
i=1

g
(

(
?

∇ ?
Ei

?

Aξ)VS ,
?

Ei

)
+

n∑
i=1

g
( ?

Aξ (µAN
?

Ei +ν
?

Aξ
?

Ei),
?

Ei

)
=

n∑
i=1

g
(

(
?

∇ ?
Ei

?

Aξ)VS + C(
?

∇ ?
Ei

?

Aξ, VS )ξ,
?

Ei

)
+µtr(

?

Aξ ◦AN ) + νtr(
?

A
2

ξ)

=

n∑
i=1

g
(

(∇ ?
Ei

?

Aξ)VS ,
?

Ei

)
+ µtr(

?

Aξ ◦AN ) + νtr(
?

A
2

ξ).

Now, Gauss-Codazzi equations lead to

−
?

∆ µ =

n∑
i=1

g
(

(∇VSAN )
?

Ei,
?

Ei

)
+

n∑
i=1

g
(
R(

?

Ei, VS )
?

Ei, N
)

+ µtr(
?

Aξ ◦AN ) + νtr(
?

A
2

ξ)

=

n∑
i=1

g
(

(∇VS

?

Aξ)
?

Ei,
?

Ei

)
−Ric(VS , ξ) + g(R(ξ, VS )ξ,N)

+g(R(ξ, ξ)VS , N) + µtr(
?

Aξ ◦AN ) + νtr(
?

A
2

ξ)

= VS ·Hξ −Ric(VS , ξ) + νtr(
?

A
2

ξ) + µtr(AN◦
?

Aξ)− g
( ?

Aξ VS , ANξ
)
.

(2) Similarly, we have

−div(
?

∇ ν) = −∆?ν = div
?
∇(ANVS ) =

n∑
i=1

g
( ?

∇ ?
Ei

(ANVS ),
?

Ei

)
(3.8)
=

n∑
i=1

g
(

(
?

∇ ?
Ei

AN )VS ,
?

Ei

)
+

n∑
i=1

g
(
AN (µAN

?

Ei +ν
?

Aξ
?

Ei),
?

Ei

)
=

n∑
i=1

g
(

(
?

∇ ?
Ei

AN )VS + C(
?

∇ ?
Ei

AN , VS )ξ,
?

Ei

)
+µtr(A2

N ) + ν(AN◦
?

Aξ)

=

n∑
i=1

g
(

(∇ ?
Ei

AN )VS ,
?

Ei

)
+ µtr(A2

N ) + ν(tr(AN◦
?

Aξ),
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and by Gauss-Codazzi equations

−
?

∆ ν =

n∑
i=1

g
(

(∇VS

?

Aξ)
?

Ei,
?

Ei

)
+

n∑
i=1

g
(
R(

?

Ei, VS )
?

Ei, ξ
)

+ µtr(A2
N ) + ν(tr(AN◦

?

Aξ)

=

n∑
i=1

g
(

(∇VS

?

Aξ)
?

Ei,
?

Ei

)
−Ric(VS , N)

+g(R(N,N)VS , ξ) + g(R(VS , N)ξ,N) + µtr(A2
N ) + ν(tr(AN◦

?

Aξ)

= VS ·HN −Ric(VS , N) + µtr(A2
N ) + ν(tr(AN◦

?

Aξ) + g(R(VS , N)ξ,N).

(3) Also,

∇u =

n∑
i=0

g[i,0](
?

Ei ·µ)ξ +

n∑
i=1

g[0,i](ξ · µ)
?

Ei +
?

∇ µ. (3.19)

∆gµ = tr(∇u) =

n∑
j=0

g̃(∇ ?
Ej

∇u,
?

Ej) =

n∑
j=1

g(∇ ?
Ej

∇u,
?

Ej) + g(∇ξ∇u,N)

= −
n∑
j=1

n∑
i=0

g
(
g[i,0](

?

Ei ·µ)
?

Aξ
?

Ej ,
?

Ej

)
+

n∑
j=1

n∑
i=1

g
( ?

Ej ·(g[i,0]ξ · µ)
?

Ei +g[0,i](ξ · µ)
?

∇ ?
Ej

?

Ei,
?

Ej

)
+

?

∆ µ+

n∑
i=0

[
ξ ·
(
g[i,0](

?

Ei ·µ)
)
− g[i,0](

?

