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TOTALLY - MEASURABILITY ON SIGNED MEASURABLE

SPACES FOR QUASI-NORMED SPACES VALUED FUNCTIONS

ENKELEDA ZAJMI KOTONAJ

Abstract. In this paper our aim is to identify the properties of totally mea-

surable functions with values in a quasi normed space, defined in a measurable

space. We are focused on the case when the measurable space is equipped
with a signed measure and defining the concept of convergence according to

outer measure of a sequence of functions we have proof a convergence theorem
which is one of the results obtained.

1. Introduction

The notion of totally measurable functions in case of finitely purely atomic mea-
sure and atomic multimeasure spaces is studied in [1] and [2]. Authors in [1], under
the assumptions that X is a Banach space, measure is a set multifunction of finite
variation valued in P(X) and the functions are scalar have achieved some results on
totally measurable. The paper [2] presents some results on finitely purely atomic
measure spaces. The idea is similar to that of [1], but the functions are valued in
a Banach space X, namely vector valued functions and the measure is real valued
and positive.
This paper research’s focus is totally - measurability of quasi - normed spaces val-
ued functions, when the measure is assumed to be a signed measure. The primary
aim is to extend, if it is possible, the properties observed in [1] and [2] and further
by introducing the concept of convergence according to outer measure, to study a
convergence theorem, (Proposition 3.3 ). Presentation of the absolute variation of
a signed measure as |m| = m+ +m− ([4], Definition 10.6, Theorem10.5), allows us
to extend the concept of the m - totally measurable function in the case of signed
measure and further to show the truth of Remark 3.11.4 ([2]) in this case. Using
the concept of convergence according to outer measure and quasi-norm properties
presented in [5], we have given an equivalent definition of total measurability (Def-
inition 3.3). After that, using this definition and the Riesz’s Theorem, we have
shown that total measurability brings measurability. In closing this paper, the
Egoroff’s Theorem allows us to shown that in the case of finite measurable spaces
according to |m|, the concepts of total measurability and measurability coincide. If
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the condition of being finite is removed, we have noticed by way of example that
this compatibility does not apply.

2. Preliminaries

Let T be a nonempty set, P(T ) the family of all subsets of T and Σ a σ - algebra
of subsets of T. A partition of T is a finite family P = (Ai) i=1,...,n in Σ such that
Ai ∩ Aj = ∅, i 6= j and ∪ni=1Ai = T.

Definition 2.1. ([2] Definition 3.8)
(i) If P = (Ai) i=1,...,n, P’ = (Bj) j=1,...,m are two partitions of T, then P’ is said
to be finer than P (denoted by P ≤ P ′ or P ′ ≥ P ) if for every j ∈ {1, ...,m} there
exists ij ∈ {1, ..., n} so that Bj ⊆ Aij .
(ii) The common refinement of two partitions P = (Ai)i=1,...,n and P’ = (Bj)j=1,...,m

is the partition P ∧ P ′ = (Ai ∩Aj)i=1,...,n;j=1,...,m .

Let m : Σ→ [-∞,+∞] be an arbitrary set function, with m(∅) = 0.

Definition 2.2. ([4] Definition 10.1)
The set function m is said to be a signed measure if
1.For every A ∈ Σ, m(A) 6= −∞ or for every A ∈ Σ, m(A) 6= +∞.
2.For every sequence of sets (An)n∈N in Σ such that, An1

∩An2
= ∅ if n1 6= n2,

m(∪n∈NAn) =
∑
n∈Nm(An) (σ - additivity property ).

