
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 13 Issue 1 (2021), Pages 16-40.

ON THE CONVERGENCE OF A FIFTH-ORDER ITERATIVE

METHOD IN BANACH SPACES

GAGANDEEP1,2, RAJNI SHARMA3,∗, I. K. ARGYROS4

Abstract. This paper is devoted to convergence study and analysis of a fifth-
order iterative method to solve nonlinear equations in Banach spaces. The idea

of the Lipschitz condition on the second Fréchet derivative has been used to
obtain semilocal convergence balls, R-order of convergence and error bounds

by following the main theorem. The local convergence follows under weak-

Lipschitz-type conditions. Theoretical results are verified through numerical
examples, including integral equation and boundary value problem. It is ob-

served that better results have been obtained in terms of accuracy and number

of iterations in comparison with the well-known existing algorithms using sim-
ilar information. The basins of attraction of the presented method show good

performance as compared to already established methods which enhance the

applicability of our approach.

1. Introduction

Solving nonlinear equations or system of nonlinear equations is a challenging task
in numerical analysis and various other branches of applied sciences. Many real-life
problems arising in science and engineering [1], [2], [3] can be modeled to algebraic
and differential equations whose solutions require solving such equations. Thus,
many researchers have extensively studied these problems and different methods
have been developed to find their solution. In this study, we consider the problem
of approximating a solution x∗ of the equation

F (x) = 0, (1.1)

where F : Ω ⊆ X → Y is a nonlinear operator on an open convex subset Ω of a
Banach space X with values in a Banach space Y . The solution of this type can
rarely be found in a closed form. So iterative methods are used. The solution x∗

can be obtained as a fixed point of some function Φ : Ω ⊆ X → Y by means of
fixed point iteration [4, 5]

xn+1 = Φ(xn), n = 0, 1, 2, . . .

Our aim here is to focus on using techniques of functional analysis to obtain domains
that contain solutions of (1.1). Uniqueness conditions for these domains are also
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established. Starting from one initial approximation of a solution x∗of the equation
F (x) = 0, a sequence {xn} of approximations is constructed such that {‖xn−x∗‖}
is decreasing and a better approximation to the solution x∗ is obtained at every
step. There are a variety of iterative methods for solving (1.1). The quadratically
convergent Newton’s method is most widely used and is given as:

xn+1 = xn − F ′(xn)−1F (xn), n = 0, 1, 2, . . . (1.2)

where x0 is the initial point and F ′(xn)−1 ∈ L(Y,X), where L(Y,X) is the set of
bounded linear operators from Y into X.
Three types of studies are done to prove the convergence of iterative algorithms:
local, semilocal and global. First, the local convergence is based on the information
around a solution x∗ to find estimates of the computed radii of the convergence
balls, (see [6, 7, 9, 8, 10, 11, 12]). The convergence ball of an iterative method is
important as it shows the extent of difficulty for choosing initial guess for iterative
method. Second, the semilocal convergence is based on the information around an
initial approximation x0, to obtain conditions ensuring the convergence of sequence
generated by the iterative method to the solution x∗, (see [13, 14, 15, 16, 17]). Third,
the global study of the convergence guarantees the convergence of the sequence
to the solution x∗ in a domain and independent of initial approximation x0 (see
[18, 19]). The convergence of Newton’s method in Banach spaces was established by
Kantorovich in [1]. Rall in [20] established the convergence of Newton’s method by
using recurrence relations. With the same approach, various researchers established
semilocal convergence of higher order methods in Banach spaces (see [21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] and references there in).
Inspired by ongoing research, the main goal and motivation of the paper is to
discuss semilocal and local convergence in Banach spaces of a three-step fifth order
iterative method introduced by Sharma [39]. The fifth order iterative scheme in
Banach spaces is given by;

un = xn − ΓnF (xn),

yn = xn + 1
2 (un − xn),

zn = xn − F ′(yn)−1F (xn),

xn+1 = zn − [2F ′(yn)−1 − F ′(xn)−1]F (zn),

(1.3)

where Γn = F ′(xn)−1, for n ∈ N. The main advantage to study the convergence
analysis of (1.3) in Banach spaces is to focus on the initial data as well as on the
solution obtained. Semilocal convergence analysis for this method is developed
using recurrence relations under second order derivative of Fréchet satisfying Lips-
chitz condition in Banach spaces. Based on these recurrence relations, an existence
and uniqueness theorem is established along with error bounds for the solution.
Several examples are worked out in which radii of convergence balls is computed
using the established theorem. The local convergence is established under weak-
Lipschitz-type conditions on first Fréchet derivative to extend its applicability. The
weak-Lipschitz-type continuity condition contains particular cases of the Lipschitz
and Hölder continuity conditions and is valid for the problems where the Lipschitz
and Hölder continuity conditions fail. We also analyze basins of attraction of (1.3)
and compare with methods in [23], [38] and [40]. A variety of examples are solved
to demonstrate the applicability of proposed approach. In comparison to method
in [23], the differentiability conditions of the semilocal convergence in this paper
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are mild.
The structure of the paper is given as follows: In Section 2, we give some basic
definitions, preliminary results and define the auxiliary functions. In Section 3,
the recurrence relations are constructed in order to establish the semilocal conver-
gence including radius of convergence, error bounds and uniqueness results, which
is completed in Section 4. The local convergence of (1.3) is presented in Section 5.
Various numerical examples are considered to verify theoretical results in Section 6.
Section 7 depicts the results of global convergence in an example system. Finally
conclusion is given in Section 8.

2. Preliminary results

Definition 2.1. Let X and Y be Banach spaces. An operator F that maps X into
Y is Fréchet differentiable at x0, if there exists a bounded linear operator A from
X into Y such that

lim
‖∆x‖→0

‖F (x0 + ∆x)− F (x0)−A∆x‖
‖∆x‖

= 0.

The linear operator A is called the first Fréchet derivative of F at x0 and is denoted
by F ′(x0).

Definition 2.2. A sequence {xn} in X is said to be convergent to a point x∗, if

lim
n→∞

‖xn − x∗‖ = 0.

Definition 2.3. A sequence {xn} converges with R-order at least τ > 1, if there
are constants K ∈ (0,∞) and γ ∈ (0, 1) such that ‖xn‖ ≤ Kγτ

n

, n ∈ Z+.

Let F : Ω ⊆ X → Y be a nonlinear twice Fréchet differentiable operator on an
open convex domain Ω. We assume that the inverse of F ′ at x0, Γ0 = F ′(x0)−1 ∈
L(Y,X) exists at some x0 ∈ Ω, where L(Y,X) is set of bounded linear operators
from Y into X. In the following we will assume that y0, z0 ∈ Ω and

(C1) ‖Γ0F (x0)‖ ≤ η0,

(C2) ‖Γ0‖ ≤ β0,

(C3) ‖F ′′(x)‖ ≤M,x ∈ Ω,

(C4) there exists a positive real number N such that

‖F ′′(x)− F ′′(y)‖ ≤ N‖x− y‖, for each x, y ∈ Ω. (2.1)

We firstly give an approximation of the operator F in the following lemma, which
will be used in next derivation.