Ei ·µ)τ(ξ)− g[0,i](ξ · µ)τ(
?

Ei)
]

+ C(ξ,
?

∇ µ)

(3.4)
= −

n∑
j=1

n∑
i=1

g
(
g[i,0](

?

Ei ·µ)
?

Aξ
?

Ej ,
?

Ej

)
+

?

∆ µ+

n∑
i=1

ξ ·
(
g[i,0](

?

Ei ·µ)
)

+ C(ξ,
?

∇ µ).

(3.20)

�

4. Special attention to PFW

Fix u0 ∈ R and consider the hypersurface

Πu0
:= {(x, v, u) ∈ M̄ : u = u0} =M× R× {u0}. (4.1)

Πu0 is totally geodesic, since locally V = ∂v.
A direct computation shows that the non-necessarily null Christoffel’ symbols of

(1.3) are

Γkij = Γ
k(R)
ij Γvuj = Γvju =

1

2

∂H

∂xi
(x, u),

Γkuu = −1

2

n∑
m=1

gkmR
∂H

∂xm
(x, u), Γvuu =

1

2

∂H

∂u
(x, u),

where Γ
k(R)
ij are Christoffel’ symbols associated to the Riemannian metric on M.

From this, the connection is given by:

∇∂xi
∂xj =

n∑
k=1

Γkij∂xk,∇∂xi
∂u = Γvui∂v,∇∂u∂u =

n∑
k=1

Γkuu∂k + Γvuu∂v, (4.2)

for every i, j.k ∈ {1, ...n}.
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Remark. [7] Special classes of PFW are:

(a) pp-waves that is PFW for which h is flat.
(b) plane waves, PFW for which h is flat and H is a quadratic polynomial in

the coordinates on M with u-dependent coefficients.
(c) Cahen-Wallach spaces, which are Lorentzian symmetric spaces. Here h is

flat and H is a quadratic polynomial in the coordinates onM with constant
coefficients.

The Ricci curvature of the PFW is given by [5]

R̄ic =

n∑
i,j=1

R
(R)
ij dxi ⊗ dxj − 1

2
∆xHdu⊗ du = RicR − 1

2
∆xHdu⊗ du, (4.3)

where R
(R)
ij is the components of the Ricci curvature associated to the Riemannian

metric on M, and ∆xH the Laplacian of H with respect to x = (x1, ..., xn). Thus,
R̄ic is null if and only if both, the Riemannian Ricci tensor RicR and the spatial
Laplacian ∆xH, vanish.

Our first result establishes sufficient conditions to guarantee that a totally ge-
odesic null hypersurface in special classes pp−waves is, in fact, a member of the
family Πu0

(u0 ∈ R).

Theorem 4.1. Let M be a totally geodesic null hypersurface, in one of the special
classes pp−waves, plane waves or Cahen-Wallach generically denoted by (M, g)
such that ∆xH 6= 0. Then M is a member of the family Πu0

(u0 ∈ R).

Proof. With respect to the quasi frame field {∂i, ∂v, ∂u}, 1 ≤ i ≤ n,

ξ = ξ0 + ξv∂v + ξu∂u.

Since (M, ζ) is totally geodesic, we get

RicR(ξ0, ξ0) =
1

2
∆x(H)g(∂v, ξ)2 =

1

2
∆x(H)µ2. (4.4)

But RicR(ξ0, ξ0) = 0 taking into account the flatness of h. Therefore, from (4.4), we
have µ = 0, and from (3.11), we have that VS = 0 since the screen is Riemannian.
That is ∂v = νξ which implies that, for every x ∈M , ∂v⊥x = ξ⊥x = TxM. Hence, M
is a leaf of the foliation determined by ∂v⊥ and therefore is a member of the family
Πu0

(u0 ∈ R). �

Corollary 4.2. Let M be a totally geodesic null hypersurface in PFW for which
(M, h) is ricci flat, and ∆xH 6= 0. Then M is a member of the family Πu0(u0 ∈ R).