Definition 2.3. ([2] Definition 2.1)
The set function m : Σ→ [0,+∞] with m(∅) = 0 is said to be:
(i) monotone measure if m(A) ≤ m(B) for every A,B ∈ Σ with A ⊆ B.
(ii) null-additive measure if m(A∪B) = m(A), for every A,B ∈ Σ with m(B) = 0.
(iii) σ - null - additive measure if m(∪n∈NAn) = 0 as soon as An ∈ Σ and
m(An) = 0 for all n ∈ N.
(iv) subadditive measure if m(A ∪B) ≤ m(A) +m(B) for every A,B ∈ Σ.
(v) finitely additive measure if m(A ∪ B) = m(A) + m(B), for every A,B ∈ Σ ,
with A ∩B = ∅.
(vi) σ - subadditive measure if m(∪∞n=1An) ≤

∑∞
n=1m(An), for every (An)n∈N ⊂ Σ,

so that ∪∞n=1An ∈ Σ .
(vii) σ - additive measure if m(∪∞n=1An) =

∑∞
n=1m(An), for every (An)n∈N ⊂ Σ,

so that ∪∞n=1An ∈ Σ and Ai ∩Aj = ∅ for i 6= j, i, j ∈ {1, ..., n}.

Remark 2.1. ([3])
If m : Σ → [0,+∞] is monotone and subadditive, then m is null - additive. A
subadditive monotone measure is sometimes called a submeasure.

Definition 2.4. ([2] Definition 3.1)
Let m : Σ→ [0,+∞] be an arbitrary set functions, with m(∅) = 0.
(i) A set A ∈ Σ is said to be an atom of m if m(A) > 0 and for every B ∈ Σ, with
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B ⊂ A, we have m(B) = 0 or m(A \B) = 0.
(ii) m is said to be finitely purely atomic (and T a finitely purely atomic space) if
there is a finite disjoint family (Ai)

n
i=1 ⊂ Σ of atoms of m so that T = ∪ni=1Ai.

Lemma 2.1. ([1], Remark 3.7)
Let m : Σ → [0,+∞] be a non-negative set function, with m(∅) = 0 and let A ∈ Σ
be an atom of m.
(i) If m is monotone measure and the set B ∈ Σ is so that B ⊆ A and m(B) > 0,
then B is also an atom of m and m(A \ B) = 0. Moreover, if m is null - additive,
then m(B) = m(A).
(ii) If m is monotone and null-additive measure, then for every finite partition
(Bi)

n
i=1 of Σ, there exists a unique i0 ∈ {1, 2..., n} so that m(Bi0) = m(A) and

m(Bi) = 0 for every i ∈ {1, 2..., n}, i 6= i0.

Definition 2.5. ([4], Definition 3.1)
The set function m? : P (T ) → [0,+∞] with m?(∅) = 0 called outer measure on T
if it is monotone and σ - subadditive measure.

So, an outer measure is a submeasure on T.

Definition 2.6. ([5], Definition 1.1)
Let X be a vector space. A function ‖ . ‖: X → [0,+∞) is said to be quasi - norm
on X if the following conditions hold:
(i) ‖ x ‖= 0⇔ x = 0.
(ii) for every x ∈ X and for every λ ∈ R , ‖ λx ‖= |λ| ‖ x ‖.
(iii) for every x, y ∈ X , ‖ x + y ‖6 K(‖ x ‖ + ‖ y ‖) where K ≥ 1 is a constant
independent from variables x and y.
The smallest of constant K, such that the above conditions hold, is called the mod-
ulus of concavity of quasi - norm ‖ . ‖.

If the vector space X is equipped with a quasi - norm ‖ . ‖ on X, then (X, ‖ . ‖)
is called quasi - normed space.

Let m : Σ→ [−∞,+∞] be an arbitrary set functions, with m(∅) = 0.
In the same way to Definition 3.9 to [2], we can give the following definition.