Lemma 2.4. Assume that the nonlinear operator F : Ω ⊆ X → Y is continuously
twice Fréchet differentiable where Ω is an open convex set and X and Y are Banach
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spaces. Then we have

F (xn+1) =F ′′(xn)(un − xn)F ′(yn)−1
[
F ′(yn)− F ′(xn)

]
ΓnF (zn)

+

∫ 1

0

[
F ′′(xn + t(un − xn))− F ′′(xn)

]
(un − xn)(xn+1 − zn)dt

− 1

2

∫ 1

0

[
F ′′(xn +

1

2
t(un − xn))− F ′′(xn)

]
(un − xn)(xn+1 − zn)dt

+
1

2

∫ 1

0

[
F ′′(xn +

1

2
t(un − xn))− F ′′(xn)

]
(un − xn)ΓnF (zn)dt

+

∫ 1

0

[
F ′(zn + t(xn+1 − zn))− F ′(un)

]
(xn+1 − zn)dt. (2.2)

Proof. From last step of (1.3), we have

F ′(yn)(xn+1 − zn) +
[
2F ′(xn)− F ′(yn)

]
ΓnF (zn) = 0.

By Taylor’s theorem, we obtain

F (xn+1) = F (zn) + F ′(un)(xn+1 − zn) +

∫ 1

0

[
F ′(zn + t(xn+1 − zn))− F ′(un)

]
(xn+1 − zn)dt

= F (zn) + (F ′(un)− F ′(yn))(xn+1 − zn)−
[
2F ′(xn)− F ′(yn)

]
ΓnF (zn)

+

∫ 1

0

[
F ′(zn + t(xn+1 − zn))− F ′(un)

]
(xn+1 − zn)dt. (2.3)

Similarly, we obtain

F ′(un) = F ′(xn) + F ′′(xn)(un − xn) +

∫ 1

0

[
F ′′(xn + t(un − xn))− F ′′(xn)

]
(un − xn)dt,

and

F ′(yn) = F ′(xn) +
1

2
F ′′(xn)(un − xn) +

1

2

∫ 1

0

[
F ′′(xn +

1

2
t(un − xn))− F ′′(xn)

]
(un − xn)dt.

It follows that

F ′(un)− F ′(yn) =
1

2
F ′′(xn)(un − xn) +

∫ 1

0

[
F ′′(xn + t(un − xn))− F ′′(xn)

]
(un − xn)dt

− 1

2

∫ 1

0

[
F ′′(xn +

1

2
t(un − xn))− F ′′(xn)

]
(un − xn)dt, (2.4)

and

2F ′(xn)− F ′(yn) = F ′(xn)− 1

2
F ′′(xn)(un − xn)

− 1

2

∫ 1

0

[
F ′′(xn +

1

2
t(un − xn))− F ′′(xn)

]
(un − xn)dt.

(2.5)

Substituting (2.4) and (2.5) into (2.3), we can obtain (2.2). �
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We now define the following scaler functions that will be often used in the later
developments. Let

g(t) =
8 + 4t2 − t3

(2− t)3
, (2.6)

h(t) =
1

1− tg(t)
, (2.7)

φ(u, v) =

[
4u2

(2− u)2
+
v(3 + u)

2(2− u)
+
u(2 + u)2

2(2− u)2
p(u, v)

]
p(u, v), (2.8)

where

p(u, v) =
u2

(2− u)2
+

v

2(2− u)2
+

4v

3(2− u)3
.

Let q(u) = g(u)u − 1. Since q(0) = −1 and q(2) = +∞, then q(u) has at least a
zero in (0, 2). Let s is the smallest positive zero of the scalar function g(u)u− 1.
Some properties of the functions g, h, φ defined by (2.6)-(2.8) in the interval (0, s)
are given in the following lemma.

Lemma 2.5. Let the real functions g, h and φ be given in (2.6)-(2.8). Then

(i) g(u) and h(u) are increasing and g(u) > 1, h(u) > 1 for u ∈ (0, s),
(ii) φ(u, v) is increasing for u ∈ (0, s), v > 0.

Proof. The proof is obvious. �

Assume that conditions in (C1)-(C4) hold. We now denote a0 = Mβη, b0 =
Nβη2 and d0 = h(a0)φ(a0, b0). Let a0 < s and h(a0)d0 < 1. Furthermore, we can
define the following sequences for each n = 0, 1, 2, . . . .

ηn+1 = dnηn, (2.9)

βn+1 = h(an)βn, (2.10)

an+1 = Mβn+1ηn+1, (2.11)

bn+1 = Nβn+1η
2
n+1, (2.12)

dn+1 = h(an+1)φ(an+1, bn+1). (2.13)

From the definitions of an+1, bn+1, (2.9) and (2.10), we also have

an+1 = h(an)dnan, (2.14)

bn+1 = h(an)d2
nbn. (2.15)

Next, we shall study some properties of the previous scaler sequences. Later devel-
opments will require the following lemma.

Lemma 2.6. Let the real functions g, h and φ be given in (2.6)-(2.8). If

a0 < s and h(a0)d0 < 1, (2.16)

then we have

(i) h(an) > 1 and dn < 1 for each n = 0, 1, 2, . . .
(ii) the sequences {ηn}, {an}, {bn} and {dn} are decreasing ,
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(iii) g(an)an < 1 and h(an)dn < 1 for each n = 0, 1, 2, . . . .

Proof. By Lemma (2.5) and (2.16), h(a0) > 1 and d0 < 1 hold. It follows from
(2.9), (2.14) and (2.15) that η1 < η0, a1 < a0, b1 < b0. Moreover, by Lemma (2.5),
we have h(a1) < h(a0) and φ(a1, b1) < φ(a0, b0). This yields d1 < d0 and (ii) holds.
Based on these results we obtain g(a1)a1 < g(a0)a0 < 1 and h(a1)d1 < h(a0)d0 < 1
and (iii) holds. By induction we can derive that items (i), (ii) and (iii) hold. �

Lemma 2.7. Let the real functions g, h and φ be given in (2.6)-(2.8). Let θ ∈ (0, 1),
then g(θu) < g(u), h(θu) < h(u) and φ(θu, θ2v) < θ4φ(u, v) for u ∈ (0, s).