Example 4.1. Let Consider the PFW (R4, ḡ) , where ḡ is given by:

ḡ = exp(u+ x− y)du2 + 2dudv + exp(x− y)[dx2 + dy2] (4.5)

Christoffel Symbols and Curvatures. A direct computation shows that the
non-necessarily null Christoffel’ symbols are

Γxxx = Γyxx = Γyxy = −Γxyy = −Γyyy = −Γxxy = −1,

Γvux = Γvxu = −Γvuy = −Γvyu = exp(u+ x− y),

Γxuu = −Γyuu =
1

2
exp(u),

Γvuu =
1

2
exp(u+ x− y).
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The only non-null components of the Ricci curvature of the metric are

Ric(∂u, ∂u) = −1

2
∆xH(x, u) = exp(u).

Ric = −1

2
∆xHdu⊗ du = exp(u)du⊗ du. (4.6)

As exp(u) 6= 0, we have that ∆xH 6= 0. Therefore according to Theorem 4.1, each
null hypersurface here is a member of the family Πu0

(u0 ∈ R).

4.2. Non uniqueness of parallel null vector in PFW. Localy, for every X,Z ∈
Γ(TM), we have the following:

Z = Zu∂u+ Zv∂v +

n∑
i=1

Zi∂i X = Xu∂u+Xv∂v +

n∑
i=1

Xi∂i

where for i = 1, ..., n, Zi and Xi are Riemannian part of Z and X respectively. By
straightforward computation we have:

∇̄XZ =
[
X · Zu

]
∂u+

[
X · Zv +Xu

(
Γvuu +

n∑
i=1

XiΓviu

)
+

n∑
i=1

XiZuΓvui

]
∂v

+

n∑
k=1

[
X · Zk +

n∑
i,j=1

XiZjΓkij
]
∂k. (4.7)

In other hand, Z is null vector if 0 = ḡ(Z,Z) = ḡ(Zi,Zi)+2ZuZv+(Zu)2H(x, u).
Thus, Z is a parallel null vector field if and only if it satisfies the following system
of equations:

ḡ(Z,Z) + 2ZuZv + (Zu)2H(x, u) = 0,

X · Zu = 0,

X · Zv +Xu
(

Γvuu + Γvuu +
∑n
i=1X

iΓviu

)
+
∑n
i=1X

iZuΓvui = 0,

X · Zk +
∑n
i,j=1X

iZjΓkij = 0.

(4.8)

It is easy to see that when H is constant, the vector field ∂u− 1
2H∂v satisfies the

above system.

Proposition 4.3. Let M =M×R2 be an autonomous PFW (ie. H(x, u) ≡ H(x))
with satisfies the timelike energie condition such that M is compact. Then ∂v
and ∂u − 1

2H(x)∂v are two parallel null vector fields. Moreover the distribution

determined by (∂u− 1
2H(x)∂v)⊥ is a totally geodesic null foliation on M.

Proof. From (4.3), timelike convergence condition R(T, T ) ≥ 0 for all timelike vec-
tor T holds if and only if RicR(T0, T0) ≥ 0 ∀T0 ∈ TM, and ∆xH ≤ 0. From the
second inequality together with the compactness ofM, we have that H is constant.
Therefore ∂u− 1

2H(x)∂v is a parallel null vector, which gives the result. �

The following propositions give conditions ensuring the uniqueness of parallel
null vector fields.

Proposition 4.4. Let (M, g) be a pp−wave for which the Riemannian curvature of
h is different from zero almost everywhere. Then there exists up to constant factor
only one parallel null vector field.
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Proof. The only non-vanishing Riemannian curvature terms of g, up to symmetries
are

R(∂i, ∂u, ∂u, ∂j) =
1

2

∂2H

∂xi∂xj
. (4.9)

If Z = Zu∂u+ Zv∂v +

n∑
i=1

li∂i = g(Z, ∂v)∂u+ (g(Z, u)− g(Z, ∂v)H)∂v + Z0

is another parallel null vector field, then from (4.9), it satisfies the following system
of equations

0 = g( R(∂xi, ∂u)Z, ∂j) = Zu 1

2

∂2H

∂xi∂xw
(x, u)⇒ Zu = 0 (4.10)

0 = g(Z,Z) = (Zu)2H(x, u) + 2ZuZv + g(Z0,Z0). (4.11)

It follows from (4.10) that g(Z0,Z0) = 0, that is Z0 = 0. Thus Z = g(Z, ∂u)∂v. �

More generally, we have the following.

Proposition 4.5. In PFW such that det(HessH) 6= 0 at one point). Then there
exists up to constant factor only one parallel null vector.