Definition 2.7. A vector function f : T → X is said to be:
(i) m-totally-measurable ( on T ) if for every ε > 0, there exists a partition of T,
(Ai)

n
i=0 ⊂ Σ, with {A1, A2, ..., An} ⊂ Σ\{∅}, such that the following two conditions

hold:
(1) |m|(A0) = sup{

∑l
j=1 |m(Aj)|} < ε ; where (Aj)

l
j=1 is a partition of A0 and

supremum is extended over all finite partitions of set A0.
|m| is called absolute variation of m.
(2) supt,s∈Ai ‖ f(t)− f(s) ‖< ε, for all i ∈ {1, 2, ..., n}.
(ii) The vector function f is called m-totally-measurable on B ∈ Σ if the restriction
f |B is m-totally-measurable on (B,ΣB ,mB), where ΣB = {A ∩ B : A ∈ Σ} and
mB = m|ΣB

.
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Recall that :
([4], Definition 10.3) (i) A set P ∈ Σ is called a positive set, according to signed
measure m, if for every P ′ ∈ Σ such that P ′ ⊆ P , m(P ′) ≥ 0.
A set N ∈ Σ is called a negative set, according to signed measure m, if for every
N ′ ∈ Σ such that N ′ ⊆ N , m(N ′) ≤ 0.
A set Q ∈ Σ is called a null set, according to signed measure m, if for every Q′ ∈ Σ
such that Q′ ⊆ Q, m(Q′) = 0.
([4], Definition 10.4, Theorem 10.3) (ii) As claimed by the Hanh decomposition of
signed measure m, we can write m = m+−m− where ∀A ∈ Σ, m+(A) = m(A∩P ),
m−(A) = −m(A∩N), P and N are respectively positive and negative set of m and
P ∪N = T , P ∩N = ∅.
([4], Definition 10.6, Theorem10.5) (iii) m+,m−, |m| = m+ +m− are σ− additive,
monotone, non negative measures on T.
([4], Definition 6.9, Proposition 6.22 (ii)) (iv) A function f : T → X is called a
simple function if f(x) =

∑n
i=1 aiχAi

(x), where χAi
are characteristic functions on

a finite partition of T.

Let X be a quasi - normed space. Now we are giving an example of m-totally-
measurable functions on T.

Example 1.
Every simple function f : T → X is m-totally-measurable function on T.
Proof
The proof is immediate, if we take A0 = ∅ and Ai for i = 1, ..., n the sets of parti-
tion above. So, |m|(A0) = |m|(∅) = 0 < ε, for every ε > 0.
On the other hand, supt,s∈Ai

‖ f(t) − f(s) ‖= supt,s∈Ai
‖ ai − ai ‖= 0 < ε, for

every ε > 0.

Remark 2.2. If f : T → X is m-totally-measurable, then f is m+-, m−- and |m|-
totally-measurable.
Proof
If |m|(A0) < ε then, 0 ≤ (m+ +m−)(A0) = m+(A0) +m−(A0) < ε.
That implies, m+(A0),m−(A0) < ε.
Therefore, |m+|(A0) = sup{

∑n
k=1m

+(Ak) : ∪nk=1(Ak) = A0} ≤ m+(A0) < ε
(this implies from the fact that m+ is σ- additive, monotone , non negative measure
on T ) .

Remark 2.3. If the vector function f : T → X is both m+- and m−-totally-
measurable, then f is m-totally-measurable.
The proof is immediately from the equality (1) |m|(A0) = m+(A0) + m−(A0) <
ε+ ε = 2ε = ε′.

Remark 2.4. ([2], Remark 3.11.2) (i) If the vector function f : T → X is m-
totally-measurable on T, then f is m-totally-measurable on every A ∈ Σ. (The same
proposition hold in case when m is a signed measure, because of equality (1), that
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hold for every A0 ∈ ΣA, and the fact that m+,m−, are σ- additive, monotone , non
negative measures on T).
([2], Remark 3.11.4) (ii) [1] If m is null - additive and monotone measure, and
A ⊂ T is an atom for m, then a function f : T → X is m-totally-measurable on A
if and only if :

infU∈Usupt,s∈U ‖ f(t)− f(s) ‖= 0 ,

where U is the family of all atoms contained in A.

3. Totally measurable functions and convergence theorems

The same proposition with Remark 2.4 (ii) can formulated for signed measure.