Proof. For θ ∈ (0, 1) and u ∈ (0, s), by using (2.6 - 2.8), the lemma can be easily
proved. �

Lemma 2.8. Under the assumptions of Lemma (2.6). Let γ = h(a0)d0 and
λ = 1/h(a0), then

dn ≤ λγ5n

, for each n = 0, 1, 2, . . . , (2.17)

and
n∏
i=0

di ≤ λn+1γ
5n+1−1

4 , n ≥ 0. (2.18)

Proof. Since a1 = γa0, b1 = h(a0)d2
0b0 < γ2b0, by Lemma (2.7) we have

d1 < h(γa0)φ(γa0, γ
2b0) < γ4d0 = γ51−1d0 = λγ51

.

Suppose dk ≤ λγ5k

, k ≥ 1, then by Lemma (2.6), we have ak+1 < ak and h(ak)dk <
1. Thus

dk+1 < h(ak)φ(h(ak)dkak, h(ak)d2
kbk)

< h(ak)φ(h(ak)dkak, h(ak)2d2
kbk)

< h(ak)4d5
k < λγ5k+1

.

Therefore it holds that dn ≤ λγ5n

, n ≥ 0.
By (2.17), we get

n∏
i=0

di ≤
n∏
i=0

λγ5i

= λn+1γ
∑n

i=0 5i

= λn+1γ
5n+1−1

4 , n ≥ 0.

This shows that (2.18) holds. �

Lemma 2.9. Under the assumptions of Lemma (2.6). Let γ = h(a0)d0 and
λ = 1/h(a0). Then the sequence {ηn} satisfies

ηn ≤ ηλnγ
5n−1

4 , n ≥ 0, (2.19)

and the sequence {ηn} converges to 0.

Proof. From(2.9) and (2.17), we have

ηn = dn−1ηn−1 = dn−1dn−2ηn−2 = · · · = η

(
n−1∏
i=0

di

)
≤ ηλnγ

5n−1
4 , n ≥ 0.

Because λ < 1 and γ < 1, it follows that ηn → 0 as n→∞. �
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3. Recurrence relations for the method

We firstly give an approximation of the operator F in the following lemma.

Lemma 3.1. Assume that the nonlinear operator F : Ω ⊆ X → Y is continuously
twice Fréchet differentiable operator where Ω is an open convex set and X and Y
are Banach spaces. Then we have

F (zn) = −1

2

∫ 1

0

F ′′(xn + t(yn − xn))Γn(F ′(yn)− F ′(xn))(zn − xn)2dt

+
1

2

∫ 1

0

[
F ′′(xn)− F ′′(xn + t(yn − xn))

]
(zn − xn)2dt

+

∫ 1

0

[
F ′′(xn + t(zn − xn))− F ′′(xn)

]
(1− t)dt(zn − xn)2. (3.1)

Proof. Since

F (xn) + F ′(yn)(zn − xn) = 0, (3.2)

and

yn − xn =
1

2
Γn(F ′(yn)− F ′(xn))(zn − xn) +

1

2
(zn − xn), (3.3)

by Taylor’s theorem and by (3.3), we have

(F ′(xn)− F ′(yn))(zn − xn) =

−1

2

∫ 1

0

F ′′(xn + t(yn − xn))
[
Γn(F ′(yn)− F ′(xn))(zn − xn)2 + (zn − xn)2

]
dt.

(3.4)

Again by Taylor’s theorem, we have

F (zn) = F (xn) + F ′(xn)(zn − xn) +
1

2
F ′′(xn)(zn − xn)2

+

∫ 1

0

[
F ′′(xn + t(zn − xn))− F ′′(xn)

]
(1− t)dt(zn − xn)2

= F (xn) + F ′(yn)(zn − xn) + (F ′(xn)− F ′(yn))(zn − xn) +
1

2
F ′′(xn)(zn − xn)2

+

∫ 1

0

[
F ′′(xn + t(zn − xn))− F ′′(xn)

]
(1− t)dt(zn − xn)2. (3.5)

Substituting (3.2) and (3.4) in (3.5), we get (3.1). �

We denote B(x, r) = {y ∈ X : ‖y−x‖ < r} and B(x, r) = {y ∈ X : ||y−x|| ≤ r}
in this paper. In the following, the recurrence relations are derived for the method
given by (1.3) under the assumptions mentioned in previous section.
For n = 0, the existence of Γ0 implies the existence of u0 and y0. This gives us

‖u0 − x0‖ = ‖Γ0F (x0)‖ ≤ η0. (3.6)
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This means that u0, y0 ∈ B(x0, Rη), where R = g(a0)/(1 − d0). Furthermore, we
have

‖I − Γ0F
′(y0)‖ ≤ ‖Γ0‖‖F ′(x0)− F ′(y0)‖

≤M‖Γ0‖‖y0 − x0‖

≤ 1

2
a0 < 1.

Since the assumption a0 < s < 1, by the Banach lemma it follows that F ′(y0)−1

exists and

‖F ′(y0)−1‖ ≤ ‖Γ0‖
1− ‖Γ0‖‖F ′(x0)− F ′(y0)‖

≤ 1

1− 1

2
a0

‖Γ0‖ =
2

2− a0
‖Γ0‖. (3.7)

we obtain

‖z0 − x0‖ = ‖F ′(y0)−1F (x0)‖ ≤ 2

2− a0
‖Γ0F (x0)‖. (3.8)

Consequently,

‖x1 − z0‖ ≤
(
‖F ′(y0)−1‖‖F ′(y0)− F ′(x0)‖+ ‖F ′(y0)−1F ′(x0)‖

)
‖Γ0F (z0)‖

≤ 2 + a0

2− a0
β‖F (z0)‖. (3.9)

Since

F (z0) = F (x0) + F ′(x0)(z0 − x0) +

∫ 1

0

[F ′(x0 + t(z0 − x0))− F ′(x0)] dt(z0 − x0)

= F (x0) + F ′(y0)(z0 − x0) + (F ′(x0)− F ′(y0))(z0 − x0)

+

∫ 1

0

[F ′(x0 + t(z0 − x0))− F ′(x0)] dt(z0 − x0). (3.10)

then

‖F (z0)‖ ≤ 4− a0

(2− a0)2
Mη2

0 . (3.11)

From(3.8), (3.9) and (3.11), we have

‖x1 − x0‖ ≤ ‖x1 − z0‖+ ‖z0 − x0‖ ≤ g(a0)η0. (3.12)

From the assumption d0 < 1/h0 < 1, it follows that x1 ∈ B(x0, Rη).
By a0 < s and g(a0) < g(s), we have

‖I − Γ0F
′(x1)‖ ≤ ‖Γ0‖‖F ′(x0)− F ′(x1)‖

≤M‖Γ0‖‖x1 − x0‖ ≤ a0g(a0) < 1.