Proof. If we suppose that ∂w is another parallel null vector fields in PFW which
is independent to ∂v at some point x, then according to the sign of the constant
function g(∂v, ∂w), a parallel timelike vector field L could be constructed as a
linear combination of ∂v and ∂w. So, without loss of generality, let us suppose that
g(∂v, ∂w) > 0, then T = ∂v−∂w is a timelike parallel vector field, and from this, the
metric would split around x as a product manifolds. That is M is decompossable
and which is absurde since from [10, Proposition 3.18] when det(HessH) 6= 0, PFW
is indecomposable. �

Let us mention the following elementary fact.

Theorem 4.6. There is no compact null hypersurface in PFW for which H has
sign.

Proof. The vector field ∇v = ∂u−H(x, u)∂v is a nowhere vanishing timelike gra-
dient field in PFW as ḡ(∇v,∇v) = −H(x, u) < 0. Assume existence of compact
null hypersurface M and write ∇v = aξ+bN +X according to decomposition (2.2)
meaning that X ∈ S (N) and a, b ∈ C∞(M). Then, being i : M ↪→M the inclusion

map, we get ∇̃(v ◦ i) = bξ+X and by compactness there is a point in M such that

∇̃(v ◦ i) vanishes. At such a point, ∇v is null which is a contradiction. �

From now on, we let (M, ζ) be a normalized null hypersurface with integrable

screen distribution S (ζ). From [3] M is locally a product manifold L×
◦
M where L

is a null curve and
◦
M is a leaf of S(ζ) as a codimension two spacelike submanifold

of M̄.
From (2.6) and (2.7), we have

∇̄XY =
◦
∇X Y + C(X,Y )ξ +B(X,Y )N, (4.12)
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for all X,Y ∈ S (ζ). Here,
◦
∇ denotes the induced connection of

◦
M from ∇. It

follows that its second fundamental form is

Iζ(X,Y ) = C(X,Y )ξ +B(X,Y )N, X, Y ∈ S (ζ).

Taking traces from this expression we obtain that the mean curvature field is given
by

H = tr(AN )ξ + tr(
?

Aξ)N = HNξ + HξN, (4.13)

where Hξ (resp. HN ) is the (non normalized) null mean curvature of (M, ζ)(resp.

the trace of AN ). Let A ⊥
VS

the shape operator associated to
⊥
VS := νξ + µN , a

globally defined normal vector field on the compact leaf
◦
M . Then

ḡ(A ⊥
VS

X,Y ) = ḡ(Iζ(X,Y ),
⊥
VS ) = µḡ(ANX,Y ) + νḡ(

?

Aξ X,Y ). (4.14)

We will always be considering an immersion Ψ :
◦
M→M, but we will treat Ψ locally

as an embedding. We consider now the function fu :
◦
M−→ R defined by

fu = ρu ◦Ψ, (4.15)

where ρu denotes the map M̄ 3 (x, v, u) 7→ u ∈ R. For every X ∈ S (ζ), we get

dfu(a)(X) = dρu

(
Ψ(a)

)
◦ dΨ(a)(X) = dρu

(
Ψ(a)

)
(Ψ∗aX).

So, indentifying X with Ψ∗X, we have

g(
?

∇ fu, X) = g(∇ρu,Ψ∗X) = g(∂v,Ψ∗X) = g(VS + νξ + µN,Ψ∗X) = g(VS ,Ψ∗X).(4.16)

Therefore,
?

∇ fu = VS . (4.17)

Also,

?

∆ fu = div
?

∇ fv = div(VS ) = tr(
?

∇ VS ) =

n∑
i=1

ḡ(
?

∇ ?
Ei

VS ,
?

Ei) =

n∑
i=1

ḡ(∇ ?
Ei

VS ,
?

Ei)

=

n∑
i=1

ḡ(∇ ?
Ei

∂v−
⊥
VS ,

?

Ei) = −
n∑
i=1

ḡ(∇ ?
Ei

⊥
VS ,

?

Ei) =

n∑
i=1

ḡ(A ⊥
VS

, Ei). (4.18)

Then, from (4.14) and (4.18),

?