Remark 3.1. If m is a signed measure and A ⊂ T is an atom for |m|, then a
function f : T → X is m-totally-measurable on A if and only if :

infU∈Usupt,s∈U ‖ f(t)− f(s) ‖= 0

where U is the family of all atoms contained in A.
Proof
Suppose that the function f : T → X is m-totally-measurable on A. From Definition
2.7, for every ε > 0, there exists a partition (Ai)

n
i=0 ⊂ ΣA with {A1, A2, ..., An} ⊂

ΣA \ {∅} such that:
1. |m|(A0) < ε
2. supt,s∈Ai

‖ f(t)− f(s) ‖< ε,∀i ∈ {1, 2, .., n}
Thus, if U ⊂ A and U is an atom for |m|, then |m|(U) > 0 and for every
B ⊂ U,B ∈ Σ either |m|(B) = 0 or |m|(U \B) = 0.
On the other hand, A is also an atom for |m|. Therefore, |m|(A \ U) = 0 and so,
the monotony of |m| imply that U ⊆ ∪ni=1Ai and (A \ U) ⊆ A0 (for some ε > 0).
Furthermore, since the collection (Ai)

n
i=0 ⊂ ΣA is a partition of T, only one of sets,

let say Ak where k ∈ {1, 2, ..., n}, has a positive measure |m| and the other sets has
measure |m| zero.
If U ⊆ Ak, then supt,s∈U ‖ f(t)− f(s) ‖< ε.
Otherwise, denote U1 = U ∩Ak. Thus |m|(U) = |m|(U1).
For every B ⊂ U1 ⊂ U , we have |m|(B) = 0 or |m|(U \B) = 0. If |m|(B) 6= 0, then
|m|(U \B) = 0 and (U1 \B) ⊂ (U \B) that imply 0 ≤ |m|(U1 \B) ≤ |m|(U \B) = 0.
So, the set U1 is an atom for |m| and U1 ⊂ Ak. This completes the proof.
Conversely, suppose that infU∈Usupt,s∈U ‖ f(t)− f(s) ‖= 0, where U is the family
of all atoms contained in A. From Definition of infinum, for every ε > 0 exists an
atom U ∈ U such that supt,s∈U ‖ f(t)− f(s) ‖< ε.
The set U ⊂ A is an atom for |m| and A is also an atom for |m|, so |m|(A\U) = 0.
Denote A0 = A \ U,A1 = U . The family {A0, A1} is a partition of A and
|m|(A0) = 0, supt,s∈A1=U ‖ f(t) − f(s) ‖< ε. Thus, the partition {A0, A1} is
such that the conditions of Definition 2.7 holds. So, the function f is m-totally-
measurable on A.

Let m : Σ→ [−∞,+∞] a signed measure. The following proposition hold.
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Proposition 3.1. If f, g : T → X are m-totally-measurable functions and k ∈ R
then kf and f ± g are also m- totally-measurable.

Proof
The first claim is immediately according to Definition 2.7. Let proof the second
claim.
For every ε > 0, there exists partitions P1 = {Ai}ni=0 and P2 = {Bj}mj=0 of T
such that |m|(A0) < ε

2K , |m|(B0) < ε
2K , where K is modulus of concavity of

quasi-norm ‖ . ‖ on X, and supt,s∈Ai
‖ f(t) − f(s) ‖< ε

2K for i ∈ {1, ..., n},
supt,s∈Bj

‖ f(t)− f(s) ‖< ε
2K for j ∈ {1, ...,m}.

Define another partition P3 of T as following.
Take C00 = A0 ∪B0, Cij = Ai ∩Bj for i ∈ {1, ..., n}, j ∈ {1, ...,m}.
We can see easily that the family P3 = {Cij}n,mi=0,j=0 is a partition of T and

|m|(C00) ≤ |m|(A0) + |m|(B0) < ε
2K + ε

2K = ε
K ≤ ε.