It follows by Banach lemma that Γ1 = [F ′(x1)]−1 exists and

‖Γ1‖ ≤
‖Γ0‖

1− ‖Γ0‖‖F ′(x0)− F ′(x1)‖

≤ β0

1− a0g(a0)
= h(a0)β0 = β1. (3.13)

By Lemma (2.4) and Lemma (3.1), we get

‖F (z0)‖ ≤ 1

4
Ma0‖z0 − x0‖2 +

1

4
N‖y0 − x0‖‖z0 − x0‖2 +

1

6
N‖z0 − x0‖3. (3.14)
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and

‖F (x1)‖ ≤
[

a0

2− a0
M‖u0 − x0‖+

1

8
N‖u0 − x0‖2

]
β‖F (z0)‖

+

[
5

8
N‖u0 − x0‖2 +M‖u0 − z0‖

]
‖x1 − z0‖+

1

2
M‖x1 − z0‖2.

(3.15)

From (3.13), (3.14) and (3.15), we have

‖u1 − x1‖ = ‖Γ1F (x1)‖ ≤ ‖Γ1‖‖F (x1)‖
≤ h(a0)φ(a0, b0)η0 = d0η0 = η1. (3.16)

Because of g(a0) > 1, we obtain

‖u1 − x0‖ ≤ ‖u1 − x1‖+ ‖x1 − x0‖
≤ (g(a0) + d0)η0 < g(a0)(1 + d0)η < Rη. (3.17)

which shows that u1 and hence y1 ∈ B(x0, Rη).
In addition, we have

M‖Γ1‖‖Γ1F (x1)‖ ≤ h(a0)d0a0 = a1, (3.18)

N‖Γ1‖‖Γ1F (x1)‖2 ≤ h(a0)d2
0b0 = b1. (3.19)

Repeating the above derivation, we can obtain the system of recurrence relations
given in next lemma.

Lemma 3.2. Let the assumptions of Lemma (2.6) and conditions (C1)-(C4) hold.
Then the following items are true for each n = 0, 1, 2, . . .

(i) There exists Γn = [F ′(xn)]−1 and ‖Γn‖ ≤ βn,
(ii) ‖ΓnF (xn)‖ ≤ ηn,

(iii) M‖Γn‖‖ΓnF (xn)‖ ≤ an,
(iv) N‖Γn‖‖ΓnF (xn)‖2 ≤ bn,
(v) ‖xn+1 − xn‖ ≤ g(an)ηn,

(vi) ‖xn+1 − x0‖ ≤ Rη, where R = g(a0)
1−d0 ,

(vii) R < 1/a0.

Proof. The proof of (i)-(v) follows by using the above mentioned way and invoking
the induction hypothesis. We only consider (vi). By (v) and Lemma (2.9) we obtain

‖xn+1 − x0‖ ≤ ‖xn+1 − xn‖+ ‖xn − xn−1‖+· · ·+ ‖x1 − x0‖
≤ g(an)ηn + g(an−1)ηn−1 +· · ·+ g(a0)η0

≤ g(a0)[ηn + ηn−1 +· · ·+ η0]

≤ g(a0)[λnγ
5n−1

4 + λn−1γ
5n−1−1

4 +· · ·+ 1]η.

By Bernoulli’s inequality, for every real number x > −1 and every integer k ≥ 0,
we have (1 + x)k − 1 ≥ kx. Thus

‖xn+1 − x0‖ ≤ g(a0)
1− (λγ)n+1

1− λγ
η = g(a0)

1− (d0)n+1

1− d0
η < Rη,
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since λγ = d0 and d0 < 1.
Finally, From the definition of R and d0 it can be obtained that

R =
g(a0)

1− d0
=

g(a0)

1− h(a0)φ(a0, b0)
< 1/a0.

The lemma is proved. �

4. Semilocal convergence

Now we give a theorem to establish the semilocal convergence of (1.3), the exis-
tence and uniqueness of the solution and the domain in which it is located, along
with a priori error bounds, which lead to the R-order of convergence at least five
of iteration (1.3).

Theorem 4.1. Let X and Y be two Banach spaces and F : Ω ⊆ X → Y be a
nonlinear twice Fréchet differentiable operator on a non-empty open convex sub-
set Ω. g, h and φ are defined by (2.6)-(2.8). a0 = Mβη, b0 = Nβη2 and d0 =

h(a0)φ(a0, b0) satisfy a0 < s and h(a0)d0 < 1, B(x0, Rη) ∈ Ω where R = g(a0)
1−d0 .

Assume that x0 ∈ Ω and all conditions (C1)-(C4) hold. Then
(i) Starting from x0, the sequence {xn} generated by method (1.3) converges to a

solution x∗ of F (x) with xn, x
∗ belong to B(x0, Rη),

(ii) x∗ is the unique solution of F (x) in B

(
x0,

2

Mβ
−Rη

)
∩ Ω,

(iii) A priori error estimate is given by

‖xn − x∗‖ ≤ g(a0)ηλnγ
5n−1

4
1

1− λγ5n , (4.1)

where γ = h(a0)d0 and λ = 1/h(a0).

Proof. (i) By Lemma (3.2), the sequence {xn} is well defined in B(x0, Rη). Next
we prove that {xn} is a Cauchy sequence. Since

‖xm+n − xn‖ ≤ ‖xm+n − xm+n−1‖+· · ·+ ‖xn+1 − xn‖
≤ g(am+n−1)ηm+n−1 +· · ·+ g(an)ηn

≤ g(am+n−1)γ
5m+n−1−1

4 λm+n−1η +· · ·+ g(an)γ
5n−1

4 λnη

≤ g(an)λn
[
γ

5m+n−1−1
4 λm−1 +· · ·+ γ

5n−1
4

]
η

= g(an)γ
5n−1

4 λn
[
γ

5n[5m−1−1]
4 λm−1 +· · ·+ γ

5n[5−1]
4 λ+ 1

]
η,

by Bernoulli’s inequality, for every real number x > −1 and every integer k ≥ 0,
we have

(1 + x)k − 1 ≥ kx.
Thus,

‖xm+n − xn‖ ≤ g(a0)γ
5n−1

4 λn
1− γm.5n

λm

1− γ5nλ
η. (4.2)

It follows that {xn} is a cauchy sequence. So there exists a x∗ such that lim
n→∞

xn =

x∗.
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By letting n = 0,m→∞ in (4.2), we obtain

‖x∗ − x0‖ ≤ Rη, (4.3)

This shows x∗ ∈ B(x0, Rη).
(ii) Firstly we prove that x∗ is a solution of F (x) = 0. Since

‖F ′(xn)‖ ≤ ‖F ′(x0)‖+ ‖F ′(xn)− F ′(x0)‖
≤ ‖F ′(x0)‖+M‖xn − x0‖
≤ ‖F ′(x0)‖+MRη,

we can obtain

‖F (xn)‖ ≤ ‖F ′(xn)‖‖zn − xn‖+ ‖F ′(xn)− F ′(yn)‖‖zn − xn‖

≤ (‖F ′(x0)‖+MRη)
2

2− an
ηn +

1

2− an
Mη2

n

≤ (‖F ′(x0)‖+MRη)
2

2− a0
ηn +

1

2− a0
Mη2

n. (4.4)

By letting n → ∞ in (4.4), we find that ‖F (xn)‖ → 0 since ηn → 0. Hence, by
continuity of F in Ω, we obtain F (x∗) = 0.