∆ fu = tr(A ⊥
VS

) = ḡ(H, ∂v) = µHN + νHξ. (4.19)

Let A⊥
E

denote the shape oprator associated to
⊥
E:=

?
ν ξ+

?
µ N , a globally defined

normal vector field on
◦
M where

∗
µ= ḡ(∂u, ξ) and

∗
ν= ḡ(∂u,N). Then

ḡ(A⊥
E
X,Y ) = ḡ(Iζ(X,Y ),

⊥
E) =

?
µ ḡ(ANX,Y )+

?
ν ḡ(

?

Aξ X,Y ). (4.20)

Consider also the function fv : M −→ R defined by

fv = ρv ◦Ψ (4.21)

where ρ(v) denotes the map M 3 (x, v, u) 7→ v ∈ R. As before, we get
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?

∇ fv = E (4.22)

where ∂u = E + E⊥ = E+
?
ν ξ+

?
µ N.

Also,

?

∆ fv = div
?

∇ fv = div(E) = tr(
?

∇ E) =

n∑
i=1

g(∇ ?
Ei

E,
?

Ei) =

n∑
i=1

g(∇ ?
Ei

∂u−
⊥
E,

?

Ei)

=

n∑
i=1

g(∇ ?
Ei

∂u,
?

Ei)−
n∑
i=1

g(∇ ?
Ei

⊥
E,

?

Ei) =

n∑
i=1

g(∇ ?
Ei

∂u,
?

Ei) +

n∑
i=1

g(A⊥
E
,
?

Ei)

=

n∑
i=1

g(∇ ?
Ei

∂u,
?

Ei) + g(H, E⊥) =

n∑
i=1

g(∇ ?
Ei

∂u,
?

Ei)+
∗
µ HN+

∗
ν Hξ. (4.23)

From this, we have the following proposition.

Proposition 4.7. Let (M, ζ) be a screen integrable normalized null hypersurface
in PFW with vanishing rotational one form τ , fu and fv given by equation (4.15)
and (4.21). Then,

∆gfu = −
n∑
j=1

n∑
i=1

g
(
g[i,0](

?

Ei ·fu)
?

Aξ
?

Ej ,
?

Ej

)
+

n∑
i=1

ξ ·
(
g[i,0](

?

Ei ·fu)
)

+ C(ξ, Vζ) + µHN + νHξ

∆gfv = −
n∑
j=1

n∑
i=1

g
(
g[i,0](

?

Ei ·fv)
?

Aξ
?

Ej ,
?

Ej

)
+

n∑
i=1

ξ ·
(
g[i,0](

?

Ei ·fv)
)

+C(ξ, E) +

n∑
i=1

g(∇ ?
Ei

∂u,
?

Ei)+
∗
µ HN+

∗
ν Hξ (4.24)

Theorem 4.8. Let M be a totally geodesic null hypersurface with integrable screen
distribution all of whose leaves are compact in a PFW for which HN has sign.
Then, the following are satisfied

(a)
◦
M is a codimension two minimal submanifold of M .

(b) Ψ(
◦
M) ⊂

{
(x, v0, u0), x ∈M

}
=M×{v0} × {u0}.

(c)
◦
M is locally isometric to M.

Moreover, either M is a member of the family Πu0
(u0 ∈ R) or

◦
M is codimension

two totally geodesic submanifold of M .

Proof. Since M is totally geodesic, then the assumption on HN together with equa-

tion (4.19), assures that either
?

∆ fu ≥ 0 or
?

∆ fu ≤ 0 on
◦
M . By compactness,

?

∆ fu = 0. That is fu is constant on
◦
M

Now, since fu is constant on
◦
M, then Φ(

◦
M) ⊂ Πu0

. Thus identifying
?

Ei (1 ≤
i ≤ n) to

Φ∗(
?

Ei) = Fi + b∂v ∈ Γ(TΠu0
), and using (4.2), we have that

ḡ(∇̄ ?
Ei

∂u,
?

Ei) = 0.
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From this, (4.23) leads to
?

∆ fv =
∗
µ HN . That is HNξ =

?

∆ fv∂v. Hence, we must

have HN = 0. Indeed, if we suppose that HN 6= 0, then we will have either
?

∆ fv ≥ 0

or
?

∆ fv ≤ 0 on
◦
M . By compactness,

?