Let see the second condition.
For every i ∈ {1, ..., n}, j ∈ {1, ...,m} and t, s ∈ Cij have:
‖ f(t) + g(t)− (f(s) + g(s)) ‖≤ K ‖ f(t)− f(s) ‖ +K ‖ g(t)− g(s) ‖
≤ Ksupt,s∈Ai ‖ f(t)− f(s) ‖ +Ksupt,s∈Bj ‖ f(t)− f(s) ‖< ε.
So, supt,s∈Cij

‖ f(t)−f(s) ‖≤ ε. Thus for partition P3 the conditions of Definition
2.7 holds. This complete the proof.
The third claim is clear from equality f − g = f + (−g) and first claim.

Now let formulate the following interesting proposition:

Proposition 3.2. If (fn : T → X)n∈N is a sequence of m-totally-measurable func-
tions on T that is uniformly converge on function f : T → X for every t ∈ T , then
the function f is also m-totally-measurable on T.
Proof
Since (fn : T → X)n∈N is uniformly converge on function f : T → X for every
t ∈ T , then exists a n0 ∈ N such that, for every n ≥ n0 and for every t ∈ T ,
‖ fn(t)− f(t) ‖< ε.
Thus, ‖ f(t)− f(s) ‖≤ K(‖ fn(t)− f(t) ‖ + ‖ fn(t)− f(s) ‖) ≤ K ‖ fn(t)− f(t) ‖
+K2 ‖ fn(t)− fn(s) ‖ +K2 ‖ fn(s)− f(s) ‖< Kε+K2ε+K2 ‖ fn(t)− fn(s) ‖ for
every t, s ∈ T and n ≥ n0.
From Definition 2.7,we can write that, for some n ≥ n0 and for every ε > 0, there

exists a partition of T, (Ai)
m(n)
i=0 ⊂ Σ, with {A1, A2, ..., Am(n)} ⊂ Σ\{∅} , such that

the following two conditions hold:

(1) |m|(A0) < ε ; (2) supt,s∈Ai
‖ fn(t)− fn(s) ‖< ε,∀i ∈ {1, 2, ...,m(n)} .

So, the above inequalities imply that ‖ f(t) − f(s) ‖< Kε + 2K2ε = ε′ for every
t, s ∈ Ai, i ∈ {1, 2, ...,m(n)}.
The result in above proposition also holds when then sequence (fn(t))n∈N converges
uniformly to f(t) almost everywhere according to |m| for t ∈ T . In this case, take
the partition (A′i)

n
i=0 of T such that A′0 = A0∪B,A′i = Ai \B for every i = 1, ..., n,

where B is denoted a subset of T with |m|(B) = 0.

Let us give the following two definitions and let us see what is their impact.
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Definition 3.1. (The convergence according to outer measure) .
Let m : Σ→ [0,+∞] be a positive monotone measure on T. The sequence of func-
tions (fn : T → X)n∈N converges according to outer measure m? to a function
f : T → X if limn→+∞m

?{t ∈ T :‖ fn(t)− f(t) ‖≥ σ} = 0 for every σ > 0.

Definition 3.2. The function m? : P(T ) → [0,+∞] such that, for every A ⊆ T ,
m?(A) = inf{m(B) : B ∈ Σ, A ⊆ B}, called outer measure on T generated from m.

Remark 3.2. If m : Σ→ [0,+∞] is a positive monotone measure on T and m? is
the outer measure generated from m, then for every A ∈ Σ,m(A) = m?(A).
Proof
For every A ∈ Σ, m(A) ∈ {m(B) : B ∈ Σ, A ⊆ B} implies that m?(A) ≤ m(A).
On the other hand, for every B ∈ Σ with A ⊂ B we have m(A) ≤ m(B) implies
that m(A) ≤ inf{m(B) : B ∈ Σ, A ⊆ B} = m?(A).

Let m : Σ → [−∞,+∞] be a signed measure and |m|? be the outer measure
generated from |m|.

Proposition 3.3. If (fn : T → X)n∈N is a sequence of m-totally-measurable func-
tions converges according to |m|? to a function f : T → X, then the function f is
also m-totally-measurable.
Proof
Let (fn : T → X)n∈N be a sequence of m-totally-measurable functions that converges
according to |m|? to a function f : T → X.
For every ε > 0, there exists a natural number n0 such that, for every n ≥ n0 we
have |m|?{t ∈ T :‖ fn(t)− f(t) ‖≥ ε} < ε.