Now we prove the uniqueness of x∗ in B

(
x0,

2

Mβ
−Rη

)
∩ Ω. Firstly we see that

x∗ ∈ B
(
x0,

2

Mβ
−Rη

)
∩ Ω. By using the fact R < 1/a0, it follows that

2

Mβ
−Rη =

(
2

a0
−R

)
η >

1

a0
η > Rη,

and then B(x0, Rη) ⊆ B
(
x0,

2

Mβ
−Rη

)
∩ Ω.

Let y∗ ∈ B
(
x0,

2

Mβ
−Rη

)
∩ Ω is another zero of F (x). By Taylor’s theorem, we

have

0 = F (y∗)− F (x∗) =

∫ 1

0

F ′(x∗ + t(y∗ − x∗))dt(y∗ − x∗). (4.5)

Since

‖Γ0‖
∥∥∥∫ 1

0

[
F ′(x∗ + t(y∗ − x∗))− F ′(x0)

]
dt
∥∥∥

≤Mβ

∫ 1

0

‖x∗ + t(y∗ − x∗)− x0‖dt

≤Mβ

∫ 1

0

(
(1− t)‖x∗ − x0‖+ t‖y∗ − x0‖

)
dt

<
Mβ

2

(
Rη +

2

Mβ
−Rη

)
= 1. (4.6)

It follows by Banach lemma that

∫ 1

0

(F ′(x∗ + t(y∗ − x∗))dt is invertible and hence

y∗ = x∗.
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By letting m→∞ in (4.2), we obtain (4.1) and furthermore

‖xn − x∗‖ ≤
g(a0)η

γ1/4(1− d0)

(
γ1/4

)5n

. (4.7)

This means that the method given by (1.3) is of R-order convergence at least
five. �

5. Local Convergence

In this section we present a local convergence analysis using the hypotheses only
on the first derivative that appears in method (1.3).
Let w0 : [0,+∞)→ [0,+∞) be a continuous and nondecreasing function satisfying
w0(0) = 0.
Define the parameter s0 by

s0 = sup{t ≥ 0 : w0(t) < 1}. (5.1)

Define functions g1, h1, g2 and h2 on the interval, [0, s0) by

g1(t) =

∫ 1

0
w((1− θ)t)dθ
1− w0(t)

,

h1(t) = g1(t)− 1,

g2(t) =
1

2
(1 + g1(t)),

and

h2(t) = g2(t)− 1,

where w : [0, s0) → [0,+∞) is a continuous and nondecreasing function satisfying
w(0) = 0.

We have h1(0) = −1, h2(0) =
−1

2
, h1(t) → +∞ as t → s−0 and h2(t) → +∞ as

t→ s−0 .
It follows by intermediate value theorem that equations h1(t) = 0, h2(t) = 0 have
solutions in the interval (0, s0). Denote by r1 and r2, respectively the smallest such
solutions. Define parameter s by

s = max{t ∈ [0, s0] : w0(g2(t)t) < 1}, (5.2)

and the functions g3 and h3 on the interval [0, s) by

g3(t) = g1(t) +
(w0(t) + w0(g2(t)t)

∫ 1

0
v(θt))dθ

(1− w0(g2(t)t))(1− w0(t))

and

h3(t) = g3(t)− 1,

where v : [0, s) → [0,+∞) is a continuous and nondecreasing function. We get
h3(0) = −1 and h3(t)→ +∞ as t→ s−.
Denote by r3 the smallest solution of equation h3(t) = 0 in (0, s).
Moreover, define parameter s1 by

s1 = max{t ∈ [0, s) : w0(g3(t)t) < 1} (5.3)
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and function s, g4, h4 on [0, s1) by

g4(t) = [1 +
(w0(g2(t)t) + w0(g3(t)t))

∫ 1

0
v(θg3(t)t)dθg3(t)

(1− w0(g3(t)t))(1− w0(g2(t)t))

+
(w0(t) + w0(g2(t)t))

∫ 1

0
v(θg3(t)t)dθg3(t)

(1− w0(g2(t)t))(1− w0(t))
]g3(t) (5.4)

and h4(t) = g4(t) − 1. we get h4(0) = −1 and h4(t) → +∞as t → s−1 . Denote by
r4 the smallest solution of equation h4(t) = 0 in (0, s1).
Define the radius of convergence r by

r = min{ri}, i = 1, 2, 3, 4. (5.5)

Then, we have that for each t ∈ [0, r),

0 ≤ gi(t) < 1. (5.6)

The local convergence analysis that follows uses the preceding notation and condi-
tions (A):

: (a1)F : Ω ⊆ X → Y is a continuously Fréchet differentiable operator and
there exists x∗ ∈ Ω such that F (x∗) = 0 with F ′(x∗)−1 ∈ L(Y,X)

: (a2)There exists w0 : [0,+∞) → [0,+∞) continuous and nondecreasing
function satisfying w0(0) = 0 and for each x ∈ Ω

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖).

Let Ω0 = Ω ∩ U(x∗, s0),Ω1 = Ω ∩ U(x∗, s).

: (a3) There exists functions w : [0,+∞) → [0,+∞) with w(0) = 0 and
v : [0, s)→ [0,+∞) is a continuous and nondecreasing such that

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ w(‖x− y‖) for each x, y ∈ Ω0 and

‖F ′(x∗)−1F ′(x)‖ ≤ v(‖x− x∗‖) for each x, y ∈ Ω1.

: (a4)U(x∗, r) ⊆ Ω.

: (a5) There exists R ≥ r such that
∫ 1

0
v(θR)dθ < 1.

Let Ω2 = Ω ∩ U(x∗, R)

Theorem 5.1. Suppose that the conditions (A) hold. Then, sequence {xn} starting
from x0 ∈ U(x∗, r)−{x∗} and generated by method (1.3) is well defined in U(x∗, r),
remains in U(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the
following estimates hold

‖un − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (5.7)

‖yn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (5.8)

‖zn − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (5.9)

and

‖xn+1 − x∗‖ ≤ g4(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (5.10)

where the functions gi are defined previously. Furthermore, the point x∗ is the only
solution of equation F (x) = 0 in Ω2.
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Proof. We shall show estimates (5.7)- (5.10) using mathematical induction. Let
x ∈ U(x∗, r)− {x∗}. Using (5.5) and (a2), we have in turn that

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖) ≤ w0(r) < 1. (5.11)

It follows from (5.11) and Banach lemma on invertible operators that F ′(x)−1 ∈
L(Y,X) and

‖F ′(x)−1F ′(x∗)‖ ≤ 1

1− w0(‖x− x∗‖)
. (5.12)

In particular for x = x0, u0 and y0 are well defined by the first and second substep
of method (1.3), respectively. We can write

u0 − x∗ =x0 − x∗ − F ′(x0)−1F (x0)

=(F ′(x0)−1F ′(x∗))

(∫ 1

0

F ′(x∗)−1
(
F ′(x∗ + θ(x0 − x∗))− F ′(x0))

)
(x0 − x∗)dθ.