∆ fu = 0, which is absurde. Therefore,
◦
M

is a codimension two minimal submanifold of M , and fv is constant on
◦
M . Which

proves item (a) and (b).
Now, we may write Ψ locally as

Ψ :
◦
M→M ,a 7→ (φ(a), v0, u0).

where

φ :
◦
M→M , a 7→ φ(a) = (x1(a), x2(a), ..., xn(a))

From this, for every X ∈ Ta
◦
M , we compute

φ∗X = (U1, U2, ..., Un).

Hence, for every X,Y ∈ Ta
◦
M , we get

h(dφ(X), dφ(Y )) = h(dφ(X), dφ(Y )) + 2ḡ(dΨ(X), ∂v)ḡ(dΨ(X), ∂u)

+H(x, u)ḡ(dΨ(X), ∂v)ḡ(dΨ(Y ), ∂v)

= ḡ(dΨ(X), dΨ(Y )) = g(X,Y )

In other words, φ∗h = g, which means that φ :
◦
M→M is a local isometry.

Now as fu is constant on
◦
M , from (4.17), we have VS = 0. Hence, using (3.11),

we get either µ = 0 or ν = 0. That is either ∂v = νξ or ∂v = µN .

(i) If ∂v = νξ, then from Theorem 4.1, M will be a member of the family
Πu0

(u0 ∈ R).
(ii) If not if ∂v = µN , then AN = 0. Using the fact that M is totally geodesic,

we have that
◦
M is a codimension two totally submanifold of M which

complete the proof of the Theorem.

�

Corollary 4.9. Let (M, ζ) be a totally geodesic null hypersurface with integrable
screen distribution all of whose leaves are compact in a PFW for which HN has
sign. Then

(i) ∆gfu = 0, ∆gfv = 0.
(ii) φ is a Riemannian covering map

Proof. (i) Using the fact that Hξ = 0, fu and fv constant on
◦
M , in Eq.(4.24)-

(4.24) the claim follows.
(ii) From [9, p.4] every local isometry between complete Riemannian manifolds

is a covering map.
�

Corollary 4.10. Let (M, ζ) be a toally geodesic null hypersurface with integrable
screen distribution all of whose leaves are compact in a PFW for which HN has
sign, and ∆xH 6= 0. Then,

(a) M is a member of the family Πu0
(u0 ∈ R).

(b) R̄ic(N,N) = 1
2∆xHḡ(∂v,N)2.



74 C. ATINDOGBÉ, T. KEMAJOU MBIAKOP

Proof. As ∂v = νξ or ∂v = µN , we have that ḡ(X, ξ) = ḡ(X,N) = 0, for every
X ∈ Γ(TΠu0). From (4.3), we have 1

2∆xHḡ(∂v, ξ)2 = 0. That is ∂v = νξ. Using

again (4.3), we have R̄ic(N,N) = 1
2∆xHḡ(∂v,N)2. Which give the result. �

When HN = 0, Theorem 4.8 still true and we have the following example.

Example 4.3. Take M = (S2 × R2, g = gs + 2dudv + H(x, u)du2. The family
Πu0(u0 ∈ R) is an screen integrable totally geodesic null hypersurface with compact
totally geodesic leaves given by {S2 × {v0} × {u0}, v0, u0 ∈ R}. If we suppose that
H is constant, then (∂u− 1

2H∂v)⊥ and ∂u⊥ will give rise to two screen integrable
totally geodesic null foliations, both with the same compact totally geodesic screen
leaves.

In what follows, l1(M) stands for the space of Lebesgue integrable functions on
M

Lemma 4.11. (see [11]) Let X be a smooth vector field on n-dimensional complete,
non-compact oriented Riemannian manifold Mn, such that divMX does not change
sign on Mn. If |X| ∈ l1(M), then divMX = 0.

Theorem 4.12. Let (M, ζ) be a totally geodesic null hypersurface with integrable
screen distribution all of whose leaves are complete noncompact in a PFW for
which HN has sign, and |VS | is Lebesgue integrable. Then either M is a member

of the family Πu0
(u0 ∈ R)or

◦
M is totally geodesic in M .

Proof. Since M is totally geodesic, and |VS | is Lebesgue integrable, equation (4.15)
together with lemma 4.11 give 0 = div(VS ) = µHN = 0. That is either µ = 0 or
HN = 0. Which gives the result. �
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