Denote A
(n)
ε = {t ∈ T :‖ fn(t)−f(t) ‖≥ ε} and B

(n)
ε = T \A(n)

ε . For every n ≥ n0,

|m|?(A(n)
ε ) < ε and for every t, s ∈ B(n)

ε we have ‖ fn(t)− f(t) ‖< ε. Fix a natural
number n ≥ n0 and from inequality ‖ f(t) − f(s) ‖≤ K ‖ fn(t) − f(t) ‖ +K2 ‖
fn(t)− fn(s) ‖ +K2 ‖ fn(s)− f(s) ‖ (see proof of above proposition ) we can write:

‖ f(t)− f(s) ‖≤ Kε+K2ε+K2 ‖ fn(t)− fn(s) ‖,
for every t, s ∈ B(n)

ε .
Since fn is m-totally-measurable on T, then find a partition (Ai)

n
0 of T such that,

(Ai)
n
i=0 ⊂ Σ, with {(Ai)ni=1} ⊂ Σ\{∅}, |m|(A0) < ε and supt,s∈Ai

‖ fn(t)−fn(s) ‖<
ε for i = 1, ..., n. Denote B0 the smallest set in Σ such that (A

(n)
ε ∪A0) ⊆ B0 (this

set is B0 = ∩B∈Σ{B : (A
(n)
ε ∪ A0) ⊆ B}) and Bi = (T \ B0) ∩ Ai for every

i = 1, ..., n. So, the collection (Bi)
n
i=0 is a partition of T such that:

|m|(B0) = |m|?(B0) ≤ |m|?(A(n)
ε ) + |m|?(A0) = |m|?(A(n)

ε ) + |m|(A0) < 2ε
and supt,s∈Bi

‖ fn(t)− fn(s) ‖≤ supt,s∈Ai
‖ fn(t)− fn(s) ‖< ε.

Thus Bi ⊆ Bnε , Ai implies that:

supt,s∈Bi
‖ f(t)− f(s) ‖≤ (K +K2)ε+K2supt,s∈Ai

‖ fn(t)− fn(s) ‖<
(K + 2K2)ε = ε′

This completes the proof.
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We can formulate another equivalent definition of m-totally-measurable function.

Definition 3.3. The vector function f : T → X is called m-totally-measurable
on T, if there exists a sequence of simple functions that converge according to out
measure |m|? to f.

Remark 3.3. Definition 2.7 and Definition 3.3 of m-totally-measurable functions,
are equivalent.
Proof
Suppose that Definition 2.7 holds. Take the numerical sequence εn = 1

2n and define

the simple functions sequence ϕn(t) =
∑k(n)
i=0 ani χAn

i
(t) for every n ∈ N, where ai

is equal with a whatever f(t) for t ∈ Ani and {Ani }
k(n)
i=0 is the partition of T corre-

sponding to εn.
Thus, |m|(An0 ) < 1

2n and supt,s∈An
i
‖ f(t)− f(s) ‖< 1

2n for all i ∈ {1, 2, ..., k(n)}.
Let proof that, the ϕn(t) sequence converges according to out measure |m|? to f.
For every σ > 0 exists a n0 ∈ N such that, σ > 1

2n for every n ≥ n0.
Denote Anσ = {t ∈ T :‖ ϕn(t)− f(t) ‖≥ σ}. Since ϕn(t) = f(s) for some s ∈ Ani we
have Anσ ⊆ An0 for every n ≥ n0, that implies |m|?(Anσ) ≤ |m|?(An0 ) = |m|(An0 ) <
1

2n . So, limn→+∞|m|?(Anσ) = 0, that is our claim.
Conversely, suppose that exists a simple functions sequence ϕn : T → X that con-
verges according to out measure |m|? to f. Let proof that the function f is m-totally-
measurable on T according to definition 2.7. Take σ = ε