(5.13)

So by (5.5), (a3), (5.12) and (5.13), we get in turn that

‖u0 − x∗‖ ≤ ‖(F ′(x0)−1F ′(x∗))‖
∥∥∥(∫ 1

0

F ′(x∗)−1
(
F ′(x∗ + θ(x0 − x∗))− F ′(x0))

)
(x0 − x∗)dθ

∥∥∥
≤
∫ 1

0
w((1− θ))‖x0 − x∗‖dθ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖

≤ ‖x0 − x∗‖ < r, (5.14)

so (5.7) holds for n = 0 and u0 ∈ U(x∗, r).
In view of the second substep of method (1.3), (5.5) and (5.14), we obtain in turn
that

‖y0 − x∗‖ =
1

2
‖(x0 − x∗) + (u0 − x∗)‖

≤ 1

2
(‖x0 − x∗‖+ ‖(u0 − x∗)‖)

≤ 1

2
(1 + g1(‖x0 − x∗‖)) ‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (5.15)

so (5.8) holds for n = 0 and y0 ∈ U(x∗, r).
By (a3), we can write for x ∈ U(x∗, r)

F (x) = F (x)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))dθ(x0 − x∗), (5.16)

so

‖F ′(x∗)−1F (x)‖ ≤
∫ 1

0

v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖. (5.17)

Then, by the third substep of method (1.3) we can write

z0 − x∗ =(x0 − x∗ − F ′(x0)−1F (x0)) + F ′(y0)−1(F ′(x0)− F ′(y0))F ′(x0)−1F (x0).
(5.18)
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Then, by (5.5), (5.14-5.18)

‖z0 − x∗‖ ≤

[
g1(‖x0 − x∗‖) +

w0(‖x0 − x∗‖) + w0(‖y0 − x∗‖)
∫ 1

0
v(θ‖x0 − x∗‖)dθ

(1− w0(‖y0 − x∗‖))(1− w0(‖x0 − x∗‖))

]
‖x0 − x∗‖

≤ g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (5.19)

which implies that (5.9) holds for n = 0 and z0 ∈ U(x∗, r).
Next, from the last substep of method (1.3) we can write

x1 − x∗ =(z0 − x∗ − F ′(z0)−1F (z0)) + F ′(z0)−1(F ′(y0)− F ′(z0))F ′(y0)−1F (z0)

+ F ′(y0)−1(F ′(x0)− F ′(y0))F ′(x0)−1F (z0), (5.20)

so

‖x1 − x∗‖ ≤
∫ 1

0
w((1− θ)‖z0 − x∗‖)dθ‖z0 − x∗‖

1− w0(‖z0 − x∗‖)

+
(w0(‖y0 − x∗‖) + w0(‖z0 − x∗‖))

∫ 1

0
v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖

(1− w0(‖z0 − x∗‖))(1− w0(‖y0 − x∗‖))

+
(w0(‖x0 − x∗‖) + w0(‖y0 − x∗‖))

∫ 1

0
v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖

(1− w0(‖y0 − x∗‖))(1− w0(‖x0 − x∗‖))
≤ g4(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (5.21)

which shows (5.10) for n = 0 and x1 ∈ U(x∗, r).
Notice that we also used (5.12) for x = y0, z0 and (5.17) for x = x0, z0.
The induction can clearly be completed if, we replace x0, u0, y0, z0, x1 by xk, uk, yk, zk, xk+1

in the preceding estimates. Then, from the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r, where c = g4(‖x0 − x∗‖) ∈ [0, 1), (5.22)

we obtain limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r). Let

T =
∫ 1

0
F ′(x∗ + θ(y∗ − x∗))dθ for some y∗ ∈ Ω with F (y∗) = 0.

By (a2) and (a5), we get

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
∫ 1

0

w0(θ‖x∗ − y∗‖)dθ

≤
∫ 1

0

w0(θR) < 1,

so T−1 ∈ L(Y,X). Finally, from the identity

0 = F (y∗)− F (x∗) = T (y∗ − x∗),

we conclude that x∗ = y∗. �

6. Numerical Testing

In this section, a number of numerical examples are worked out in order to
check the applicability of (1.3) that now we denote by M5

1. The values of the
sequences {ηn}, {βn}, {an}, {bn} and {dn} are computed for all the examples and
summarized in the tables. We compare the presented method with fourth-order
method by Argyros et al. [23] denoted by M4

1, fifth-order method by Cordero et
al. [38] denoted by M5

2 and fifth-order method by Singh et al. [40] denoted by M5
3.
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The above mentioned methods are given as follows:
Fourth order method given by Argyros et.al (M4

1):

yk = xk − ΓkF (xk),

zk = xk +
2

3
(yk − xk),

xk+1 = yk −
3

4
H(xk)

[
I − 3

2
H(xk)

]
(yk − xk), (6.1)

where

H(xk) = Γk[F ′(zk)− F ′(xk)].

Fifth order method given by Cordero et.al (M5
2):

yk = xk − ΓkF (xk),

zk = yk − 5ΓkF (yk),

xk+1 = zk −
1

5
Γk(−16F (yk) + F (zk)). (6.2)

Fifth order method given by Singh et al. (M5
3):

yk = xk − ΓkF (xk),

zk = yk − ΓkF (yk),

xk+1 = zk − [F ′(yk)]−1F (zk). (6.3)

Example 6.1. Consider the equation F (x) = 0, where

F (x) =

{
x3 − 2x− 5 , x ≥ 0
−x3 − 2x− 13 , x < 0

(6.4)

F (x) =

{
x3 − 2x− 5 , x ≥ 0
−x3 − 2x− 13 , x < 0

on [−1, 3].
It is easy to find first derivative of F as

F ′(x) =

{
3x2 − 2 , x ≥ 0
−3x2 − 2 , x < 0

and the second derivative as

F ′′(x) =

{
6x , x ≥ 0
−6x , x < 0

The second derivative F ′′ satisfies Lipschitz condition as,

‖F ′′(x)− F ′′(y)‖ = 6‖|x| − |y|‖ ≤ 6‖x− y‖.
Now, for the initial point x0 = 2, we can obtain

β = ‖F ′(x0)−1‖ = 0.1, η = ‖F ′(x0)−1F (x0)‖ = 0.1, M = 18, N = 6.

Therefore, a0 = Mβη = 0.18, b0 = Nβη2 = 0.006, which satisfy

q(a0) = a0g(a0)− 1 = −0.757442 < 0,

and
d0h(a0) ' 0.000961577 < 1.