2K , where K is modulus
of concavity of quasi-norm on X. For every ε

2 > 0 exists n0 ∈ N such that, for
every n ≥ n0 , |m|?{t ∈ T :‖ ϕn(t) − f(t) ‖≥ ε

2K } <
ε
2 . Fix some n ≥ n0 and

denote B0 = {t ∈ T :‖ ϕn(t) − f(t) ‖≥ ε
2K }. It is clear that |m|?(B0) < ε

2 and
form Definition 3.2 we can write: For every ε

2 > 0 exists a set B′0 ∈ Σ such that,
B0 ⊆ B′0 and |m|?(B0) ≤ |m|(B′0) < |m|?(B0) + ε

2 < ε.

Denote (B′0)c = T\B′0 = {t ∈ T :‖ ϕn(t)−f(t) ‖< ε
2K }. If ϕn(t) =

∑k(n)
i=0 ani χAn

i
(t),

then (B′0)c = (B′0)c ∩ (∪k(n)
i=0 A

n
i ) = ∪k(n)

i=0 ((B′0)c ∩ Ani ) = ∪k(n)
i=0 Ci where Ci =

(B′0)c ∩Ani for every i = 0, ..., n.
It is clear that Ci ∈ Σ and for every t ∈ Ci, ‖ ϕn(t)− f(t) ‖=‖ ani − f(t) ‖≤ ε

2K }.
Since, for every t, s ∈ Ci, ‖ f(t) − f(s) ‖≤ K ‖ ani − f(t) ‖ +K ‖ ani − f(s) ‖< ε,
then supt,s∈Ci

‖ f(t) − f(s) ‖≤ ε. Thus take the partition B′0, C0, C1, ..., Cn of T
that is in accordance with the terms of Definition 2.7.

Remark 3.4. Every m-totally-measurable function f : T → X is also m-measurable
function.
Proof
From Definition 3.3, exists a simple functions sequence ϕn : T → X that converges
according to measure |m|? to function f.
Since |m| = m+ + m− from Definition 3.2 we can write (m+)? + (m−)? ≤ |m|? .
So from limn→+∞|m|?{‖ ϕn(t)− f(t) ‖≥ σ} = 0 we conclude that the sequence ϕn
converges according to, both measures (m+)? and (m−)?, to function f.
The well known Theorem of Riesz ([4], Theorem 9.2) implies that, exists a subse-
quence ϕnk

of ϕn that converges pointwise to f. (This result is true in both spaces
(T,m+) and (T,m−) )
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So, the function f is both m+-measurable and m−-measurable on T. This implies
that f is m-measurable on T.
Egoroff’s Theorem and the fact that uniformly convergence of a function sequence
implies the according to measure convergence, we can conclude that:

If |m|(T ) < +∞, then every m-measurable functions sequence that converge to
a m-measurable function f converge according to measure |m| to function f also.
Finally:

Remark 3.5. If (X, ‖ . ‖) is a normed space and the measure |m| is finite, then
every m - measurable function f : T → X is also m-totally-measurable.
So, the notions m - measurable function and m-totally-measurable function coin-
cides in conditions of Remark 3.5.
Take the function f : [0, 1]→ [0, 1] such that f(x) =1 in A ⊂ C,A /∈ B(R) where C is
Cantor set and B(R) is collections of Borel set in R, and f(x) = 2 in [0, 1]\A. It is
not Borel measurable, because f−1(−∞, 2) = A /∈ B(R), but the function f is Borel
totally-measurable, because we can find a partition {C, [0, 1] \ C} of [0,1] such that
|m|(C) = λ(C) = 0 < ε, where λ is denoted the Lebesgue measure in R. Further-
more, for every t, s ∈ [0, 1] \ C we have f(t) = f(s) = 2 thus |f(t)− f(s)| = 0 < ε
that imply supt,s∈[0,1]\C |f(t)− f(s)| = 0 < ε.
So, we conclude that the set of m-measurable functions is a subset of m-totally-
mesurable functions set.
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