This means that the hypotheses of Theorem (4.1) is satisfied. Hence the recur-
rence relations for the method given by (1.3) is demonstrated in Table 1. Besides
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Table 1. Results of recurrence relations

n ηn βn an bn dn
0 1.00000e− 001 1.00000e− 001 1.80000e− 001 6.00000e− 003 7.28339e− 004
1 7.28339e− 005 1.32023e− 001 1.73084e− 004 4.20213e− 009 2.88713e− 016
2 2.10281e− 020 1.32046e− 001 4.99802e− 020 3.50329e− 040 2.00620e− 078
3 4.21865e− 098 1.32046e− 001 1.00270e− 097 1.41002e− 195 3.24992e− 389

Table 2. Results of problem (6.4)

k Method M4
1 Method M5

1 Method M5
2 Method M5

3

1 1.034925e− 003 3.686228e− 005 1.989572e− 004 4.704464e− 005
2 6.941069e− 016 1.464104e− 027 3.053532e− 022 5.966369e− 027
3 1.405131e− 064 1.447150e− 139 2.599923e− 117 1.957486e− 136

the solution x∗ belongs to B(x0, Rη) = B(2, 0.134853 . . . ) ⊆ Ω and is unique in
B(2, 0.976258 . . . ) ∩ Ω.
Now we apply the presented method to compute (6.4) and compare it with methods

M4
1, M5

2 and M5
3. Displayed in Table 2 is the norm of vector functions at each

iterative step. It can be observed that accuracy of the method M5
1 is higher than

the respective competitors in terms of number of significant digits gained by each
method.

Example 6.2. Consider the nonlinear integral equation F (x) = 0, where

F (x)(s) = x(s)− 4

3
+

1

2

∫ 1

0

s cos(x(t))dt, (6.5)

where s ∈ [0, 1], x ∈ Ω = B(0, 2) ⊂ X. Here, X = C[0, 1] is the space of continu-
ous functions on [0,1] with the max-norm

‖x‖ = max
s∈[0,1]

|x(s)|.

We can obtain the derivatives of F given by

F ′(x)y(s) = y(s)− 1

2

∫ 1

0

s sin(x(t))y(t)dt, y ∈ Ω,

F ′′(x)yz(s) = −1

2

∫ 1

0

s cos(x(t))y(t)z(t)dt, y, z ∈ Ω.

Furthermore, we have

‖F ′′(x)‖ ≤ 1

2
≡M,x ∈ Ω

and the Lipschitz condition with N = 1
2 .

‖F ′′(x)− F ′′(y)‖ ≤ 1

2
‖x− y‖, x, y ∈ Ω.

A constant function, i.e. x0(t) = 4/3, is chosen as the initial approximate solution.
It follows that

‖F (x0)‖ ≤ 1

2
cos

4

3
.
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Table 3. Results recurrence relations

n ηn βn an bn dn
0 2.88165e− 001 1.95408e+ 000 2.225707e− 001 5.092785e− 002 6.106925e− 003
1 1.397374e− 003 2.879977e+ 000 2.012190e− 003 2.811764e− 006 1.135642e− 011
2 1.586907e− 014 2.885801e+ 000 2.289749e− 014 3.633619e− 028 1.888888e− 055
3 2.997489e− 069 2.885801e+ 000 4.325079e− 069 1.296438e− 137 2.404534e− 274

Table 4. Results of the system (6.6) for m = 35

k Method M4
1 Method M5

1 Method M5
2 Method M5

3

1 3.61303e− 007 1.34443e− 008 7.09395e− 009 2.08428e− 006
2 3.46796e− 029 2.0685e− 043 9.11033e− 045 8.72599e− 021
3 2.94364e− 117 1.78337e− 217 3.18247e− 224 6.39529e− 064

In this case, we have

‖I − F ′(x0)‖ ≤ 1

2
sin

4

3
,

and then by the Banach lemma we include that Γ0 exists and satisfies

‖Γ0‖ ≤
2

2− sin 4
3

≡ β.

It follows that

‖Γ0F (x0)‖ ≤
cos 4

3

2− sin 4
3

≡ η.

Therefore, we obtain

a0 = Mβη =
cos 4

3

(2− sin 4
3 )2

, b0 = Nβη2 =
cos2 4

3

(2− sin 4
3 )2

.

As a result, we compute

q(a0) = a0g(a0)− 1 ' −0.6755 < 0,

and

d0h(a0) ' 0.009041 < 1.

This means that the hypotheses of Theorem (4.1) is satisfied. Hence the recur-
rence relations for the method given by (1.3) is demonstrated in Table 3. Besides,

the solution x∗ belongs to B(x0, Rη) = B(4/3, 0.3357 . . . ) ⊆ Ω and is unique in
B(4/3, 1.7205 . . . ) ∩ Ω.

Using Trapezoidal rule of integration with step h = 1/m to discretize (6.5), we
obtain the following system of nonlinear equations

0 = xi −
4

3
+

si
2m

1

2
cos(x0) +

m−1∑
j=1

cos(xj) +
1

2
cos(xm)

 , i = 0, 1, . . .m, (6.6)

where si = ti = i/m and xi = x(ti). Now we apply the presented method given by
(1.3) to compute (6.6) and compare it with methods M4

1, M5
2 and M5

3. We give initial
guess xi = 4/3, i = 0, 1, . . .m. In the tests, we take m = 35 in (6.6), respectively.
Displayed in Table 4 is the norm of vector functions at each iterative step. From
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the numerical results, we can see that there is no clear winner between the methods
M5

1 and M5
3 but the performance of M5

1 is better than M4
1 and M5

2.

Example 6.3. Consider the boundary value problem

y′′ + y′ − y3 = 0, y(0) = y(1) = 0 (6.7)

We divide the interval [0, 1] into n subintervals and we set h =
1

n
. Let {zk} be the

points of the subdivision with

0 = z0 < z1 < z2 < · · · < zn = 1

and the corresponding values of the function

y0 = y(z0) = 0, y1 = y(z1), . . . , yn = y(zn) = 0

Standard approximations for the first and second derivatives are given respectively
by

y′i =
yi+1 − yi−1

2h
, y′′i =

yi−1 − 2yi + yi+1

h2
, i = 1, 2, . . . , n− 1. (6.8)

Define the operator F : Rn−1 → Rn−1 by

F (y) = Gy + hJy − 2h2g(y),

where

G =


−4 2 0 · · · 0
2 −4 2 · · · 0
0 2 −4 · · · 0
...

...
. . .

... 0
0 · · · · · · · · · −4

 , J =


0 1 0 · · · 0
−1 0 1 · · · 0
0 −1 0 · · · 0
...

...
. . .

... 0
0 · · · · · · · · · 0



g(y) =


y3

1

y3
2
...

y3
n−1

 , y =


y1

y2

...
yn−1

 ,

then, we get

F ′(y) = G+ hJ − 6h2


y2

1 0 0 · · · 0
0 y2

2 0 · · · 0
0 0 y2

3 · · · 0
...

...
. . .

... 0
0 · · · · · · · · · y2

n−1

 ,

F ′′(y) = −12h2


y1 0 0 · · · 0
0 y2 0 · · · 0
0 0 y3 · · · 0
...

...
. . .

... 0
0 · · · · · · · · · yn−1

 ,

Let x ∈ Rn−1, A ∈ Rn−1 ×Rn−1, and define the norms of x and A by

‖x‖ = max
1≤i≤n−1

|xi|, ‖A‖ = max
1≤i≤n−1

n−1∑
k=1

|aik|
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Table 5. Results of recurrence relations

n ηn βn an bn dn
0 1.68893e− 001 6.11998e+ 000 2.09643e− 002 2.09486e− 002 1.07818e− 004
1 1.82097e− 005 6.25536e+ 000 2.31034e− 006 2.48908e− 010 1.41965e− 020
2 2.58514e− 025 6.25538e+ 000 3.27988e− 026 5.01653e− 050 5.76644e− 100
3 1.4907e− 124 6.25538e+ 000 1.89132e− 125 1.66809e− 248 6.37584e− 497

Table 6. Results of the system (6.9) for n = 10

k Method M4
1 Method M5

1 Method M5
2 Method M5

3

1 9.353822e− 008 7.753839e− 008 4.752371e− 008 2.497539e− 006
2 8.095574e− 038 3.517723e− 042 1.050730e− 042 4.521260e− 034
3 8.304444e− 187 2.412028e− 209 1.098868e− 209 2.865670e− 170

For n = 10, we now get

‖F ′′(x)− F ′′(y)‖ ≤ 0.12‖x− y‖

As the solution should vanish at the end points and be positive in the interior, a

reasonable choice of initial approximation seems to be exp(πx)
100 . This gives the fol-

lowing vector:
x0 = {0.01369107770624846884 . . . , 0.018744560875853383506 . . . , 0.025663323952081353209 . . . ,
0.035135856242857336377 . . . , 0.048104773809653516555 . . . , 0.065860619626947248584 . . . ,
0.090170286109420782423 . . . , 0.12345283939187368580 . . . , 0.16902024171711546020}T
Now we get the following results for our method: ‖Γ0‖ ≤ β = 6.1199878634053438795650,
‖Γ0F (x0)‖ ≤ η = 0.168892624074745025, ‖F ′′(x)‖ ≤M = 0.020282429006053855224,
N = 0.12, a0 = Mβη = 0.0209643406890019314, b0 = Nβη2 = 0.0209485. which
satisfy

q(a0) = a0g(a0)− 1 = −0.9783576077847256610 < 0,

and

d0h(a0) ' 0.000110204 < 1.

This means that the hypotheses of Theorem (4.1) is satisfied. Hence the recurrence
relations for the method given by (1.3) is demonstrated in Table 5. This implies

that the solution of the equation (6.7) exists in the ball B(1, 0.174374 . . . ) ⊆ Ω and
is unique in B(1, 15.8846 . . . ) ∩ Ω.

If we discretize the problem (6.7) by using (6.8), we obtain the following system
of equations

2(yi+1 − 2yi + yi−1) + h(yi+1 − yi−1)− 2h2y3
i = 0, i = 1, 2, 3, . . . , 9. (6.9)

Now we apply the presented method given by (1.3) to compute (6.9) and compare it
with methods M4

1, M5
2 and M5

3. Displayed in Table 6 is the norm of vector functions
at each iterative step. Numerical computations clearly show that the method M5

1

is competitive with M5
3 and behaves better than M4

1 and M5
2, so our method given

by (1.3) can be of practical interest.
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7. Global convergence

In this section, we present complex geometries of the methods in previous section
based on basins of attraction when methods are applied to the complex polynomials.
The basin of attraction is a useful geometrical tool for comparing convergence
domains of the iterative methods (see [41, 42]). To start with, let us recall some

basic dynamical concepts. Consider a rational function R : Ĉ → Ĉ, where Ĉ is

the Riemann sphere. The orbit of a point x ∈ Ĉ is defined as the set of successive
images of x denoted by {x,R(x), R2(x), . . . , Rp(x), . . . .} In this way, a point x0 is a
fixed point of R if R(x0) = x0. A fixed point x0 is called attracting if ‖R′(x0)‖ < 1,
repelling if ‖R′(x0)‖ > 1 and neutral if ‖R′(x0)‖ = 1. If ‖R′(x0)‖ = 0, the point x0

is superattracting. Let α be an attracting fixed point of the function R, its basins
of attraction A(α) is defined as the set of pre-images of any order such that

A(α) = {x ∈ Ĉ : Rp(x)→ α for p→∞}

The Fatou set of the rational function R is the set of points x ∈ Ĉ whose orbits

tend to an attractor (fixed point, periodic orbit or infinity). Its complement in Ĉ is
the Julia set. That means that the basin of attraction of any fixed point belongs to
the Fatou set and the boundaries of these basins of attraction belong to the Julia
set.
To study dynamical behavior, we consider a system of quadratic equations, repre-
senting the intersection of two conics in R2 given as

x2 + 2y = 3

2xy = 1

}
presents three simple real roots that are superattractive fixed points for the methods
in previous section. For generating basins of attraction associated with roots of
nonlinear system of equations, we take a square [−5, 5] × [−5, 5] of 1024 × 1024
points, which contains all roots of concerned nonlinear system of equations and
we apply the iterative method starting in every point in the square. We assign a
color to each point according to the root to which the corresponding orbit of the
iterative method, starting from the point, converges. If the corresponding orbit
does not reach any root of the polynomial, with tolerance 10−3 in a maximum of
25 iterations, we mark those points with black color. For the given test problem,
it can be observed in Fig.1 that all the roots of the polynomial system have their
respective basins of attraction with different colors. Also the Julia set can be seen
as black lines of unstable behavior. It can be easily observed that the method M5

1

(Fig.1b) takes the lead followed by M5
3 (Fig.1d) and M4

1 (Fig.1a) whereas there are
many divergent points in the considered region for method M5

2 (Fig.1c).

8. Conclusions

In this paper, we have analyzed the semilocal convergence for a fifth-order iter-
ative method in Banach spaces by using recurrence relations, giving the existence
and uniqueness theorem that establishes the R-order of the method and the priori
error bounds. In addition, local convergence analysis is based on Lipschitz type con-
ditions, thereby extending the usage of the method. Theoretical results are applied
on standard numerical examples like integral equation and boundary value problem
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to demonstrate the efficiency of our convergence analysis. Lastly, the basins of at-
traction of the proposed method are analyzed and compared with existing methods
which shows that the performance of our method is better.
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